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Quantum-beat spectroscopy of image-potential resonances
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The dynamics of electrons in image-potential resonances on the Ag(111) surface, i.e., image-potential states
that are resonant with bulk bands, have been studied by time-resolved two-photon photoemission in combination
with quantum-beat spectroscopy. Energies and lifetimes of these resonances were determined up to a quantum
number n = 7. Both quantities show a hydrogen-like scaling with quantum number n. The measured decay time
of the first image-potential state (n = 1), which is still located in the projected band gap, is 31.5(1.5) fs. The decay
time decreases to 23(2) fs for the resonance n = 2 and then increases up to 1 ps for n = 7. It is concluded that the
elastic decay of the resonances due to elastic electron transfer into the bulk is nearly one order of magnitude faster
than the inelastic electron-hole pair decay. Nevertheless, the elastic decay is found to be slower than theoretically
predicted. The pure dephasing times of the resonances n = 3–7 are longer than the decay times. This suggests
that electron-phonon scattering is weak despite a large bulk penetration of the resonance wave functions.
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I. INTRODUCTION

The dynamics of electron transfer processes at surfaces and
interfaces plays an important role for many phenomena as, for
example, chemisorption of atoms or molecules, electronically
induced chemical reactions, molecular electronics as well
as for scanning tunneling microscopy. In all these phe-
nomena, electronic excitations populate initially unoccupied
electronic states that can be classified into two fundamentally
different types: (i) states that are located in the forbidden
gap of the solid and whose decay is governed by inelastic
many-body processes, e.g., electron-hole-pair excitation or
electron-phonon coupling, and (ii) states that are resonant
with electronic bulk bands. Electronic excitations in such
quasistationary states (resonances) can additionally decay
elastically due to energy-conserving resonant electron transfer
into the bulk, a process that is expected to dominate over
inelastic decay.1–3 Although resonant elastic electron transfer
is of great importance for many practical applications, it
is still not yet well understood on a microscopic level. In
contrast to that, the understanding of inelastic decay processes
at surfaces is much better developed. A particularly detailed
picture of the inelastic electron dynamics for states in the
gap has been attained by studying the relative simple quasi-
one-dimensional model system of image-potential states on
metal surfaces.4,5 Time-resolved two-photon photoemission
(2PPE) experiments and accurate many-body calculations
have led to a good understanding of many aspects of the
inelastic decay of these initially unoccupied states.6 On most
of the metal surfaces studied so far, the image-potential states
are confined in front of the surface between the attractive
image-potential on the vacuum side and the repulsion from
the forbidden gap on the metal side. In this quantum well,
the image-potential states form a Rydberg-like series which
converges to the vacuum energy Evac. The projected bulk band
gap of the metal limits the penetration of excited electrons
into the bulk, which results in rather long inelastic lifetimes
of image-potential states compared to bulk excitations with
comparable excitation energies. On surfaces on which Evac is
located outside a projected bulk band gap, the image-potential

states become degenerate with projected bulk bands and are in
fact electronic resonances. This opens the possibility to study
resonant charge transfer at surfaces but to retain the simple
hydrogenic character of image-potential states.

In this contribution, we present a systematic investigation
of the decay dynamics of a whole series of image-potential
resonances on the Ag(111) surface. Similar to Cu(111) the
vacuum energy Evac of the Ag(111) surface is located slightly
above the upper edge of the surface-projected sp band gap
and the Rydberg series of image-potential states becomes
degenerate with surface-projected bulk bands. Close to the
�̄ point, only the first image-potential state (n = 1) is located
within the projected band gap as depicted in Fig. 1(a). Previous
experiments on Ag(111) and Cu(111) have shown that the
different character of the second image-potential state is
reflected in its shorter lifetime compared to the n = 1 state.9–13

The difference in the decay dynamics between gap states and
resonances was also investigated in our recent 2PPE study on
Cu(111) where we have used rare gases adsorption in order to
shift the n = 1 state above the projected band gap.14 The decay
of higher members of a series of resonances has been studied
recently for Al(100) where the resonances are located far away
from the projected band gap.15 This results in a strong coupling
to the continuum of projected bulk bands and leads to excita-
tion trapping, a phenomenon that is not observed for Ag(111).

As shown in Fig. 1(c), the probability densities of image-
potential resonances are confined by the image-potential only
on the vacuum side, while they infinitely penetrate into the
bulk. The energies and probability densities shown in Fig. 1
for Ag(111) have been calculated by numerically solving the
Schrödinger equation for an electron in an effective one-
dimensional model potential.8 On the Ag(111) and Cu(111)
surface, the potential supports two bound solutions with
energies within the projected band gap, which can be assigned
to the Shockley surface state (SS) and the first image-potential
state (n = 1). The amplitude of their wave functions decays
exponentially into the bulk as depicted in Fig. 1(b). For
energies above the upper edge of the surface-projected band
gap there is no restriction of the wave function within the metal
and a continuum of solutions can be obtained. Image-potential
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FIG. 1. (Color online) (a) Surface-projected band structure of
Ag(111) close to the � point. The Shockley surface state (SS) close
to the Fermi level EF and the image-potential derived states close
to the vacuum level Evac are surface-specific electronic states with
free-electron-like dispersion. Dark (light) shaded areas illustrate the
occupied (unoccupied) surface-projected bulk bands,7 while the white
area resembles the surface-projected band gap. The energy scale is
given with respect to the vacuum energy at the � point. (b) Calculated
probability densities of the Shockley and the n = 1 image-potential
states along the surface normal using a one-dimensional model
potential8 (solid black line). (c) Calculated probability density of
the first three image-potential resonances n = 2–4.

resonances can be identified by a resonant enhancement of
their probability density in front of the surface. Figure 1(c)
depicts the calculated probability densities of the first three
image-potential resonances n = 2–4 that form Bloch waves
inside the bulk. The Bloch waves consist of a fast modulation
with the periodicity of the crystal lattice superimposed with
a slower modulation, which corresponds to the electron
momentum in the bulk. This suggests that an electron, which
is placed in front of the surface at an energy of one of these
surface resonances, is transferred elastically into the bulk
on an ultrafast timescale. Recent calculations using a wave
packet propagation approach,16 however, predicted rather long
lifetimes of electrons in these image-potential resonances.
In accordance with general arguments given in Ref. 4, the
energies En and inelastic lifetimes τn of these resonances
should follow hydrogenic scaling laws:

En = Evac − 0.85 eV

(n + a)2
, (1)

τn ∝ (n + a)3 (2)

with quantum number n. a is the quantum defect, which is re-
lated to the phase shift of the wave function compared to a pure
hydrogen-like wave function. The identical scaling applies for
the well studied image-potential states on Cu(100),17,18 where
the whole Rydberg series is located in the center of the surface-
projected band gap. In order to experimentally determine
energies, inelastic lifetimes as well as pure dephasing times
of these closely lying resonances, we have used a combination
of 2PPE and quantum-beat spectroscopy. This technique
has already been successfully applied for the study of the
image-potential states on Cu(100),17,19,20 and it turns out that
it is also well suited for image-potential resonances. Our
experiment achieves a sufficiently high resolution in order
to extend the previous experiments on the n = 1 state and the
n = 2 resonance to resonances with quantum numbers up to
n = 7.

This paper is organized as follows: after a description
of the experimental setup, we first discuss the experimental
results. The latter section is divided into the assignment of the
different electronic states and resonances with the help of the
time-resolved 2PPE spectra, the determination of the lifetimes
of the separately lying n = 1 state and n = 2 resonance
by conventional time-resolved 2PPE, and the description of
the quantum-beat spectroscopy for the investigation of the
resonances with n � 3. The subsequent section describes the
analysis of the quantum-beat data. We follow the approach
already applied for the image-potential states on Cu(100)
but describe the evaluation in more detail than in Refs. 17
and 19. The analysis consists of a simplified but illustrative
description of the observed wave packet dynamics using
scaled hydrogen wave functions as well as a quantitative
evaluation of the quantum-beat data within the framework
of the density-matrix formalism. In Sec. VI, we discuss the
experimentally determined energies, inelastic lifetimes, and
pure dephasing times for the Rydberg series of resonances and
compare them with recent theoretical calculations.

II. EXPERIMENT

All presented data were obtained with a setup similar to the
one described in Refs. 21–24. It consists of an ultrahigh vac-
uum (UHV) chamber with a base pressure of 4 × 10−11 mbar,
which is built out of μ-metal in order to suppress magnetic
fields at the sample position. The output of a Ti:Sapphire
oscillator operating at a repetition rate of 82 MHz was used
as laser source. The laser was tuned to a central wavelength
in the near infrared (IR) λIR = 800 nm (photon energy is
h̄ωIR = 1.55 eV, bandwidth (FWHW) is �h̄ωIR = 47 meV).
The laser output was split into two parts. One part was
frequency tripled by subsequent second-harmonic and sum-
frequency generation providing photons with an energy
of h̄ωUV = 4.68 eV (λUV = 265 nm) and a bandwidth of
�h̄ωUV = 53 meV, while the second part is guided over a
motor-driven delay stage with a resolution better than 1 fs.
Second-order dispersion of the laser pulses has been corrected
for the near-IR and UV pulses separately by pairs of Brewster
prisms made out of SF10 and fused silica, respectively. Both
laser beams were aligned collinearly using a dichroitic mirror
and were focused by a spherical Al mirror (f = 50 cm) into
a spot with a diameter of about 100 μm onto the sample.
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The laser pulse durations on the Ag sample were typically
τIR = 45 fs and τUV = 69 fs.

Photoelectrons were detected with a hemispherical elec-
tron energy analyzer equipped with a five-channeltron-
array detector. The energy resolution of the analyzer was
�EDet = 26 meV with an acceptance angle of 1.4◦. All 2PPE
spectra have been recorded in normal emission geometry
where the sample surface has been aligned perpendicular to
the symmetry axis of the analyzer lens system. All energies
are given with respect to the vacuum level Evac, which is the
natural reference level for image-potential states. Initially, the
electron spectra are recorded relative to the Fermi level EF.
The spectral position of Evac can be determined with high
precision by the convergence of the Rydberg series with n [see
Eq. (1)] if a sufficient number of states is measured.

The Ag(111) sample was prepared by repeated Ar+ ion
sputtering (20 minutes at TSample = 370 K with an energy
of Ekin = 700 eV and an ion current of ISputter = 3 μA) and
subsequent annealing cycles (5 minutes at TSample = 770 K).
The sample cleanliness was checked by x-ray photoelectron
spectroscopy (XPS) of the Ag-3d and C-1s signals and the
long-ranged order by low-energy electron diffraction (LEED).
Moreover, the absolute intensity at the low-energy cutoff of
the 2PPE spectra, which depends on the work function �

of the sample as well as the 2PPE signal of the first (n = 1)
image-potential state are very sensitive probes for the quality of
the surface. Therefore the 2PPE spectra themselves have been
used as a monitor of the surface quality of the sample during
the measurements. For all 2PPE measurements, the Ag(111)
sample was cooled down to 83 K by liquid nitrogen, which in-

creases considerably the signal-to-noise ratio of the 2PPE sig-
nal and reduces phononic contributions to the decay processes.

III. RESULTS

A. 2PPE spectra

The excitation scheme used in the present 2PPE study is
shown in Fig. 2(a). The frequency-tripled UV pulses excite
electrons from occupied states below EF and populate the
image-potential states near Evac. The excitation can either
occur from Ag bulk states of the sp band near the surface or
from the Shockley surface state as indicated in the excitation
scheme by long blue arrows. The transient population of the
image-potential states is probed by photoemission using the
fundamental laser pulses in the near IR. Energy-resolved 2PPE
spectra for various temporal delays �t between pump and
probe pulses are shown in Fig. 2(b). For temporal overlapping
laser pulses (�t = 0), four distinct peaks from different
2PPE processes emerge in the spectrum. The largest peak
at the lowest energy of E − Evac ≈ −750 meV arises from
photoemission of the first (n = 1) image-potential state. The
peak at a slightly higher energy of E − Evac ≈ −460 eV can
be assigned to an excitation between Ag-bulk bands due to a
direct nonresonant two-photon transition from the lower to the
upper sp band.25,26 At an energy of E − Evac ≈ −210 meV,
the first image-potential resonance n = 2 can be observed as a
clearly separated peak in the spectrum. The fourth peak on the
high-energy side of the spectrum at E − Evac ≈ −60 meV is
dominated at zero delay by a direct nonresonant two-photon
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FIG. 2. (Color online) (a) Excitation scheme of the 2PPE experiment. UV photons (long blue arrows) excite electrons from below the Fermi
level EF into image-potential derived states near the vacuum level. The transient population of the image states is probed by laser pulses in the
near IR (short red arrows). A high 2PPE yield for the higher lying image-potential resonances can be achieved by resonant excitation from the
Shockley state (right arrows). (b) 2PPE spectra of Ag(111) for various pump-probe delays. At zero delay, the spectrum (grey shaded) consists
of four clearly distinguishable peaks. The spectra for different delays reveal the electron dynamics in the respective states (see text for details).
(c) 2PPE spectra close to Evac and for larger pump-probe delay together with their deconvolution into two Gaussian lines (thin black lines),
which represent the image-potential resonances n = 3,4.
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transition from the occupied Shockley surface state (SS) to
the detected final state. Please note that the energy scale
given in Fig. 2 is misleading for the nonresonant two-photon
excitations. In fact, the Shockley surface state is located close
to the Fermi level EF [see Fig. 2(a)] at E − EF = −0.063 eV.27

We first discuss the decay dynamics of the different signals
qualitatively, using the 2PPE spectra in Figs. 2(b) and 2(c)
for different pump-probe delays in order to substantiate the
assignment made above. For negative pump-probe delays �t ,
the near-IR pulse arrives at the sample before any UV excita-
tion can occur, while for positive �t , the near IR pulses probe
the population of intermediate states that has been generated by
the UV photons. The 2PPE signal of the n = 1 image-potential
state as well as for the n = 2 image-potential resonance decays
rapidly toward positive �t with comparable time constants.
The fastest transient in the spectrum, however, is related to the
sp-band transition, which is, as well as the excitation from the
Shockley state, a nonresonant 2PPE process. Due to a missing
transient population of an intermediate state, these two signals
resemble the cross-correlation of the two laser pulses. For
pump-probe delays exceeding the cross correlation, a further
peak appears close to the spectral position of the Shockley
state and close to Evac and which can easily be detected
up to �t = +550 fs. This long-living peak is composed of
several components as can be seen more clearly in Fig. 2(c),
which is a blowup of Fig. 2(b) for energies around Evac and
pump-probe delays between �t = +170 and +210 fs. The
signal in this region originates from photoemission of image-
potential resonances with quantum numbers n � 3. Around
�t = +190 fs, the image-potential resonances n = 3 and 4
can be resolved separately in the spectra. A deconvolution
of the signal into two Gaussian contributions shows that the
population of the n = 3 decays faster than that of the n = 4.
With further increasing pump-probe delay the maximum
of the 2PPE signal shifts continuously toward Evac due
to contributions of image-potential resonances with higher
quantum numbers that cannot be entirely resolved.

The 2PPE signal of the image-potential resonances with
n � 3 is significantly enhanced compared to the n = 2 signal
due to the nearly resonant excitation from the Shockley state
at a pump photon energy of 4.68 eV. This overcompensates a
decreasing spatial overlap between the initial state and the
intermediate image-potential state as well as between the
intermediate state and the final, free continuum state with
increasing quantum number. For the image-potential states
on Cu(100), the dipole matrix elements for both transitions
have been found to scale as ∝ (n + a)3/2, which reflects
the hydrogen-like character of their wave functions.17,28 The
resonant excitation in the present experiment results in a less
pronounced decrease with n and in a higher signal-to-noise
ratio of the 2PPE signal for high n compared to Cu(100)17,29

although the count rate of the n = 1 state is comparable on
Cu(100) and Ag(111). The resonant excitation is, however, no
prerequisite for the observation of the higher image-potential
resonances.

B. Decay of isolated peaks

In order to analyze the decay dynamics of the excited
electrons in detail, pump-probe traces have been recorded by

variation of the pump-probe delay for different fixed kinetic
energies. These transients correspond to cuts along the delay
axis in Figs. 2(b) and 2(c) at the respective energies. Such
pump-probe traces can be assigned to the decay dynamics of
a single intermediate state only for the spectrally separated
2PPE signals of the n = 1 state and the n = 2 resonance.
As shown in Fig. 3, the transients for these two states show
a simple exponential decay for positive delays. The shorter
lifetime of the n = 2 resonance compared to the n = 1 state is
clearly visible and is in accordance with earlier experiments.10

This is in contrast to the image-potential states on Cu(100)
where the lifetime of the n = 2 state is three times larger
compared to the n = 1 state. It reflects the fact that the n = 2
resonance on Ag(111) has an additional decay channel due to
resonant one-electron transfer into the bulk. The lifetimes of
the n = 1 state and the n = 2 resonance have been determined
by a fit of the pump-probe traces using rate-equations under
consideration of the finite temporal width of the laser pulses
and an exponential population decay with a time-constant τn.
The fits are shown as thin black lines in Fig. 3 and reveal
inelastic lifetimes of τ1 = 31.0 ± 1.5 fs and τ2 = 23 ± 2 fs
for the n = 1 state and the n = 2 resonance, respectively.

In particular, the n = 1 state shows an additional decay
for negative pump-probe delays. For negative pump-probe
delays, the intense near-IR pulse arrives at first and excites
electrons around EF. The excess energy of these electrons
results in a broadening of the Fermi edge and electrons
in the high-energetic tail of this nonthermalized distribution
can now be photoemitted directly using one photon of the
subsequent UV pulse. Within a time scale of about one
hundred femtoseconds the electron distribution thermalizes,
which leads to the observed decay. The dynamics of such hot
electrons on (111)-oriented surfaces of different noble metals
have been investigated extensively in Refs. 30–34 and will not
be discussed further here.
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FIG. 3. (Color online) Semilogarithmic plot of the 2PPE intensity
as a function of pump-probe delay at the energies of the first
image-potential state (n = 1) and resonance (n = 2), respectively
(data points). Lifetimes were obtained from fits using rate equations
(solid lines). The cross correlation of the laser pulses is depicted as a
dashed line for comparison.
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C. Quantum-beat spectroscopy

The image-potential resonances with n � 4 cannot be
fully resolved in the 2PPE spectra. The finite bandwidth
of the pump pulse, however, makes it possible to coher-
ently excite several adjacent image-potential resonances for
n � 3 as illustrated in Fig. 4. This allows the application of
quantum-beat spectroscopy for the determination of energies
and lifetimes of these close-lying resonances.17 Figure 4
additionally shows a typical 2PPE spectrum of Ag(111) at
a pump-probe delay of about �t = 100 fs. At this delay, the
nonresonant photoemission of the Shockley state has already
disappeared and the 2PPE signal of the higher image-potential
resonances becomes visible.

Time-resolved 2PPE data have been recorded for different
energies close to Evac as indicated by arrows in the 2PPE
spectrum of Fig. 4. These pump-probe traces are shown in
Fig. 5 for pump-probe delays up to 3 ps. In contrast to
the simple exponential decay of n = 1,2, all other transients
show pronounced oscillations superimposed on an overall
decay. The time scale of the decay reaches the ps range
close to Evac. This shows that the image-potential resonances
with high quantum numbers have rather long lifetimes in
spite of the presence of resonant electron transfer into the
bulk. Accompanied by the steadily increasing decay time,
the oscillations become more pronounced and their frequency
decreases with decreasing binding energies. In particular, this
can be seen by comparing the transients taken for energies
between E − Evac = −70 and −19 meV. In addition, the
oscillation frequency decreases with increasing pump-probe
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FIG. 4. (Color online) (Left) Sketch of the 2PPE excitation and
photoemission of image-potential resonances with n � 3. The finite
band width �h̄ωUV of the excitation pulses leads to a coherent
excitation of several neighboring image-potential resonances (black
lines). The photoemission with the near-IR pulse probes the temporal
evolution of the superposition of the excited resonances with a spectral
resolution that is mainly determined by the resolution of the electron
analyzer �EDet. (Right) 2PPE spectrum for a pump-probe delay of
about �t = +100 fs where the nonresonant contribution from the
Shockley surface state has already disappeared. The arrows in the
spectrum indicate the energies at which the time-resolved 2PPE data
shown in Fig. 5 have been recorded.

delay. At E − Evac = −54 meV, for example, the oscillation
of the 2PPE signal has a higher frequency up to a pump-
probe delay of ∼700 fs compared to larger delays where the
frequency steadily decreases until all signals have decayed.

The oscillation of the 2PPE signal originates from the
interference between the coherently excited image-potential
resonances. The photoemission intensity I (t) is proportional
to the probability density of the excited state. In the
case of two coherently excited states �n(t) = eiωnt |n〉 and
�n+1(t) = eiωn+1t |n + 1〉, with ωn = En/h̄, it has the following
time dependence:

I (t) ∝ |an(t)�n(t) + an+1(t)�n+1(t)|2
∝ a2

n(t) + a2
n+1(t) + 2an(t)an+1(t) cos(ωn,n+1t).

Thus the pump-probe trace of the 2PPE intensity is modulated
by a beat frequency νn,n+1 = ωn,n+1/2π = |En − En+1|/h,
which is proportional to the energy separation of the coherently
excited states. The decrease of the beat frequency with
decreasing binding energy and with increasing pump-probe
delay observed in the experiment can therefore be explained
by a growing contribution of states with a smaller energy
separation. These low-frequency modulations are detected in
the 2PPE experiment in the time domain and give access to
energy spacings that by far exceed the energy resolution of the
electron detector �EDet (compare Fig. 4).

IV. ANALYSIS OF QUANTUM-BEAT DATA

A. Wave packet description

Prior to a quantitative analysis we first discuss the spatial
and temporal evolution of the coherently excited electrons in
terms of wave packets in order to illustrate the origin of the
different decay dynamics. For this description, we make use of
the formal analogy between the one-dimensional Schrödinger
equation for an electron in the classical image-potential
V (z) = −e/4z and the radial Schrödinger equation of an
electron in the Coulomb-potential V (r) = −e/r with angular
momentum � = 0. Here, z is the distance perpendicular to
the surface and r is the radial distance. Therefore the wave
function of an electron in an idealized image-potential state
corresponds to a scaled s-like radial hydrogen wave function
R�=0

n (z/4) multiplied by z and expanded by a factor of four.
A coherent excitation of image-potential states with quan-

tum numbers n creates a wave packet

�WP(z,t) =
∑

n

an(t)zR�=0
n (z/4)e−iωnt (3)

in front of the surface. Inelastic decay of the excited pop-
ulation has been included by time-dependent amplitudes
an(t) = ane

−t/2τn . The loss of coherence due to pure dephasing
of the wave packet is omitted here. Energies En, excitation
probabilities an as well as the inelastic lifetimes have been
taken from the quantitative analysis of the pump-probe
traces as described below. A Gaussian weighted excitation
distribution around the detected energy with a width of
�Eex = 0.055 meV imitates the bandwidth of the exciting
laser pulse. For each of the pump-probe traces shown in Fig. 5,
the respective wave packet was composed of image-potential
states with quantum numbers n = 3–20. The resulting
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FIG. 5. (Color online) (Left) Semilogarithmic plot of the time-resolved 2PPE data for different energies of the intermediate state (colored
lines) and respective fits using the density matrix formalism (thin black lines). The pump-probe traces for n = 1,2, already shown in Fig. 3,
have been plotted again for comparison. All other transients reveal beating patterns due to the coherent excitation of image-potential resonances
with different quantum numbers. (Right) Calculated spatial and temporal evolution of the probability density of wave packets composed of
a coherent superposition of hydrogenic states. For these simulations the experimentally determined energies, lifetimes, and transition matrix
elements of the image-potential resonances have been used (see text for details). The 2PPE intensity is proportional to the probability density
of the electron close to the surface (z = 0). Please note the different scalings of the axes.

probability density |�WP(z,t)|2 in front of the surface is plotted
in Fig. 5 using a linear scale. Due to the large range of the
decay dynamics, a different scaling of the spatial and temporal
axes has been used for each simulation. In order to take
account of the decay, the scale has been changed for large
delays by a factor as indicated in the respective figures. The
2PPE intensity can be related to the probability density of
the electron close to the surface (z ≈ 0) where the gradient
of the image-potential is large enough to provide the required
momentum for the photoemission by the probe pulse. Within
this picture, it is assumed that an excited electron within the
classical image-potential is located only in front of the surface.
The coupling to the metal due to inelastic decay as well as due
to elastic transfer into the bulk in the case of resonances is
effectively described by a single decay rate of the probability
density in front of the surface.

A comparison between the experimental pump-probe traces
and the temporal evolution of the simulated wave packets

shows that even this simplified description using solutions
for the pure classical image-potential reproduces most of the
observed dynamics. For E − Evac = −110 meV, where the
n = 3 resonance is detected almost exclusively, both, the
2PPE signal as well as the simulated probability density,
decay exponentially for delays up to 200 fs. For energies
closer to Evac, the oscillations become more pronounced.
In order to reproduce these quantum-beat patterns, a grow-
ing number of image-potential states with higher quantum
number and increasing inelastic lifetime have to be included
in the simulated wave packets. The pump-probe trace for
E − Evac = −54 meV, for example, is described by a wave
packet of image-potential states with a mean quantum number
n̄ = 7. The maxima of the 2PPE intensity at 0, 0.2, 0.45, 0.8,
and 1.25 ps can be well reproduced by the wave packet motion.
The decreasing oscillation frequency with decreasing energy
separation from Evac clearly correlates with the growing mean
quantum number. This goes along with a decreasing energy
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separation of the adjacent states. At the same time, the spatial
extent of the wave packet motion increases. With growing
mean quantum number, the wave packet dynamics resembles
more and more the classical motion of an electron that bounces
back and forth in front of the surface.

B. Modeling of the 2PPE process

A full description of the coherent optical excitation, the
temporal evolution of the induced optical polarizations and
populations with consideration of elastic and inelastic decay,
and the subsequent photoemission can be achieved by the
application of a density matrix formalism.13,17,18,28,35,36 Here,
we follow the notation of Ref. 28. Within this formalism,
the electronic structure of the surface is represented by a
density matrix ρ̂ with diagonal and off-diagonal elements that
describe the populations and coherences of an N -level system,
respectively. The coherent dynamics is then described by the
Liouville-von Neumann equation,

ih̄
∂ρ̂

∂t
= [Ĥ ,ρ̂] + ∂ρ̂D

∂t
, (4)

where Ĥ = Ĥ0 + ĤL is the full Hamiltonian that consists
of the Hamiltonian of the unperturbed system Ĥ0 with
eigenfunctions ψα and energies Eα (α = 1, . . . ,N), and the
Hamiltonian ĤL, which describes the interaction with the
laser fields. The latter is typically treated in a semiclassical
description within the dipole approximation, where it is given
by ĤL = −μ̂ · E(t) with the dipole operator μ̂ = −er and
the classical electric field E(t). For image-potential states
with their free-electron-like character parallel to the surface,
only the component of the dipole operator perpendicular to
the surface is relevant and therefore ĤL = −ezEz(t). The
coupling to the environment is described phenomenologically
by a dissipation matrix ρ̂D . For simple exponential decay
it has the form ρ̂D,αβ = −�αβρ̂αβ , where the �αβ are the
elements of a damping matrix. Its diagonal elements are given
by the inelastic decay rates �αα = h̄/T1,α , where T1,α =: τα

is the inelastic lifetime of state α. Sometimes, τα is also
denoted as energy relaxation time. Typically, the inelastic
lifetimes of the initial and final states are assumed to be
infinite. The off-diagonal rates �αβ describe the decay or
dephasing of the polarization between different states. It is
convenient to separate them into contributions of each state
by �αβ = �α + �β . Dephasing of the polarization can occur
due to inelastic decay as well as due to elastic scatter-
ing. Therefore, the dephasing rate is further separated into
�α = h̄/(2τα) + h̄/T ∗

2,α , where T ∗
2,α is often called “pure”

dephasing time. Since the final state in 2PPE describes an
electron that leaves the surface and is detected in the electron
spectrometer, the pure dephasing time of that state can be also
assumed to be infinite. Note that 2τα enters into �α because
the polarization is proportional to the amplitude of a harmonic
oscillator, whereas the energy is proportional to the square of
the amplitude. Therefore the inelastic contribution to the decay
rate of the polarization (amplitude) is only half of the energy
relaxation rate in the case of exponential decay.

The free parameters of a description within the density
matrix formalism are the dipole matrix elements 〈ψα|μ̂|ψβ〉,
the energies Eα , the inelastic lifetimes τα as well as the

pure dephasing times T ∗
2,α . However, only certain 2PPE

schemes as quantum-beat spectroscopy,17,19–22,37 interferomet-
ric 2PPE,38–41 line-width measurements,42 or the recently
developed method of optical induced electrical currents43

are capable of accessing pure dephasing times that provide
information about quasi-elastic scattering processes.44 In
quantum-beat spectroscopy, the pure dephasing is responsible
for the decay of the oscillations of the pump-probe traces,
whereas the inelastic lifetime describes the overall decay.

For a realistic description of even the most relevant part of
the electronic surface structure, the size of the density matrix
and therefore the number of free parameters can be rather
large. This is in particular the case if the initial or intermediate
states form a continuum that might be represented by many
close-lying states. For the Ag(111) surface, the most relevant
initial state is the Shockley surface state. The image-potential
resonances can be described effectively by a Rydberg series
of discrete states where the coupling to the continuum of
projected bulk states is included in the empirical inelastic
decay time. The continuum of final states in the vacuum can
be considered by an incoherent sum of the 2PPE signal for
a series of final states within the bandwidth of the electron
detector.

Even with these restrictions, a fitting of the experimental
pump-probe traces within the full density matrix formalism
is very time consuming, since for each pump-probe delay,
the full set of differential equations has to be solved for a
time-interval that increases with pump-probe delay. On the
other hand, the energies and lifetimes of the image-potential
states or resonances affect the pump-probe traces almost
only for pump-probe delays that are larger than the cross
correlation of pump and probe pulses. For these pump-probe
delays, the 2PPE signal is effectively a direct image of the
population of the image-potential resonances. This renders
possible the application of some simplifications,19 which
drastically reduce the computational effort: (1) the excitation
by the pump pulse and the photoemission by the probe pulse are
decoupled by approximating the photoemission by a weighted
projection of the population of the coherently excited states
into the continuum. The weighting corresponds to the emission
probability and is described by a power law ∝(n + a)−3.
(2) The energies of image-potential states or resonances are
parameterized by the Rydberg formula [see Eq. (1)], with the
quantum defect a as a free parameter for the energy differences.
(3) The dipole matrix elements for the excitation are scaled
using a power law ∝ (n + a)−3/2 that results in an identical
power law for excitation and emission probability. (4) Each
pump-probe trace is fitted using inelastic lifetimes and pure
dephasing times of the three contributing resonances with the
lowest quantum number as free parameters. Lifetimes and pure
dephasing times of the subsequent higher resonances with n up
to 13 are scaled by a power law ∝(n + a)3 according to their
Rydberg-like character. Within this description, there is no
distinction between image-potential states and resonances. The
inelastic lifetime describes effectively the loss of population
in the corresponding intermediate state. This loss results from
inelastic decay and, in the case of resonances, also from elastic
transfer into the bulk where the electron can no longer be
detected by photoemission.

245402-7
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FIG. 6. (Color online) (Top) Pump-probe trace recorded at
E − Evac = −34 meV together with the results of the fit using
the density matrix formalism (black line). The individual states
that contribute to the beating pattern and their inelastic lifetimes
can be extracted from this simulation. The inset shows the Fourier
transform of the experimental spectrum after subtraction of a smooth
exponential background. The signal is composed of a coherent
superposition of neighboring image-potential resonances for positive
delays and an additional component due to nonresonant 2PPE around
zero delay. The lower part depicts the relative occupations of the
resonances (solid line) and the nonresonant direct 2PPE contribution
(dashed line).

The experimental data were fitted iteratively until all
pump-probe traces could be described by one set of parameters
consisting of inelastic lifetimes τn, pure dephasing times T ∗

2,n,
and the quantum defect a. The fits are shown as thin black
lines in Fig. 5. Moreover, Fig. 6 depicts the pump-probe trace
taken at E − Evac = −34 meV together with the results of
the fit. The data have been normalized with respect to the
maximal signal. The large 2PPE signal around zero delay
has been cut in order to highlight the quantum-beats on a
linear intensity scale. The experimental data are reproduced
almost perfectly by the fit. Slight deviations in this exemplary
spectrum result from the demand that all pump-probe traces
should be described by one set of fitting parameters. The pump-
probe trace shown in Fig. 6 consists of contributions from
the image-potential resonances n = 4–8 and an additional
contribution from nonresonant photoemission of the occupied
Shockley state, which resembles the cross correlation of the
laser pulses (see also Fig. 2). The relative contributions of
the adjacent resonances to the coherent dynamics are shown
in a semilogarithmic plot in the lower panel of Fig. 6. The
population decays exponentially with inelastic lifetimes τn

that strongly increase with the quantum number n. The main
contribution to the signal for a pump-probe delay up to 500 fs
originates from the resonances n = 4 and 5. The comparatively
large energy separation between these two states results in
a relatively high oscillation frequency. At about 600 fs, the
beating pattern changes and the frequency decreases, which
indicates a smaller energy separation between the contributing

states. This originates from the contribution of the higher-lying
states n = 5–7.

The inset of Fig. 6 depicts a Fourier transform of the
experimental data after subtraction of an exponential decay.
The beating frequencies ωn,m and therefore the energy separa-
tion En − Em between the contributing states can in principle
be also extracted from this Fourier transform. Its resolution,
however, strongly depends on the number of available experi-
mental data points. Especially for low frequencies, the lacking
resolution in the frequency spectrum is a drawback of this
procedure compared to the data evaluation in the time domain.

C. Collected results

The time-resolved 2PPE data of the states n = 1,2,3 and
the quantum-beat spectroscopy of the states n � 3 allow us
to determine the binding energies and lifetimes of the whole
Rydberg series up to n = 7. Values for resonances with higher
quantum numbers n � 8 could not be extracted as independent
parameters from the pump-probe traces, because on one hand,
the signal-to-noise ratio of the data decreases very close to Evac

and on the other hand, more and more states are coherently
excited and contribute to the signal. In this energy regime,
it would be advantageous to perform the experiment with
longer, more narrow-band laser pulses. Table I summarizes
all experimentally determined energies and lifetimes for the
n = 1 image-potential state and the resonances n = 2–7. In
addition, the table contains the experimental dephasing times
for the resonances n = 3–7 and theoretical values for energies
and lifetimes that will be discussed below.

V. DISCUSSION

A. Energies

Before we compare the experimental energies with theoret-
ical predictions, it is important to emphasize that the resolution
of the series of resonances up to n = 7 enables us to determine
the position of the vacuum level Evac with high accuracy and
to give precise values of the energies En with respect to Evac.

TABLE I. Experimental (exp.) and theoretical (theor.) energies
En − Evac, lifetimes τn, and pure dephasing times T ∗

2,n of the first
seven image-potential states (n = 1) and resonances (n = 2–7) of
Ag(111).

En − Evac (meV) τn (fs) T ∗
2,n (fs)

n exp. theor.a exp. theor. exp.

1 −756 ± 3 −764.2 31.0 ± 1.5 18.3b -
2 −212 ± 10 −212.6 23 ± 2 17.3c -
3 −91 ± 2 −94.5 65 ± 5 52c,54d 300 ± 50
4 −51 ± 1 −53.1 166 ± 20 122c,116d 470 ± 100
5 −33 ± 1 −34.0 393 ± 40 246c,227d 680 ± 150
6 −23 ± 1 −23.6 683 ± 80 397c,375d 1100 ± 200
7 −17 ± 1 −17.4 1088 ± 140 588d 1800 ± 400

aTwo-band model, φc = 0.89π (a = 0.055) for n = 1 and φc = π

(a = 0) for n � 2.
bReference 45.
cReference 16 based on the model potential of Ref. 8.
dOur own calculations using the same model potential.
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The best and most reliable results are obtained by retaining
the quantum defect a as a free parameter in the fits of the
quantum-beat pump-probe traces as outlined above. The best
fit yields a small quantum defect of a = 0.064(5). With the
use of Eq. (1), this defines very precisely the position of
Evac with respect to that of the n = 3 resonance. The kinetic
energy of the photoelectron originating from this resonance
can be determined reliably in the raw 2PPE spectra (compare
Fig. 2). This makes it possible to determine also the energies
of the n = 1 state and the n = 2 resonance precisely with
respect to Evac because their positions are measured very
accurately relative to the position of n = 3. The uncertainty
of these energies is thus limited only by the accuracy with
which the kinetic energy of the corresponding peaks can be
determined, e.g., ±3 meV in case of the n = 1 state. In Fig. 7,
the experimental energy positions are shown in comparison
with the basic Rydberg formula En = Evac − 0.85 eV/n2. The
error of all experimental data points in this plot is smaller than
the size of the circles.

The binding energy of 0.756 eV of the n = 1 gap
state corresponds to a quantum defect of a = 0.060 in
Eq. (1). In the multiple scattering model of Echenique and
Pendry,4 the quantum defect results from a phase shift φc

of an electron reflected at the surface that deviates from
π [a = 1

2 (1 − φc/π )]. This phase shift is easy to calculate
using a two-band model to describe the electronic structure of
Ag(111).46,47 With the parameters for Ag(111) given in Ref. 8,
one obtains φc = 0.89π , a = 0.55, and En=1 = 0.764 eV.
This suggests that such an idealized model of Ag(111) indeed
provides an adequate description of the image-potential state
n = 1. The same is true for the series of image-potential
resonances. At the top of the gap and for higher energies, the
phase shift φc reaches π in the two-band model, resulting in a
vanishing quantum defect. The measured energy of the n = 2
resonance exactly corresponds to a = 0. Also the quantum
defect resulting from the best fit of the quantum-beat data
(a = 0.064) is close enough to zero such that the whole
series of resonances can be satisfactorily described without
the introduction of a quantum defect (c.f. Fig. 7).
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FIG. 7. (Color online) Energies E − Evac of image-potential
derived states on Ag(111) (data points). The projected bulk bands
are depicted by the gray shading. The solid line shows a power law
∝n−2 according to Eq. (1) with a = 0.

B. Lifetimes

The lifetime of the n = 1 state (τ1 = 31.0 ± 1.5 fs) is in
good agreement with the results determined earlier by Harris
and coworkers (τ1 = 32 ± 10 fs)10 but clearly longer than the
value of 20 fs deduced from the first time-resolved 2PPE
experiment by Schoenlein et al.9 As compared to Cu surfaces,
the inelastic lifetimes of the first image-potential state on both
the (100) and the (111) surface of Ag are significantly longer
[τ1 � 20 fs in the case of Cu(111)].14,18,32 This is surprising
since the screening of the d electrons in Ag reduces the energy
of the surface plasmon below the energy of the image-potential
states,48,49 which opens a further inelastic decay channel
in addition to electron-hole-pair excitation. Garcı́a-Lekue
et al.45,50 however, showed that although the screening of the
d electrons enhances the imaginary part of the self-energy
near the surface, its nonlocal character effectively leads to an
increase of the inelastic lifetime. The calculated lifetime of the
n = 1 state on Ag(100)50 is in excellent agreement with the
experiment.18 For the n = 1 state on Ag(111), however, theory
apparently underestimates the inelastic lifetime by about 60%
(τ1 = 18.3 fs).45

Previous experiments have provided an upper limit of 20 fs
for the lifetime of the image potential resonance n = 2.9,10 Our
result of τ2 = 23 ± 2 fs lies only slightly above this limit. The
shorter lifetime of the n = 2 resonance compared to the n = 1
gap state reflects the fact that resonant electron transfer into
the bulk constitutes an efficient additional decay channel for
image-potential resonances. On Cu(111), it could be shown
that the decay characteristics of the corresponding n = 1 state
change drastically if the quasistationary state is transformed
into a resonance by shifting its energy above the band gap
with the help of adsorbed Ar layers.14 Obviously, the resonant
transfer rate of the n = 2 resonance must exceed the general
decrease of the inelastic decay rate due to electron-hole-pair
excitation with quantum number in order to result in a higher
total decay rate and therefore shorter lifetime as compared to
the n = 1 state.

Borisov et al.16 investigated the decay of the series
of Ag(111) image-potential resonances using the one-
dimensional potential of Chulkov et al.8 This model potential
has been constructed based on the well-known Ag band
structure and an energy position of −0.77 eV for the first
image-potential state, i.e., the value determined by Steinmann
and coworkers,51 which is in good agreement with the present
result. In order to calculate the rate of elastic electron
transfer into the bulk, Borisov et al. obtained wave functions
ψ(z,t) by solving the time-dependent Schrödinger equation
for this model potential. The initial wave function ψ(z,t = 0)
describes a wave packet located on the vacuum side. The decay
rate �n is given by the Laplace transform of the survival
amplitude 〈ψ(z,t =0)|ψ(z,t)〉.16 An equivalent and nearly
identical result can be obtained from the stationary solutions
of the time-independent Schrödinger equation for the same
model potential. Within the latter method, linewidths �n are
determined from peaks of the total probability density in front
of the surface as a function of energy.14,52 Corresponding
lifetimes τn = h̄/�n from both calculations are collected in
Table I.

Experiment and theory qualitatively agree insofar as they
both show a strong increase of the lifetime with quantum
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FIG. 8. (Color online) Experimentally determined inelastic life-
times of image-potential states and resonances of Ag(111) (dots). The
solid line indicates a dependence τn = 3.15 fs × n3.

number from n = 2 to 7. The dependence approximately
follows the general scaling law τn ∝ n3 (see Fig. 8). Echenique
and Pendry have predicted this scaling law for the lifetime of
image-potential states as well as for resonances.4 After the
experimental confirmation for the gap states of Cu(100)17

and Ag(100),18 our results represent the first experimental
confirmation of this prediction for image-potential resonances.
The n3 scaling is also in excellent agreement with the wave
packet calculations of Borisov et al.16

When we compare the extrapolation of the n3 scaling to
n = 1 with the measured decay time of the n = 1 state, we can
obtain an estimate of the ratio between inelastic and elastic
decay rate of the resonances. The extrapolated value for n = 1
is 3.15 fs, a factor of ten less than the measured lifetime of
31.5 fs. Under the assumption that also the inelastic decay
follows the n3 scaling, this suggests that roughly 10% of
the measured decay rates of the resonances should be due to
inelastic processes and 90% due to resonant electron transfer
into the bulk. In Ref. 16, it has been argued that inelastic decay
plays a minor role for the image-potential resonances because
the many-body effects, which are responsible for the inelastic
decay, become active only after the electron is already lost from
the population of the quasistationary state at the surface. This
has been deduced from the fact that the inclusion of an optical
potential, which describes the many-body interactions in the
bulk, has no effect on the calculated widths of the resonances.16

In such a scenario, the estimate based on n3 scaling would not
be applicable and would even overestimate the importance
of inelastic decay processes. However, also direct surface
excitations may be very important for the inelastic decay.
In case of the structurally similar Cu(111), e.g., decay into
the Shockley surface state was shown to be a major decay
channel.53

It is also interesting to compare the absolute values of
the measured and calculated resonance lifetimes. For all the
resonances, the experimental values exceed the theoretically
predicted ones (c.f. Table I). The deviation is 30% for the
n = 2 resonance. It gets larger with increasing n and amounts
to a factor of two for n = 7. A deviation in this direction (un-

derestimation of the lifetimes by theory) is surprising because
the calculations do not include all possible decay processes but
only consider resonant electron transfer. Although the inelastic
electron-hole-pair decay is likely to contribute only to 10%,
the inclusion of this and other processes such as interband
decay44,54,55 or electron-phonon scattering can only further
increase the discrepancy between theory and experiment.

On the experimental side, an important question is, of
course, to which extent the lifetimes measured by 2PPE reflect
the inverse loss rate from the surface into the bulk. Due to
the finite penetration depth of the light and the finite escape
depth of the low-energy electrons, it is principally possible
that the 2PPE experiment still detects electrons as they have
already escaped into the bulk. The photoemission matrix
element for the 1.5-eV probe photons, however, is appreciable
only close to the surface, which renders the detection of the
excited-state-population very surface sensitive.

On the theory side, a reason for the significant difference
between experimental and theoretical lifetimes might have its
origin in the model potential.8 Many-body calculations based
on similarly constructed potentials for other surfaces yield
inelastic lifetimes of image-potential states that are in excellent
agreement with experiment.6,56,57 The potential, however, is
less well tested for problems of resonant electron transfer.
The reflection and transfer of the electron wave at the surface
is probably more sensitive to specific details of the potential
close to the surface compared to the spatial distribution of the
probability density that governs the inelastic decay.

C. Dephasing times

The pure dephasing times, which could be determined from
the analysis of the quantum-beat data for the image-potential
resonances with quantum numbers n � 3 (see Table I), are
significantly shorter compared to the image-potential states
of Cu(100)17,19,20 but still longer compared to the inelastic
lifetimes. Pure dephasing can result from quasi-elastical
electron scattering at steps, defects, and phonons.44 The
influence of defects has been systematically studied for the
image-potential states on Cu(100) where it has been shown that
CO molecules efficiently decrease the pure dephasing times
but have almost no influence on the inelastic lifetimes.20 Cu
adatoms, on the other hand, mainly lead to a dramatic decrease
of the inelastic lifetimes even for very low concentrations.37,58

In the present work, we have not studied the influence of
residual defects of our nominal clean Ag(111) surface on the
observed pure dephasing times. The role of phonons, however,
has been estimated by comparing our data taken at 83 K with
measurements at room temperature. The latter have a higher
background and a reduced signal-to-noise ratio but show no
significant change of the pure dephasing times within the
specified error bars and only a slight reduction of the inelastic
lifetimes in the order of 10–30%. We therefore conclude that
phonons do not significantly contribute to pure dephasing
of the image-potential resonances and that the observed
dephasing times are finally limited by the residual defect
density of our sample. This is remarkable since the contribution
of phonons is expected to scale with the large bulk penetration
of the resonance wave functions. Even a weak electron-phonon
coupling should therefore have a much stronger influence
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on the dephasing of image-potential resonances compared to
image-potential states within the projected band gap. This
result, together with the scaling of energies and inelastic
lifetimes, shows that the image-potential resonances behave
very similar to quasistationary image-potential states with a
certain finite bulk penetration.

VI. CONCLUSION

A combination of two-photon photoemission and quantum-
beat spectroscopy has been applied to study the decay
of electrons excited into image-potential resonances on a
Ag(111) surface for quantum numbers up to n = 7. The
hydrogen-like scaling of energy and lifetime with quantum
number is in accordance with theoretical predictions and
similar to image-potential states on Cu(100) where the whole
series of states is located within the projected band gap.
Although electrons excited into these resonances can decay
by energy-conserving resonant electron transfer into the bulk,

lifetimes of more than 1 ps could be observed. Surprisingly,
the experimentally determined lifetimes are even longer than
theoretically predicted. Our results show that the formation of
a Rydberg series of hydrogen-like states with long lifetimes is
not reliant on a gap in the projected band structure. Conclusions
on the size and position of the band gap from the existence of
long-living image-potential states59 therefore have to be drawn
with care. The observation of long lifetimes for electronic
surface states that are resonant to bulk states has also important
consequences for electron transfer across interfaces in general.
It shows that energy alignment is a necessary but not a
sufficient prerequisite for fast and efficient transfer.
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236801 (2011).
16A. G. Borisov, E. V. Chulkov, and P. M. Echenique, Phys. Rev. B

73, 073402 (2006).
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(2001).
29M. Rohleder, K. Duncker, W. Berthold, J. Güdde, and U. Höfer,
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Appl. Phys. A 88, 527 (2007).

53J. Osma, I. Sarrı́a, E. V. Chulkov, J. M. Pitarke, and P. M. Echenique,
Phys. Rev. B 59, 10591 (1999).
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