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Combined multifrequency EPR and DFT study of dangling bonds in a-Si:H
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Multifrequency pulsed electron paramagnetic resonance (EPR) spectroscopy using S-, X-, Q-, and W-band
frequencies (3.6, 9.7, 34, and 94 GHz, respectively) was employed to study paramagnetic coordination defects
in undoped hydrogenated amorphous silicon (a-Si:H). The improved spectral resolution at high magnetic field
reveals a rhombic splitting of the g tensor with the following principal values: gx = 2.0079, gy = 2.0061, and
gz = 2.0034, and shows pronounced g strain, i.e., the principal values are widely distributed. The multifrequency
approach furthermore yields precise 29Si hyperfine data. Density functional theory (DFT) calculations on 26
computer-generated a-Si:H dangling-bond models yielded g values close to the experimental data but deviating
hyperfine interaction values. We show that paramagnetic coordination defects in a-Si:H are more delocalized
than computer-generated dangling-bond defects and discuss models to explain this discrepancy.
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I. INTRODUCTION

The performance of thin-film solar cells and other devices
based on hydrogenated amorphous silicon (a-Si:H) is limited
by localized defect states in the mobility gap, which act as
recombination centers for excess charge carriers. In undoped
a-Si:H, the defect centers are often paramagnetic and give
rise to an inhomogeneously broadened asymmetric EPR line
at around g = 2.0050–2.0055.1 The intensity of this signal
is routinely used as a measure for the electronic quality of
a-Si:H.2 The impact of these defect centers on the efficiency
of solar cells is even aggravated by the fact that the defect
density significantly increases upon light exposure.3 This light-
induced degradation phenomenon, known as the Staebler-
Wronski effect (SWE),4,5 significantly limits the maximum
efficiency of solar cells based on a-Si:H.6 In order to reduce
the impact of a-Si:H defects in the degraded state, optimized
deposition protocols have been developed.7 Despite these
improvements, a nanoscopic understanding of the processes
leading to the creation of light-induced defects is still missing.6

Detailed knowledge about the microscopic origin of SWE
defects leading to strategies to eliminate them is therefore
mandatory to reach ultimate device performance. Moreover,
knowledge of the detailed structure of the defect and the
distribution of H atoms in its vicinity is of main importance for
the models for the SWE. In view of the latest EPR experiments,
it became evident that in as-grown materials the H is randomly
distributed with respect to the defect center.8 If hydrogen is
mediating the SWE effect, it is important to find the precursor
of such a state.

There is a general consensus in the research community
that the dominating defects in a-Si:H are intrinsic coordination
defects, i.e., over- (fivefold) or undercoordinated (threefold) Si

atoms. The latter are usually denoted by dangling-bond (DB)
defects. To conclude on the defect structure, EPR techniques
are most valuable, since the EPR spectrum reflects the
electronic structure of the paramagnetic defect. In the present
case, the EPR spectrum is determined by two interactions, the
Zeeman interaction given by the g tensor, and the hyperfine
interaction (HFI) between the unpaired electron spin and
nuclear spins of close-by H and Si atoms. While the g

tensor reflects the global electronic defect structure of the
paramagnetic defect, HFIs probe the defect wave function
locally. Combining these two pieces of information, detailed
spin-density9 maps of the unpaired electron spin may be
obtained, which constitute highly desired pieces of information
to identify the microscopic origin of the defect centers.

A detailed analysis of the EPR spectrum of coordination
defects was first carried out by Stutzmann et al. at a microwave
frequency of 9 GHz (X band).1 They determined the g tensor
of the unpaired electron spin to be axially symmetric with
principal values similar to the Pb center occurring at the
Si/SiO2 interface.10,11 In a subsequent study, Umeda et al.12

revised the g-tensor values by studying the EPR spectrum
at different resonance frequencies (S, X, and Q band) with
increased spectral resolution (see Table I). However, in both
studies, the g tensor was already assumed as axially symmetric
in the fitting models and never systematically tested against
rhombic symmetry. In addition to the g tensor, Stutzmann
et al.1 determined the HFI with the nuclear spin of the Si atom
where most of the defect spin density is concentrated. The HFI
of this particular atom is characterized by an anisotropic tensor,
which will be denoted by AL in the following, i.e., the A tensor
with the largest isotropic HFI. By analyzing the principal
values of this tensor within an analytical linear combination of
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TABLE I. Summary of experimental (multifrequency fit) and theoretical g tensor and AL tensor principal values for coordination defects
in a-Si:H. Full width at half maximum (FWHM) of Gaussian distributions of the g and AL tensor principal values (g and A strain) are given
in square brackets. The Voigt function accounting for magnetic-field-independent broadening is characterized by FWHM of Gaussian and
Lorentzian components denoted by �BG/L. Standard errors of the fit parameters (significance level 1σ ) are calculated by a linear sum of
statistical and systematic errors (for details see text) and are given in round brackets. ‖r‖2

2 denotes the sum of squares of the fit residual r in
units of the sum of squares of the experimental data.

Principal values of 29Si AL tensor Broadening function

Principal values of g tensor Ax or A⊥ Ay or A⊥ Az or A‖ Voigtian ‖r‖2
2

gx or g⊥ gy or g⊥ gz or g‖ [strain] [strain] [strain] Aiso/Adip �BG/L

[strain]a [strain]a [strain]a in MHzb in MHzb in MHzb in MHzb in mT in %

(EPR)
Presentc 2.0079(2) 2.0061(2) 2.0034(2) 151(13) 151(13) 269(21) 190(11)/39(8) 0.13(3)/0.43(1) 0.2

[0.0054(1)] [0.0022(1)] [0.0018(1)] [46(27)] [46(27)] [118(66)]
Presentd 2.0065(2) 2.0065(2) 2.0042(2) 149(15) 149(15) 265(26) 188(13)/39(10) 0.15(3)/0.42(1) 0.3

[0.0047(1)] [0.0047(1)] [0.0019(1)] [47(32)] [47(32)] [113(75)]
Ref. 12 2.0065 2.0065 2.0039 143 143 333 206/63 n/ae

[n/a]e [n/a]e [n/a]e [56] [56] [73]
Ref. 1 2.0080 2.0080 2.0040 154 154 305 205/50 not specified

[0.0029] [0.0029] [0.0022] [28] [28] [56]
(Theory)
Presentf 2.0093(7) 2.0064(5) 2.0035(3) −213(14) −216(14) −327(17) −252(9)/−37(7) nonanalyticg

[0.0084(12)] [0.0060(9)] [0.0035(5)] [166(24)] [166(24)] [203(30)]

a�B value given in mT converted to �g (dimensionless) using �g = (g2
eμB/h)(�B/ν).

bHyperfine interactions given in mT converted to MHz using νHFI = geμBB/h.
cMultifrequency fit without prior assumptions about the symmetry of g.
dMultifrequency fit assuming axial symmetry of g.
eg strain and magnetic-field-independent broadening are entangled in the analysis of Ref. 12 and could not be separated.
fDFT calculation of DB defect center in a relaxed a-Si64H7 supercell.
gThe broadening function of the DFT data cannot be expressed in a closed analytic form.

atomic orbitals (LCAO) model,13 Stutzmann et al.1 determined
the wave function of the defect. Since their analysis of the HFI
suggests that the defect wave function is spx hybridized and
of strong p character, the authors concluded that the electronic
structure of the given center resembles a DB similar to the
Pb center. However, the isotropic HFI (Aiso) of coordination
defects in a-Si:H, as evaluated by Stutzmann and Biegelsen,1,14

is given by Aiso = 200 MHz and is therefore much smaller
than the isotropic HFI of the Pb center (Aiso = 315 MHz).15,16

This discrepancy was attributed to a relaxation of the atomic
structure of the DB from a tetrahedral configuration to a more
planar geometry, induced by the amorphous environment. It
was argued that in the latter configuration the p character of
the DB wave function is enhanced over the s character, which
leads to a smaller isotropic HFI. It is, however, not a priori
clear whether such a relaxation actually takes place when a
DB is created in a-Si:H. This question can only be clarified
by a detailed quantitative theoretical treatment of the atomic
DB structure and the resulting EPR parameters, which is still
missing up to now.

The possibility to compare experimental g and A tensors in
amorphous semiconductor materials with theoretical calcula-
tions came into reach only recently. This was mainly due to two
reasons. Firstly, precise g tensor data are usually only available
for crystalline materials and secondly, a lack of ab initio
approaches capable of calculating g tensors from complex
material structures. This situation changed with the advent

of advanced density-functional theory (DFT) methods, which
proved to be able to reproduce experimentally determined g

tensors even in complex Si materials.17,18 Up to now, such
studies have been restricted to crystalline Si materials. One of
the purposes of this study is to extend this powerful approach
to a-Si:H.

Here, we present a detailed experimental and theoretical
analysis of the g tensor and the HFIs of the dominant
defect center in a-Si:H. We employ high-resolution EPR
measurements and complement them by DFT calculations
capable of relating measured g and A tensors to the spin-
density distribution, binding geometry, and electrostatic sur-
rounding of the paramagnetic site. The defects in a-Si:H
are studied experimentally by multifrequency EPR (S band:
3.6 GHz/0.13 T, X band: 9.7 GHz/0.34 T, Q band: 34
GHz/1.2 T, and W band: 94 GHz/3.35 T). In the absence
of field-dependent line broadening mechanisms and at high
signal-to-noise ratio (S/N), a high-frequency spectrum is
generally enough to determine principal values of g and A

tensors as well as their relative orientation. In the present case,
however, pronounced site-to-site variations of the principal
g values (g strain) restrict the determination of principal
A values at high resonance frequencies. This limitation can
be overcome by the multifrequency approach, which allows
to separate field-independent (A) and field-dependent (g)
spectral contributions. The HFIs are thereby best resolved
at low magnetic fields and corresponding frequencies (S and

245203-2



COMBINED MULTIFREQUENCY EPR AND DFT STUDY OF . . . PHYSICAL REVIEW B 84, 245203 (2011)

X bands), while principal values of the g tensor can be best
determined at high frequencies (Q and W bands). Furthermore,
we applied field-swept echo-detected (FSE) EPR, instead of
previously used continuous wave (cw) EPR, since FSE-EPR
resolves broad, tailing spectral features better than cw-EPR
techniques. g and A values are extracted from experimental
FSE spectra by a robust iterative fitting procedure. As a result,
we show that the g-tensor symmetry of coordination defects
in a-Si:H is rhombic and therefore lower than axial symmetry
as claimed in earlier studies.1,12 This result is important to
improve the reliability and precision of g tensor values and
provides the basis for detailed studies of correlations between
material properties and g.19,20 Improved g-tensor values may
also help to determine structural differences between light-
induced and native defects and thereby shed new light on
physical processes underlying the SWE.

In order to see whether or not the experimentally determined
g and A values are adequately described by the atomistic DB
model, we employed 26 DB defect structures, generated in
two different ways by state of the art annealing techniques.21,22

Each model contained a single DB defect. The g and A values
of each DB model were then calculated by DFT methods and
compared to the experimentally obtained magnetic interaction
parameters.

II. MATERIALS AND METHODS

Undoped a-Si:H samples were deposited with plasma-
enhanced chemical vapor deposition (PECVD) on a 10 cm ×
10 cm Mo foil at a substrate temperature of about 185◦C, of
undiluted silane (silane concentration 100%), with pressure
0.7 mbar, power density of 130 mW/cm2, and interelectrode
distance of 12 mm, resulting in a deposition rate of 1.8 nm/s.
EPR powder samples have been prepared as described in
Ref. 23. The initial defect density of the samples as determined
by cw EPR is given by ND = 4(1) × 1016 cm−3. The hydrogen
content of the sample is about 21 at.% as determined on
a reference a-Si:H sample using Fourier-transform infrared
spectroscopy. The films were removed from the substrate
by bending the Mo foil and powder flakes were collected
in EPR-quartz tubes. Pulsed EPR spectroscopy at S, X,
and Q bands was performed on a Bruker BioSpin ElexSys
E580 spectrometer and EPR measurements at W band were
performed on an ElexSys E680 spectrometer. The probe heads
employed at S, X, and W bands were a Bruker ER4118S-
MS5, a Bruker ER4118X-MD5, and a Bruker EN600-1021H,
respectively. At Q band, a homebuilt probe head was used.
Temperature control was realized with CF935 helium bath
cryostats and ITC503 temperature controllers from Oxford
Instruments. All experiments were carried out at a temperature
of 80 K and utilized a typical field-swept echo (FSE) pulse
sequence (π/2-τ -π -τ -echo) with a π pulse length of 40, 32,
80, and 128 ns and an interpulse delay τ of 400, 300, 400, and
300 ns at S, X, Q, and W bands, respectively. Spectra were
independent of τ (data not shown) and the shot-repetition time
was set sufficiently long to avoid a saturation of the spin system
(>2 ms). EPR spectra were accumulated for about 1.5 hours
at Q and W bands, and about 10 hours at S and X bands due
to lower sensitivity at these frequencies.

DFT calculations were carried out with a plane-wave
pseudopotential formalism implemented in the QUANTUM

ESPRESSO package.24 We used norm-conserving, scalar-
relativistic Troullier-Martins pseudopotentials and the PBE
exchange-correlation functional. A plane-wave energy cutoff
of 30 Ry ensures convergence with respect to the basis
set. The Brillouin zone integration is done on a 6 × 6 × 6
Monkhorst-Pack mesh. The HFIs of all atoms in the supercell
were determined from a projector-augmented-wave (PAW)-
like post processing step from the self-consistent calculation25

using two projectors per channel. Please note that the HFIs
of 29Si nuclear spins are mostly negative, since the nuclear
g value of 29Si (gn = −1.1106) is negative. The g tensor
was computed using the Gauge-including PAW (GI-PAW)
formalism.17 We consider 26 a-Si:H models consisting of 64
silicon and 8 hydrogen atoms. The defect-free a-Si:H models
were created either by releasing hydrogen into Wooten-Winer-
Weaire models of a-Si,21 or by heating and gradually annealing
of c-Si:H models followed by structural relaxation.22 DBs were
generated in these models by removing one of the hydrogen
atoms, followed by structural relaxation.

III. RESULTS AND DISCUSSION

Figure 1 depicts FSE spectra of a-Si:H powder sam-
ples taken at different microwave frequencies (S, X, Q,
and W bands, respectively). In the left column [see Figs.
1(a)–1(d)] experimental spectra taken at indicated frequency
bands (crosses) are shown together with simulations ob-
tained with parameters given in Table I (red solid lines).
In the right column [see Figs. 1(e)–1(h)] simulated FSE
spectra in the absence of g, A strain and broadening due
to unresolved HFIs are shown, to make the impact of g
and A on the line shape at different resonance frequencies
more obvious. In the following, we will first qualitatively
assign the frequency dependence of the EPR spectra to the
dominating magnetic interactions. Secondly, we describe the
fitting routine applied to quantitatively extract the principal
g and A values. Finally, we compare these parameters with
values derived from DFT calculations on computed a-Si:H DB
models.

A. Analysis of multifrequency EPR spectra

The S- and X-band spectra [see Figs. 1(a) and 1(b)] consist
of an intense central line and two less intense satellite peaks
[see enlarged spectral regions in Figs. 1(a) and 1(b)]. Si
enrichment studies showed that the EPR spectrum is subject
to isotope effects, since naturally abundant Si is composed of
stable nonmagnetic isotopes (28/30Si) with a total abundance
of 95.32%, and one stable magnetic isotope (29Si) with an
abundance of 4.68%.14 If the immediate vicinity of the defect
is depleted from magnetic isotopes (29Si and 1H) large HFIs are
absent, resulting in the narrow central line, which is broadened
by unresolved HFI to more distant 1H and 29Si nuclei.12,26

This broadening of the resonance line is well described by
a Lorentzian in the central part of the line [see Fig. 1(a)]
and its width is proportional to the abundance of 29Si, p, for
p < 10%.12 In cases, however, where Si atoms, which exhibit
a significant spin density, are magnetic (29Si isotope), the EPR
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FIG. 1. (Color online) S, X, Q, and W bands field-swept echo EPR spectra of defects in a-Si:H (g = 2.0055) at a temperature of 80 K.
Each spectrum was recorded by integrating the primary echo of a (π/2−τ−π−τ−echo) pulse sequence. Left column (a)–(d): experimental
spectra (crosses) and the fitted spectra (red solid line) obtained with the model described in the text. Spectra are offset vertically for clarity.
Right column (e)–(h): fitted spectra without g strain, A strain, and isotropic magnetic field broadening. Principal values of the g and AL tensors
are indicated by the vertical and horizontal lines in (e) and (h).

spectrum is dominated by large HFIs (>150 MHz, equivalent
to >7 mT) giving rise to satellite formation in the EPR
spectrum. These satellites are symmetrically centered about

the narrow central line [see Figs. 1(a) and 1(e)]. However,
the satellites are already at S-band frequencies significantly
broadened by site-to-site disorder resulting in a distribution of
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29Si HFIs (A strain), which hampers the precise determination
of 29Si HFIs.

With increasing resonance frequency, the central line and
the satellites exhibit increasing asymmetric line broadening,
which may be attributed to g anisotropy and g strain.
Therefore, the satellites, which are still resolved at X-band
frequencies, overlap with the central line at Q and W bands.
Since the resolution of the principal g values requires high
frequencies, it becomes impossible to extract the magnetic
parameters at one single frequency. It is important to note that
a complete resolution of the principal g values is not possible
even at very high frequencies [see Figs. 1(d) and 1(h)], since
g strain is proportional to the resonance frequency.

B. Modeling of multifrequency EPR spectra

The EPR spectrum may be described by the following spin
Hamiltonian (H) of a single electron spin (S = 1/2) coupled
to n surrounding nuclei (indexed by j ):27

H = μB B0gS/h̄ +
∑

j

μNgjn B0 I j /h̄ +
∑

j

SAj I j , (1)

where μB is the Bohr magneton and μN the nuclear magneton.
The first term denotes the electron Zeeman interaction, which
couples the electron spin S to the external magnetic field, B0,
via the anisotropic g tensor, g. The second term represents the
nuclear Zeeman interaction of the coupled nuclear spins I j

with B0, where gjn is the isotope-dependent nuclear g factor.
The third term denotes the HFI, which describes the coupling
of electron and nuclear spins by the A tensor, A. The A tensor
can be split into its isotropic, Aiso and its traceless, anisotropic,
Aaniso, parts. The isotropic part is given by the unit matrix times
Aiso, which is proportional to the spin density at the nucleus
(Fermi-contact interaction). In case of axial symmetry, the
anisotropic part can be expressed as

Aaniso =
⎛
⎝

−Adip

−Adip

2Adip

⎞
⎠ . (2)

The g tensor, g, and the hyperfine tensor, A, are 3 × 3 matrices
with the principal values (gx , gy , gz) and (Ax , Ay , Az),
respectively. Their respective principal axes systems are not
necessarily collinear.

Due to the presence of strong g and A strain, the dominating
A and g values cannot be extracted from the EPR spectra
directly. Instead, simultaneous simulations of the EPR spectra
based on Eq. (1) have to be performed. If we assume that
the spins are homogeneously distributed in the material (no
clustering), only one electron spin needs to be included in the
calculations since in that case the spin system is sufficiently
dilute.27 The Zeeman term in Eq. (1) can then be solved exactly
with the three principal values of the g tensor as fit parameters.
The magnetic-field-dependent broadening induced by g strain
is explicitly included in the simulation as an uncorrelated
Gaussian distribution of the principal values. This procedure
has the advantage that the distribution parameters can be
extracted directly from the fitting routine and are therefore
separated from magnetic-field-independent broadening. In
contrast to the Zeeman term, the treatment of the HFI term
in Eq. (1) is more complicated, because an exact simulation

including all nuclei is impossible. We therefore introduce a
fitting model with certain approximations. The HFI term in
Eq. (1) is usually divided into two terms:

HHFI =
n∑

k=1

SAk Ik +
∑
j �=k

SAj I j , (3)

where the first term describes the resolved HFI, for which
the EPR resonance positions are calculated explicitly in the
simulation. The second term contains the unresolved HFIs,
which lead to a broadening of the magnetic resonance line.
The line shape induced by unresolved HFIs is described by
an empirical broadening function. This is a very convenient
procedure, since the first term involves only a few nuclei,
while the second term runs over a very large number of
nuclei. The shape of the broadening function is usually
well described by one- or two-parameter functions like a
Gaussian, Lorentzian, or Voigtian,28–30 which can be fitted
to the resonance line by parameter adjustment. In addition
to unresolved HFIs, paramagnetic centers in the solid-state
experience additional line broadening due to electron-electron
spin-spin interaction and life-time broadening due to T1 and
T2 mechanisms. However, for the low defect concentrations
and the low temperatures used in this study, both of these
mechanisms contribute less than 1 µT to the linewidth and can
therefore be neglected.31,32 This approximation is supported
by the experimental observation that the linewidth of the
broadening function is directly proportional to the 29Si content
of a-Si:H.12 We can therefore conclude that the broadening
function is dominated by unresolved HFIs. It is important to
note that due to the low natural abundance of 29Si (p = 4.68%),
the central line portion of the broadening function exhibits a
Lorentzian and not a Gaussian shape.12,30

As in earlier studies, we use a fitting model, where only
one 29Si nuclear spin is treated explicitly [n = 1 in Eq. (3),
A1 = AL]. The HFIs of all other spin-carrying nuclei (such
as 1H, 29Si) are assumed to be unresolved and are taken into
account by a Voigtian line broadening function.1,12 In addition,
we limit the number of fitting parameters by introducing
several prior assumptions for the symmetry of the AL tensor
and the orientation between the g and AL tensors. Since the
satellites are strongly affected by inhomogeneous broadening,
it is difficult to test the symmetry of the AL tensor against
rhombicity. Furthermore, the relative orientation between the
AL and g tensors and its distribution cannot be determined
independently, so we simply assume that both tensors are
collinear with gz and Az being parallel. The principal values
of AL are distributed (A strain), and we included this effect in
the simulation as an uncorrelated Gaussian distribution of the
principal values. It is assumed that the principal values of AL

are not correlated to the principal values of g (uncorrelated g

and A strains).

C. Multifrequency fitting algorithm

To extract the A and g values, we applied the following
stepwise fitting routine. In a first step, the Q- and W-band
spectra were fitted simultaneously by adjusting the distribution
parameters of the three principal g values (mean value and
standard deviation). In a second step, the S- and X-band
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spectra were fitted by adjusting the distribution parameters
of the AL tensor principal values, where we again assumed
independent normal distributions. In a third step, the S-band
spectrum was fitted by adjusting a convolutional Voigtian line
broadening function accounting for inhomogeneous broad-
ening by unresolved HFI. The three steps were repeated
in a loop until convergence is reached. The simulations of
the individual solid-state EPR spectra were performed with
EASYSPIN, a MATLAB (The Mathworks, Natick, MA, USA)
toolbox.33 Powder EPR spectra are evaluated by considering
a large set of different orientations uniformly distributed over
the unit sphere. The simulated spectra are fitted to the exper-
imental spectra by nonlinear least-squares methods using a
trust-region-reflective algorithm implemented in MATLAB.34,35

Standard errors of fit parameters indicating a significance
level of 1σ are calculated by a linear sum of statistical and
systematic errors. Statistical errors due to spectral noise are
estimated by calculating asymptotic confidence intervals in
a fixed-regressor model (for details see Ref. 36, Chap. 5).
Systematic errors arise due to imprecise measurement of
the regressors (magnetic field and microwave frequency).
While measurement errors of the microwave frequency are
usually <1 kHz and therefore negligible, the magnetic field
at the sample position is not measured directly, but has to
be calibrated with a field standard sample (LiLiF, BDPA).
Typical errors of such calibrations and drifts of the magnetic
field over time are 0.1 mT at high magnetic fields (Q and W
bands) and 0.02 mT at low magnetic fields (S and X bands).
We roughly estimated the impact of these measurement errors
on the fit parameters by repeating the above multifrequency fit
routine for a worst case scenario, where all magnetic-field axes
are offset by the estimated measurement error. The obtained
errors of the fit parameters are then assigned to a standard
error (significance level 1σ ) to indicate the uncertainty of the
fit parameter values.

D. Multifrequency fit results

The fit results for a rhombic g tensor are shown as
solid lines in Figs. 1(a)–1(d). In earlier publications, it was
explicitly assumed that the g tensor is axially symmetric, i.e.,
gx = gy = g⊥ and gz = g‖. In order to test this hypothesis,
we performed two separate multifrequency fits. In the first fit,
the symmetry of the g tensor is forced to axial symmetry and
in the second fit [see Figs. 1(a)–1(d)], no assumptions about
the symmetry were made. In the first case, the principal values
of the g tensor are gx = gy = 2.0065(2) and gz = 2.0042(2),
in very good agreement with earlier studies (see Ref. 12
and Table I). In the second case, we obtained a rhombic g

tensor with three different principal values [gx = 2.0079(2),
gy = 2.0061(2), and gz = 2.0034(2)]. However, the quality of
the fit, measured by the sum of squares of the fit residuals ‖r‖2

2
(difference between the fitted and the experimental spectra), is
significantly worse in the case of an axially symmetric g tensor
as compared to a rhombic g tensor (see Table I). On the basis
of our fit results, we can state that gx and gy do not coincide
on a significance level of ≈5σ . We therefore conclude that
coordination defects in a-Si:H exhibit a rhombic g tensor.

For the AL tensor, we obtained Ax = Ay = 151(13) MHz
and Az = 269(21) MHz, which corresponds to Aiso =

190(11) MHz and Adip = 39(8) MHz. Please note that we only
report magnitude values for the HFIs, since FSE EPR does not
provide the sign of the HFIs. These values are slightly smaller
than the previously reported ones (see Table I). The Voigtian
broadening function, accounting for unresolved HFI, deviates
only slightly from a pure Lorentzian function since the FWHM
of the Gaussian component is about a factor of four smaller
than the FWHM of the Lorentzian component (see Table I). A
complete overview of the various fit parameter sets including
literature values is given in Table I.

E. DFT calculations of DB g and A tensors

The above analysis of the experimental spectra provided g

and A values of paramagnetic coordination defects present in
a-Si:H. Our task is now to deduce the microscopic origin of the
defect centers from the obtained interaction values. In order to
test the hypothesis that coordination defects in a-Si:H are DB
defects, we examined g and A values of computer-generated
DB defect models by DFT calculations. As outlined above, DB
defects were created in a-Si:H computer models by removing
a single H atom from defect-free structures. However, it is
important to note that theoretical modeling of DB defects in
a-Si:H is a demanding task since the atomic defect structure
is not well defined as in the case of Pb defects at the Si/SiO2

interface. Disorder in amorphous materials induces a large
variety of atomic configurations. In order to account for
this variety, we modeled a large number of different defect
structures (26 in total) and calculated the resulting g and A

values. The aim of this approach is to link the observed g

and A values with particular features of the atomic structure.
However, to our surprise, we found that quite different spin-
density distributions result in very similar g values.

To illustrate this finding, we compare calculated ground-
state spin densities and g and AL tensors of two partic-
ular computer-generated DB models. The first DB model
(DB1) is displayed in Fig. 2(a) (gx = 2.0091, gy = 2.0057,
gz = 2.0024, and Ax = −291 MHz, Ay = −288 MHz, Az =
−427 MHz for the 29Si AL tensor) and the second DB model
(DB2) is shown in Fig. 2(b) (gx = 2.0095, gy = 2.0065,
gz = 2.0034, and Ax = −176 MHz, Ay = −180 MHz, Az =
−236 MHz for the 29Si AL tensor). The g-tensor symmetry of
both models is clearly rhombic, while the AL tensor is very
close to axial symmetry. Already from a superficial inspection
of the two structures it becomes apparent that the wave function
of DB1 is mainly localized on a single Si atom, while the wave
function of DB2 is more delocalized. Despite the apparent
discrepancy of the spin-density distributions, the g-tensor
principal values of both models are almost identical. Hence,
widely different configurations can yield almost identical g

tensors. This effect will be discussed in more detail below.
In contrast to the almost identical g tensor, the HFI and the
relative orientation between g and AL tensors vary drastically.
The isotropic HFI of DB2 (Aiso = −197 MHz) is much smaller
than the isotropic HFI of DB1 (Aiso = −335 MHz), which can
be attributed to a delocalization of the DB wave function.
The axes of the gz and Az principal values are nearly parallel
in case of DB1 but differ significantly in case of DB2 [see
Figs. 2(a) and 2(b)].
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FIG. 2. (Color) Two selected computer-generated atomistic mod-
els of a DB in a-Si:H (for details see text). Principal values of g
and AL for the two models are (a) gx = 2.0091, gy = 2.0057, gz =
2.0024, and Ax = −291 MHz, Ay = −288 MHz, Az = −427 MHz,
(b) gx = 2.0095, gy = 2.0065, gz = 2.0034, and Ax = −176 MHz,
Ay = −180 MHz, Az = −236 MHz. Atoms are indicated by light-
gray (Si) and dark-gray (H) shaded spheres. Isosurface plot of the
electron spin density (isosurface at 10% of maximum spin-density
value) of the trivalent silicon atom is shown in yellow. Eigenvectors
of the g tensor are indicated by blue arrows and the eigenvectors of
the AL tensor of the threefold-coordinated Si atom are indicated by
red arrows.

F. Comparison of experimental and theoretical results

We have observed that the two computer-generated defect
structures analyzed above show a substantial variation in
terms of spin-density distribution. This variation is a result
of site-to-site disorder present in a-Si:H leading to a wide
distribution of A and g values (A and g strains). It is therefore
clear that a comparison of g and A values from only one or two
computer models is not sufficient for a successful identification
of the microscopic origin of defect centers in a-Si:H. Instead, it
is mandatory to evaluate a representative number of DB models
and their electronic structure to cover the whole spread of g

and A value distributions. We therefore extend our analysis to
a larger set of defect models, which includes 26 DB models in
total. Histograms of g and A values of those models are shown
in Figs. 3 and 4 and compared to experimental distribution
functions obtained by the multifrequency fit. A compilation
of principal values of g and AL and plots of spin-density
distributions for each DB model can be found in Supplemental
Material.37 An inspection of the spin-density distribution of
individual DB defects shows that the majority of defects
exhibits a spin-density distribution that is bound to a single,
undercoordinated, Si atom. In the following, we will compare
the g and A tensors obtained from DFT with the respective
parameters extracted from multifrequency EPR data.

1. g tensor

In Fig. 3, the distribution of principal values of g derived
from computer models are plotted together with experimental
distribution functions. The distribution mean values and width
of theoretically obtained values and their uncertainties can
be estimated by fitting a normal distribution to the g values.
The means of the calculated values are gx = 2.0093(7),
gy = 2.0064(5), and gz = 2.0035(3). Comparing those values
to the experimental results [gx = 2.0079(2), gy = 2.0061(2),
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FIG. 3. Comparison between experimentally and theoretically
(DFT) obtained principal g values of coordination defects in a-Si:H.
Values for different computer-generated DB models in a-Si:H are
shown by the histogram. Principal values are sorted by size and
assigned to gx , gy , and gz. The histogram was fitted by a normal-
distribution function shown by the dashed line. The experimental data
for coordination defects obtained by a fitting model are shown by the
solid line. The confidence intervals (2σ ) of the mean experimental
(cross) and theoretical (circle) principal values are shown separately
to indicate their statistical significance.

and gz = 2.0034(2)] shows that the experimental gy and gz

principal values deviate less than one σ from the theoretical
values, while gx deviates about two σ (see also error bars in
Fig. 3). This analysis shows that there is a good agreement for
the gy and gz mean principal values, while there is a significant
deviation in the case of gx . In all three cases, the spread of the
computed principal g values significantly exceeds the spread
of the experimental distributions (see Fig. 3 and Table I).

By inspecting distributions of gx , gy , and gz separately,
we see that they peak at different values, although parts of
the distributions overlap. By analyzing Fig. 3, it becomes
clear that the gz distribution peaks close to the free-electron g

value (ge = 2.0023) and is well separated from the gx and gy

distribution. However, since there is a large overlap between
distributions of gx and gy , it is not immediately clear whether
the distributions are independent or if gx and gy actually belong
to the same distribution as it would be the case for an axially
symmetric g tensor. In that case, the distribution would be
much wider, but still most of the g tensors would exhibit a
slight rhombic symmetry. It is therefore necessary to determine
the g-tensor rhombicity of each DB model separately by
calculating (gx − gy)/(gx − gz). By doing so, we found that
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FIG. 4. Comparison between experimentally and theoretically (DFT) obtained principal values of the largest and second-largest HFI
of coordination defects in a-Si:H. A tensor of the 29Si nucleus with the largest Aiso (a) and second largest Aiso (b). Values for different
computer-generated models of a DB in a-Si:H are shown by the histogram. Principal values are sorted by size and assigned to Ax , Ay , and Az.
The histogram was fitted by a normal distribution function shown by the dashed line. The experimental data for coordination defects obtained
by a fitting model are shown by the solid line. The confidence intervals (2σ ) of the mean experimental (cross) and theoretical (circle) principal
values are shown separately to indicate their statistical significance.

each individual g tensor is clearly rhombic and the distribution
peaks at 0.5, which fits well to the experimentally obtained
symmetry.

It appears to be surprising that g tensors of DB defects
with a very symmetric spin-density distribution [see Fig. 2(a)]
exhibit rhombic symmetry and not axial symmetry. This effect
can be rationalized as follows. The anisotropy of the g tensor
and isotropic shifts from ge result from an indirect coupling
of the electron spin to the external magnetic field mediated
by the orbital momentum. In the picture of second-order
perturbation theory,38 the most important contribution arises
from the interplay of the singly-occupied DB orbital ψp

with all unoccupied or occupied orbitals ψn other than ψp

(orbital energies εn and εp) weighted by their inverse energetic
separation,

gαβ = δαβge + · · · + 2
∑
n�=p

〈ψp|λLα|ψn〉〈ψn|Lβ |ψp〉
εp − εn

. (4)

Here, L denotes the angular momentum operator and λ the
spin-orbit coupling constant. Even in case of a DB orbital,
which is completely localized at the threefold-coordinated
Si atom, the g tensor is obviously sensitive to changes
in the orientation and energies of the other orbitals. To simplify
the discussion of the g-tensor anisotropy, let us assume that

the singly occupied DB orbital ψp is given by a pure |pz〉
orbital and the other orbitals |px,y〉 are also of atomic type.
We define the Cartesian coordinate system such that the z axis
coincides with the axis of the DB orbital. By this, we can show
that the paramagnetic contribution vanishes for αβ = zz, since
Lz |pz〉 = 0. Significant deviations from ge are therefore only
expected for gx ≡ gxx and gy ≡ gyy given by

�gxx = 2
〈pz|λLx |py〉〈py |Lx |pz〉

εpz
− εpy

= 2
λ

εpz
− εpy

,

�gyy = 2
〈pz|λLy |px〉〈px |Ly |pz〉

εpz
− εpx

= 2
λ

εpz
− εpx

. (5)

We see that if the degeneracy of the px and py orbitals
is lifted, the gxx and gyy values will not be degenerate. In
a most disordered environment like a-Si:H, one expects that
the degeneracy is lifted due to fluctuations of the bond angles
and bond length. As a result a rhombic g tensor instead of an
axially symmetric one arises. This analysis is also valid for the
more realistic case of ψp,n being molecular orbitals.

We have seen that there is a quantitatively good agreement
of the calculated g tensors of DB models and the experimen-
tally determined g tensor of coordination defects in a-Si:H.
However, we have shown that the g-tensor principal values
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are rather insensitive to the spin-density distribution of DBs.
Widely different wave functions give rise to almost identical g

tensors. We now extend our analysis to the principal values of
AL, which are a more precise probe of the local spin-density
distribution of the defect center.

2. Hyperfine interactions

The histogram in Fig. 4(a) shows a comparison of principal
AL values derived from different computer-generated DB
models with experimentally obtained values. Theoretically
obtained distributions were approximated by normal distribu-
tions. It is found that values derived from computer-generated
DBs deviate from values determined by the multifrequency fit.
The absolute mean of all three principal values of AL obtained
by theory are Ax = 213(14) MHz, Ay = 216(14) MHz,
and Az = 327(17) MHz, whereas the experimental values
are Ax = 151(13) MHz, Ay = 151(13) MHz, and Az =
269(21) MHz. The theoretical HFI values are therefore larger
than the experimental values by at least 2σ [see also error
bars in Fig. 4(a)]. The discrepancy of AL between experiment
and theory is therefore much more pronounced than in the
case of g. As observed for the g tensor, the calculations lead
to a larger distribution of principal values as compared to
experiment.

Ax and Ay distributions in computer models are clearly
degenerate and strongly differ from Az. This hints that the
A-tensor symmetry is close to axial. To check whether the Ax

and Ay distributions of the computer models are independent
or not, we determined the rhombicity (Ax − Ay)/(Ax − Az) of
each set of principal values and found that the AL tensors for all
models investigated are indeed very close to axial symmetry.
These results support the previously made assumption of an
axially symmetric AL tensor for the fits of the EPR spectra in
Fig. 1.

The calculations revealed a rather peculiar deviation of the
symmetry properties of g and AL, where g exhibits rhombic
symmetry and AL axial symmetry. The apparent discrepancy
in the symmetry properties can be rationalized as follows. The
AL tensor depends directly on the ground-state spin density
and is strongly dominated by the local-orbital character (spx

hybrid) of the DB state at the site of the trivalent Si atom.
Structural variations due to the amorphous matrix affect its
orientation and possibly the degree of s-p hybridization, but
do not alter the fundamental spx character of the DB orbital.
Its axial symmetry properties are therefore maintained even
in the presence of large disorder-induced fluctuations of the
bond length and bond angles in a-Si:H. This does also hold in
good approximation for the HFIs of 29Si atoms in the first and
second coordination shell.

We have seen that some of our defect models exhibit a
significant spin delocalization. Yet, all defect models exhibit
typical DB characteristics of a spin density mainly localized
on a single, undercoordinated atom (referred to as the central
atom), while the spin density on the other atoms is significantly
smaller. This is reflected by the fact that Si atoms with
the second-largest HFI have values that average to Aiso =
−79(5) MHz and Adip = −7(4) MHz [see Fig. 4(b)].

We have seen that the mean principal values of AL deviate
between theory and experiment. Decomposing AL into an

isotropic and an anisotropic part clearly shows that this
discrepancy arises from the isotropic part (Aiso), while the
anisotropic HFI (Adip) in both cases equals about 35 to 40 MHz
(see Table I). The most puzzling fact comparing computed and
experimentally obtained HFIs is therefore the discrepancy of
the mean isotropic HFI with the following values for theory
and experiment;

theory: |Aiso| = 252(9) MHz, (6)

experiment: |Aiso| = 190(11) MHz. (7)

These values reveal two important findings. Firstly, the
experimentally obtained Aiso of coordination defects in a-Si:H
is smaller than the value derived from the DFT calculations
with a level of confidence of more than 2σ . Secondly, both
values are much smaller than Aiso of Pb centers at the Si/SiO2

interface (315 MHz),15,16 which was frequently employed
as a model system for the coordination defects in a-Si:H.
The latter finding may be rationalized by an inspection of
the computer-generated spin-density maps (see Fig. 2 and
Supplemental Material). We find that the lower value of Aiso

in a-Si:H as compared to Pb centers is primarily caused by a
delocalization of the DB spin density. In contrast to previous
assumptions, we did not find any evidence for a relaxation
of the atomic structure which could lead to a reduction of
Aiso.1 Our results render the relaxation of DBs in a-Si:H
toward a more planar defect geometry improbable. Hence,
the observed deviation between experimental and theoretical
values of Aiso, our first finding, must be of different origin.
One possible explanation is that the chosen population of
defect structures in the DFT calculation may not represent
the paramagnetic site in a-Si:H. This again raises a heavily
debated question: which kind of coordination defect gives
rise to the EPR signal centered around g = 2.0055? Due
to the limited number of model structures in this work,
it cannot be excluded that coordination defects in a-Si:H
form DB structures, which are not contained in the DFT
defect pool or that the microscopic structure of the defects
completely differs from a DB. If coordination defects exhibit
more delocalized spin densities than random DBs considered
in this work, the largest isotropic HFI will be smaller. A
more delocalized defect structure is therefore one possibility
to explain the discrepancy between experiment and model
calculations.

In view of these results, it is evident that the structural
models employed for the theoretical analysis miss an important
aspect of the experimentally observed defect ensemble. An
obvious weakness of the theoretical modeling is that the DBs
were created at random points in the amorphous network
and were subject only to local relaxation. More complex, but
slow (>10 ns) relaxation mechanisms possibly occurring in
the real material are therefore not captured at all. If present,
such relaxations might select a subset of the present defect
models, or even other configurations. For instance, the floating-
bond-type defect exhibits states delocalized over several Si
atoms.39,40 However, the floating-bond model has long been
rejected, being in conflict with a number of other experimental
observations.39–42 At present, we can only speculate over
plausible microscopic defect models, since the available data
do not allow us to discriminate them.
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IV. CONCLUSIONS

Using a multifrequency approach, we have determined
g-tensor principal values of coordination defects in a-Si:H:
gx = 2.0079, gy = 2.0061, and gz = 2.0034, with improved
accuracy (see Table I). In contrast to earlier studies,1,12 we
found that the g tensor shows pronounced rhombicity. In
addition, we carried out a systematic study where experimental
g and AL values (29Si-HFI tensor with the largest isotropic
part) are compared to theoretical values obtained by DFT
calculations of 26 different a-Si:H DB models. As main
conclusions we found that computer models reproduce the
experimentally observed principal values and rhombicity of
the g tensor, but do not exhibit HFIs in agreement with
experiment. The apparent discrepancy between symmetry
properties of g and A tensors is attributed to the fact that the g

tensor reflects the global electronic defect structure, while the
A tensor is exclusively determined by the local spin-density
distribution in the vicinity of the nucleus of interest. This leads
to a situation where DBs with a localized and a delocalized
spin-density distribution exhibit almost identical g tensors.
Principal values of the AL tensor for computer generated DB
models disagree with experimental values obtained by the

multifrequency fit. The isotropic HFI of the DB models is on
average Aiso = −252 MHz which is much larger than the fit
result, Aiso = 190 MHz. Our DFT calculations do not support
the hypothesis formulated in earlier studies that the structure of
DB defects relaxes toward a more planar geometry and thereby
reduces the isotropic HFI. These observations strongly suggest
that coordination defects in a-Si:H are more delocalized than
investigated DB computer models. We therefore conclude that
coordination defects in a-Si:H are not well described within the
random DB model. However, to develop plausible alternative
models, additional DFT studies are required. Such studies are
on the way within the research network EPR-Solar.
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