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We extend a recent formulation of quantum continuum mechanics [J. Tao et al., Phys. Rev. Lett. 103, 086401
(2009)] to many-body systems subjected to a magnetic field. To accomplish this, we propose a modified
Lagrangian approach, in which the motion of infinitesimal volume elements of the system is referred to the
“quantum convective motion” that the magnetic field produces already in the ground state of the system. In the
linear approximation, this approach results in a redefinition of the elastic displacement field u, such that the particle
current j contains both an electric displacement and a magnetization contribution: j = jo + nod,u + V x (jo X w),
where n( and j, are the particle density and the current density of the ground state and 9, is the partial derivative
with respect to time. In terms of this displacement, we formulate an “elastic approximation” analogous to the
one proposed in the absence of magnetic field. The resulting equation of motion for u is expressed in terms of
ground-state properties, the one-particle density matrix and the two-particle pair-correlation function, and in this

form it neatly generalizes the equation obtained for vanishing magnetic field.
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I. INTRODUCTION

Consideration of a hydrodynamical formulation of the
electron dynamics goes back to the early days of quantum
mechanics."? In the modern language of time-dependent (cur-
rent) density functional theory® (TD(C)DFT), this naturally
leads to appealing time-dependent orbital-free methods.*> In
this spirit, in two recent papers,®’ the problem of calculating
the linear response of a generic quantum many-body system
to an external time-dependent potential has been reformulated
in the language of quantum continuum mechanics (QCM).
In this approach, the nonequilibrium state of the system is
described in terms of an elastic “displacement field” u(r,?) (a
function of Cartesian coordinates r and time ¢), such that an
infinitesimal volume element of the system that is located at
point r in the equilibrium state will be located at r + u(r,t)
in the nonequilibrium state. The particle current density is
connected to the displacement by the relation

J(r,1) = no(r)dyu(r,r), ey

where 0, represents a partial derivative with respect to time and
no(r) is the ground-state density. An “elastic approximation”
was then introduced based on the idea that the time evolution of
the wave function can be described as a geometric deformation
of the ground-state wave function, with the deformation being
defined by the displacement field u. More precisely, the wave
function of the deformed state |y [u]) was expressed in terms of
the ground-state wave function [1/p) in the following manner:

[¥[u]) = exp [—i / drj(r) - u(r)} o) , )

where j(r) is the canonical current-density operator acting as
the generator of differential translations. (Here and in the fol-
lowing, we set the mass of the particles m = 1.) Starting from
Eq. (2), a closed equation of motion for u could be derived,
which is demonstrably exact for (i) one-particle systems and
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(i1) many-particle systems subjected to high-frequency fields.
This equation has the form

no(r)3ju(r,1) = —no(ryu - V(V Vo) — fffr[i])
SW;[u]
Su(r,r) MmYAED. v

where Vy(r) is a static potential that defines the nature of
the many-body system, V;(r,?) is the small time-dependent
potential to which the many-body system responds, 7>[u] is
the kinetic-energy density of the deformed state (2) expanded
to second order in u, and W5[u] is the electron-electron inter-
action energy density of the deformed state, also expanded to
second order in u. The functional derivatives that appear on the
right-hand side of Eq. (3) are actually linear integro-differential
operators acting on u. The explicit form of these operators was
derived in Refs. 6 and 7. The final expressions involve only
the following ground-state properties: the one-particle density
matrix and the two-particle correlation function, which are
quantities that may be computed by means of quantum Monte
Carlo methods.®

Quantum continuum mechanics holds great promise as a
tool for simplifying and streamlining the calculation of excita-
tion spectra, particularly in situations in which the ground-state
correlations are well understood and the spectrum is dominated
by collective excitations. Another interesting possibility is to
use quantum continuum mechanics as a tool for efficiently
approximating the density-density response function of the
noninteracting Kohn-Sham system. This possibility has been
recently pursued by Gould and Dobson.” The Kohn-Sham
response function is then used by these authors, in combination
with the random phase approximation, to generate more accu-
rate exchange-correlation energy functionals, which capture
dispersion forces between metals and insulators. Moreover,
the use of quantum continuum mechanics has allowed us to
better understand and simplify the derivation of the expression
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of the high-frequency limit of the exact exchange-correlation
kernel of TD(C)DFT.!° We should also mention that another
interesting approach that holds promise to overcome the
present limitations of the available approximate KS methods is
the semiclassical density-matrix time-dependent propagation
of Refs. 11 and 12.

The theory of Refs. 6 and 7 was based on the assumption
that the ground state of the many-body system is time-reversal
invariant and has no spin-orbit coupling, so that the ground-
state current-density jo(r) = 0. This paper is concerned with
the extension of that theory to many-electron systems in the
presence of a static magnetic field Bo(r) = V x Ay(r), where
Ay(r) is a static vector potential. Thus, we consider a system
of N identical particles described by the time-dependent
Hamiltonian

N .
A [—iV; 4+ Ao(r)]?
H() = ; { ! 5 L+ Vo) + Virj.o)
1
+5 2 W =il )
J#k
where W(|r — r'|) is the electron-electron interaction potential

(wesete =h = ¢ = 1). The time-dependent many-body wave
function ¥(ry, ...,ry,t) is the solution of the Schrodinger

equation
ioW(ry,...,ry,t) = HU(ry,...,ry,t) 5)
with initial condition
Y(ry,...,ry,0) = Wo(ry,...,ry). 6)

There are compelling reasons for working out the general-
ization of QCM to systems subjected to magnetic fields. As dis-
cussed in Refs. 6 and 7, the elastic approximation is, in essence,
a collective approximation for inhomogeneous systems. It
condenses the excitation spectrum of the many-electron system
into a simpler spectrum of collective excitations, which still
carry the exact full spectral strength (this is a consequence
of the exactness of the theory in the high-frequency limit).
Naturally, such an approximation becomes more trustworthy
when the excitations under study are truly collective, as
opposed to incoherent single-particle excitations. But, itis well
known that a strong magnetic field, by quenching the kinetic
energy of an electronic system, suppresses single-particle
behavior and promotes collective behavior. Indeed, one of
the first successful theories of the excitation spectrum of the
homogeneous two-dimensional electron gas (2DEG) at high
magnetic field was based on a single-mode approximation
very similar to our elastic approximation.'?> Nanopatterned
electronic systems at high magnetic field (e.g., quantum
dots) also exhibit strongly collective behavior. One can, for
example, fabricate a lattice of quantum dots (nanopillars) by
chemical etching on a 2DEG'* and observe the collective
excitations of the resulting electronic system by Raman
scattering.'> By doing this experiment, new collective modes
have been recently discovered,'> which have no counterpart
in the homogeneous 2DEG. We believe that our continuum
mechanics will be useful precisely for a microscopic study of
these collective modes.
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The generalization of Eq. (3) to systems described by the
Hamiltonian (4) is not as straightforward as one might initially
think. Of course, the presence of the vector potential modifies
the form of the kinetic energy and introduces a Lorentz force
term, but this is not the main difficulty. The main difficulty
arises from the fact that the ground-state current no longer
vanishes: it has a finite expectation value, jo(r). This introduces
an ambiguity in the definition of the displacement field.

The first possibility we explored is to define u in close
analogy to Eq. (1) such that

J(x,1) = jo(r) + no(r)dyu(r,r). )

With this definition, it is possible to derive within standard
linear response theory, a closed equation of motion for u.
This will be done in Sec. II. While this equation is formally
elegant and gives some insight into the general properties
of the solutions, it is very difficult to put it in an explicit
and therefore useful form. The reason is that one needs to
calculate the ground-state expectation value of complicated
commutators: the amount of algebra involved is formidable.
In contrast, in the treatment of the zero-field case we could rely
on a direct calculation of the energy of the deformed state (2),
a comparatively simpler task that did not require the evaluation
of complicated commutators.

Equation (7) assumes that the excess current j — jo is
entirely due to the time derivative of the displacement field, but,
in the presence of a magnetic field, even a time-independent
displacement can produce an excess current (see below). After
all, the ground state is perfectly stationary, and yet it does
carry a current jo. However, at variance with a time-dependent
current, the current associated with a static deformation must
necessarily have vanishing divergence in order to satisfy
the continuity equation. Thus, for example, one must have
V - jo = 0. Taking into account this condition, we are free to
add to the right-hand side of Eq. (7) the curl of a “magnetization
field.” In other words, we expect the most general form of the
relation between current and displacement to have the form

i(@x,1) = jo(r) + no(r)dyu(r,r) + V.x M(r,1), ®)

where M(r,t) is a functional of u. The divergence of the
last term on the right-hand side is guaranteed to be zero.
This is completely analogous to the material current in
electrodynamics, which is customarily written as the sum of
the time derivative of the electric polarization and the curl of
the magnetization.'®

To determine the form of M(r,t) up to the linear order
in u, we assume that (i) M(r,7) is a local functional of the
displacement, i.e., it depends on u(r,?) at the same point of
space and time, and (ii) a uniform displacement u(r) =u
must cause the ground-state current to be rigidly displaced
by jo(r) — jo(r —u), i.e., we must have V x M(r,t) =
—(u- V)jo(r) for uniform u. This condition implies that
M(r) = u x jo(r) and fixes the relation between current and
displacement in the form

i, 1) = jo(r) + no(mdyu(r,r) + V x [u(r,r) x jo(r)l. (9)

Remarkably, this relation emerges naturally from the
Lagrangian formulation of the problem, which we present in
Sec. III. We remind the reader that in Refs. 6 and 7 the elastic
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approximation was derived via a transformation to a local
noninertial reference frame, the so-called comoving frame,
in which the density is constant and the current density is
zero. To achieve these conditions, the displacement field u,
which defines the transformation to the comoving frame, was
related to the current via Eq. (1). In the present situation,
the physically “natural” requirement for the comoving frame
is that the density remain constant and the current density
remain equal to the ground-state value jo. In other words, an
observer “riding” on a volume element should not detect any
change in the density or the current density. We found that this
requirement determines the relation between the displacement
field and the current density in the form of Eq. (9), just as we
found from the heuristic argument given above.

Adopting the mentioned special comoving frame is the
crucial insight that allows us to arrive at an explicit equation of
motion for u in the presence of a magnetic field. Throughout
the paper, we will consider a general situation of noncollinear
and nonuniform magnetic fields (neglecting spin degrees of
freedom). The equation of motion in the practically most
common case of a uniform magnetic field is obtained from the
equation of motion (3) by the following simple replacements.

(1) Replace the time derivative 9, by the “convective
derivative”

D,=0,+v-V, (10)

where vy = jo/no.
(2) Include on the right-hand side a “Lorentz force term”

Dyu x By . (11

(3) Calculate T[u] and W;[u], respectively, from the
expectation values of the kinetic energy and electron-electron
interaction energy operators evaluated in the deformed ground-
state wave function defined, just as in Eq. (2). The electron-
electron interaction energy term remains formally unaffected,
while the kinetic-energy term is modified by the inclusion
of an effective vector potential accounting for the external
static vector potential and the corresponding contribution of
the convective motion in the ground state (remarkably, this
modification vanishes for one-electron systems).

This paper is organized as follows. In Sec. II we derive
an approximate equation of motion for the conventional
displacement field from the high-frequency expansion of the
exact current-current response function. We show that this
approximation is exact for one-particle systems and discuss
the difficulties arising when one attempts to explicitly evaluate
the formal expressions appearing in this equation.

In Sec. III we address the difficulties discussed in Sec. Il by
resorting to a nonstandard Lagrangian formulation appropriate
for systems in magnetic field. To this end, we formulate the
quantum many-body dynamics in a special comoving frame,
such that both the density and the current density retain their
initial (ground-state) values at all times. We arrive at an exact,
but still not explicit, equation of motion for the displacement
field in terms of the Hamiltonian in the stress tensor of the
comoving frame.

In Sec. IV we introduce the elastic approximation and
obtain a closed, fully nonlinear equation of motion for the
displacement field in this approximation.
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Finally, in Sec. V, we linearize the elastic equation of
motion and obtain an explicit, linear equation of motion for
the displacement field. It is shown that the displacement field
obtained in this manner is not the conventional one but is
related to the current density by Eq. (8).

Section VI concludes the paper with a summary of the main
results.

II. DERIVATION FROM LINEAR RESPONSE THEORY

A formally exact equation of motion for the current-density
response of a many-particle system in the linear response
regime can be easily derived from standard linear response
theory.!”!® To this end, it is convenient to replace the
external potential Vi (r,t) by a time-dependent vector potential
A(r,t)=— fioo VV(r,t")dt’, which is physically equivalent
since it gives rise to the same time-dependent electric field and
no time-dependent magnetic field. Assuming further that the
time dependence of the external field is periodic with angular
frequency w and switched on adiabatically at r = —oo with
the system initially in the ground state |y), we obtain the
standard result for the Fourier component of the current density
at frequency w:

: , NN Z10)
Jl,u(r,w)=/dr xuu(r,r,w)T, (12)

where x,,(r,r’,w) is the current-current response function
(Einstein summation convention is used throughout the paper)

X (0,1, 0) = no(0)8(r — 1)
—i /0 dre™™ (Yol [j(r,1),5 (', 001 %)
(13)

and % is the Fourier component of A|(r,?) at frequency
w. In Eq. (13) j(r) is the current-density operator, defined as

. e .
j =2 ) A=iV; + AEpLoa =, (14

j=1

where {A,B} = AB + BA is the anticommutator. This oper-
ator evolves in time under the unperturbed Hamiltonian, i.e.,
the Hamiltonian (4) without the V; term. The first term on
the right-hand side of Eq. (13) is the so-called diamagnetic
response, which involves only the ground-state density 7ny(r).
A formal inversion of Eq. (12) yields immediately an equation
of motion for the current density:

ia)/dr’[x*l]w(r,r’,a))jl.v(r/,w) =0, Vilr,w). (15)

Obviously, this result is purely formal since we have no way
to exactly calculate the current-current response function of
a many-body system, let alone invert it. However, Eq. (15)
can serve as a convenient starting point for constructing
approximate theories. Following the ideas proposed in Refs. 6
and 7, we consider the high-frequency limit of Eq. (15) and
then interpret it as an approximate equation of motion for the
induced current density.
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We start by observing that, at high frequency, the
current-current response function has the well-known

expansion'’!8
BLU ’ /
X;Lv(rar,aw) = no(r)é(r — I'/)S/w — i%
M, (r, Y 1
+ M +0 (7) : (16)
w o’
where
Biu(r,r') = i (Yol (). J, ()] o) (17)
and

M, (e,x') = —(Wol{l Ho, j (01, (M Yo) . (18)

A few words of caution should be added at this point.
The expansion written for x in Eq. (16) is done under
the assumption that the real-space current-current response
function has a regular Taylor expansion in inverse powers
of 1/w at high frequency. However, this is not always the
case. If the initial (ground) state is not sufficiently smooth,
the unboundedness of the kinetic-energy operator may cause
Xuw(w) to develop a nonanalytic behavior (e.g., fractional
powers of ) at high frequency.'® Therefore, strictly speaking,
the expansion of Eq. (16) assumes that proper smoothness
conditions are imposed on the initial state of the system.
Fortunately, after inverting Eq. (16) to get the high-frequency
expansion of the operator X,Ivl entering the left-hand side of
Eq. (15), all smoothness restriction can be relaxed. It turns
out that such an obtained high-frequency form of the inverse
response function is generally valid. We prove this in Secs. IV
and V by rederiving the equation of motion for the current
density via the Lagrangian frame formalism, which can be
viewed as a direct construction of a high-frequency, short-time
limit of x M‘Ul . In Appendix B we explicitly demonstrate that for
the one-particle system the above formal inversion procedure
indeed yields the exact form of the inverse current response
function. A possible nonanalytic behavior in w of the response
is correctly recovered in our theory because at the level of
Eq. (15) it is encoded in the space part of the operator X,:Ul
acting on the current density.

Thus, we invert Eq. (16) and plug the result into Eq. (15).
This yields

2 . . / / jl,v(r/)
w” j1, —i—la)/drB W(r,r)
o a no(r’)

Jiv(@)
no(r’)

- /dr’lC,w(r,r/) =3, Vi, (19)

where

IC;LU(rv I‘,) = le(l',l'/)

1
+ [ dY"B,, (@Y ——B,,@".r). (20)
/ T o)

Evaluation of the current-current commutator in Eq. (17) is
relatively straightforward and yields

, . L08(r—1) 38(r' —r)
Buu(r,l‘) = jo,u(r )B—rv + ]O’V(r)TM
+ €40y Bo.y (Dno(r)8(r — 1') (21)
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where jo(r) is the ground-state current. Notice that B,,,(r,1’)
is imaginary and antisymmetric.

The evaluation of the double commutator K, (r,r’), while
in principle equally straightforward, is in practice an extremely
cumbersome task, leading to a very complicated expression
to which we are not able to attach any transparent physical
meaning. We do not undertake this task here since in the next
section we will develop an alternative approach, which leads
more directly to a physically meaningful equation of motion.

Even without knowing the explicit form of }C we can learn
something from the form of Eq. (19). To begin with, we may
express the response of the current in terms of the displacement
defined in the conventional way, i.e., according to Eq. (7). By
doing so, we obtain

o’nou +ioB-u—IK-u=nyVV, (22)

where we have adopted a compact notation in which
O.u= fdr/Ouv(r,r’)uv(r’). (23)

It is easy to prove that M must be a positive-definite operator
since, by definition, it is related to the second-order term in
the expansion of the energy of the distorted ground state (2) in
powers of u.

Setting the right-hand side to zero in Eq. (22), we recognize
a generalized eigenvalue problem of the form (for more details,
see Appendix A)

o’npu+ioB-u—I-u=0. (24)

Under the stronger assumption that not only M but also K
is positive definite, one can show (see Appendix A) that the
generalized eigenvalue problem in Eq. (24) has real solutions
o whose modes satisfy a generalized orthogonality relation

(up,iB-uy) + (wa + wp) (up,nous) =0, s # wp, (25)
with the scalar product defined as follows:
(o) = [ dricy, @ 0. (26)

The eigenvalues are naturally interpreted as (approximate)
excitation energies, and the corresponding eigenvectors are
matrix elements of the current-density operator between the
ground state and the excited state in question (see Ref. 7
and Appendix B in the present paper). Thus, we see that the
assumption of positivity of I is, in practice, equivalent to the
expectation that our approximation does not lead to spurious
instabilities (i.e., complex excitation energies).

A natural question at this point is, how reliable will our
approximate equation of motion (22) be in situations other
than the very high frequency limit? The answer to this question
has already been discussed extensively in Ref. 7, so we only
summarize the main points, adding the required modifications
where needed.

First of all, the fact that the proposed current-current
response function has the exact high-frequency behavior up
to order 1/w? implies that the first moment of the spectral
function fooo dowImx,,(r.r',0) ~ M,,(r,1’) is exactly re-
produced. Thus, while the energy of individual excitations
may be misrepresented, the first moment of the current-density
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fluctuation excitation spectrum (or, equivalently, the third
moment of the density fluctuation excitation spectrum) is
correctly reproduced.

Second, our equation assumes an exact and explicit form
for one-particle systems. This is rigorously proved in Appen-
dices B and C. In particular, in Appendix B we show that
x '(®)-ji = A+iB/w+ C/w? for any frequency w, where
A, B, and C are coefficients expressible in terms of the
ground-state density and current density. The coefficient A
is related to the diamagnetic response, while B and C may be
related to the coefficients of @ ™! and w2 in the high-frequency
expansion of .

The fact that the form derived with the above procedure
becomes exact in one-particle systems has a deeper physical
significance. Recall that in Refs. 6 and 7 the equation for the
displacement was derived by describing the dynamics in a
comoving reference frame, defined as a noninertial frame in
which the density remains constant and the current density
is always zero. So the high-frequency approximation could
be restated in terms of an “antiadiabatic approximation” or
“elastic approximation” introduced as the assumption that not
only the density and the current but also the wave function
itself remain unchanged in the comoving reference frame. This
assumption is correct for one-particle systems because in such
systems the density and the current density uniquely determine
the wave function, up to a trivial phase factor.

We will show that this approach, transformation to a
comoving frame and the requirement of a stationary wave
function in that frame, also works in the presence of a magnetic
field but with an important difference: the current density in
the comoving frame will not be zero but will be equal to the
current density in the ground state. Because of this redefinition
the relation between current response and displacement field
will be drastically changed: Eq. (1) will be replaced by Eq. (8).
However, as a result of this modification, we will be able to
obtain an explicit equation of motion for the new u, bypassing
the need to calculate cumbersome commutators. The final form
of the equation of motion will be a natural extension of the one
derived in Refs. 6 and 7 in the absence of a magnetic field.

III. LAGRANGIAN FORMULATION

The key physical idea of the Lagrangian formulation
in application to many-body dynamics is to separate the
convective motion of the electron fluid from the motion of
electrons relative to the convective flow. The former type
of motion is characterized by the trajectories of infinitesimal
volume elements, while the latter is described by a many-body
Schrddinger equation in a local noninertial reference frame
attached to those elements.?’

In the standard Lagrangian formalism,?° the convective
dynamics of the system is described by a set of trajectories
r(&,t), which represent the motion of an infinitesimal volume
elements initially located at &. These trajectories satisfy the
first-order differential equation

i, 0.1
n(r(§,1),1)

with initial condition r(&,0) = &. Notice that we are not
making the linear response approximation at this stage: the

or(&,1) = 27)
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quantity n(r(€,t),t) is the actual particle density along the
trajectory and reduces to the ground-state density no(&) only
at the initial time. The displacement field u(€,¢) is defined via
the relation r(&,7) = & + u(§,1).

This standard definition is, however, inconvenient if the
initial ground state already carries a nonzero current density
Jj§ = novy, which is the case in a magnetized electronic
system. Indeed, even in the absence of the external driving field
the ground-state flow drags the volume elements and produces
a time-dependent displacement in a system that, physically,
should be considered as stationary and undeformed. It is
natural to try and exclude the equilibrium convective motion
from the trajectory function, i.e., to consider a volume element
as moving only when it moves relative to the ground-state
flow. To accomplish this in the presence of the magnetic
field we adopt a modified Lagrangian description, where the
motion of the volume elements is described relative to the
ground-state flow. Thus, when the system is in the ground
state, the displacement vanishes, and the volume elements are
regarded as stationary. An observer riding on these volume
elements does not move at all (relatively to the laboratory)
and sees the current density jo. Now, when the system is out
of equilibrium, a finite displacement appears, and the volume
elements begin to move. However, to an observer attached to
the material elements the current density still appears to be
jo. Just as in the standard Lagrangian description an observer
riding on the volume element sees stationary density ny and
zero current density, in the present description an observer
riding on the volume element sees stationary density ny and
current density jo.

The task at hand is now to implement the transformation
that makes the density and the current density equal to their
ground-state values at all times. This is done in two steps. First,
we learn how to describe the quantum many-body dynamics in
a generic noninertial reference frame. Then we fix the reference
frame using the condition that density and current density
retain their ground-state values at all times. We carry out the
above steps without assuming that the displacement is small,
i.e., in a fully nonlinear way. The linearization of the equations
of motion will be carried out only at the very end of the next
section.

A. Transformation to a noninertial reference frame

Let us consider a local reference frame moving along a
prescribed trajectory r(&,7). The form of the quantum many-
body dynamics in such a frame is worked out in full detail
in Refs. 20-22. Here we present only the key results that are
needed for our purposes.

First of all, the transformed many-body wave function has
the form

N
T, byt) = [ 87 (;00e 5

j=1
X W(r(&,.1),....r(§y.1).1), (28)
where

ar(§.,1) or“(§.1)

TR (29)

guv(gat) =
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is the metric tensor induced by the (nonsingular) transfor-
mation r — §, /g = ,/detg,, is the Jacobian of the same
transformation, and

! 1
Sc1(f;',t)=/0 dt{i[l"(‘;'st)]z—l"(EJ)A(r(EJ),t)

- V(I‘(i;',t),t)} (30)
is the classical action of a particle moving along the assigned
trajectory. The factor ]_[;yzl g%(ﬁ j»1) in Eq. (28) preserves
the standard normalization of the wave function (\3@) =1
after a non-volume-preserving transformation of coordinates.
Equation (28) is a generalization of the transformation to a
homogeneously accelerated frame, which is used, for example,
in the proofs of a harmonic potential theorem.*>

The transformed wave function W(§,,...,&,,) satisfies
the Schrodinger equation

iW(E,, ... .Ey.) = H[gu, AIVU(E,,....Ex.1) (1)
with the transformed Hamiltonian
- N Jeigtt L
H(gu, Al = Zgj K, 12 LKjog; 4+§ Z Wlge,),
=1 kit
(32)

where K, = —i0gr + A1),

or’ arY

AuE.n) = S Aoy (€ 0)— 7 E.0.0)
+ Ozn Sa(§,1), (33)

and g, ¢, is the distance between the jth and kth particles in the
noninertial frame (i.e., the length of the geodesic connecting
the points & ; and &; in the space with metric g,,). The metric
tensor g, , and “effective” vector potential A in Eq. (33)
describe the combined action of external forces and inertial
forces in the local noninertial frame.

The transformed densities are obtained from the reduced
one-particle density matrix

N
P =n [ [T,
j=2

x UHE, .. EnDUE . EnD) (34
through the formulas
n(é,1) =yE.:E.), (35)
JHED =g""E D) +1E,DAE D] (36)
where
Jou®0 =3 lim (e — 0007 EED (D)

is the (covariant) paramagnetic current. It is extremely im-
portant to carefully keep track of covariant (lower indices)
and contravariant (upper indices) components of vectors and
tensors. The two types of components are connected by the
metric tensor via the standard formulas

Vu =g,wVU, 1% :gMVVv, (38)
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where g"” is the inverse of g,,. Armed with these definitions,
one can readily verify that the expressions of the densities in
the noninertial frame are related to the ones in the laboratory
frame by the relations

i.1) = /gn((&,0),0),

- 0&Y
FE.0) = VB o &0, — (6.0, 07 (6 1)L
(40)

(39)

The local conservation laws for the transformed many-
particle problem read as follows:

37 + 0zuj" =0 (41)

and
hju— ] Opr Ay — dn Ay) — 10, A, + /gD, P =0,
(42)

where Fl‘j is a mixed component of the stress tensor, which in
Ref. 20 was proved to have the form
< 2~ 8H[gup Al ~
P = __<W|M|\p)’
\/g 88 2y (E ’ t )
where the functional derivative with respect to g,, is to be
taken at fixed A.
The quantity D, P, in Eq. (43) stands for the covariant
divergence of the stress tensor and is explicitly given by

(43)

~ 1 ~, 1=,
D,P) = EBM@P; - 3P b3,8up - (44)
A rather lengthy calculation shows that
~ ar’ ~ (8H ~
D, P’ = v w), 45
VED.P) = S |(W)A| ) 45)

where the functional derivative with respect to r¥ is to be
taken at constant .A. It is important to notice that in the above
equation, the transformed hamiltonian H , a functional of 8y
and A [see Eq. (32)], is actually treated as a functional of the
trajectory r,, and A. This is permissible because g,,,, itself is a
functional of r,; see Eq. (29).

We will make heavy use of this identity in the next section.
Now let us learn how to fix our reference frame so that the
density and current density become constants of the motion.

B. Fixing the reference frame

As discussed in the introduction to this section, our goal is
to separate the convective motion of the electron fluid from
the motion of electrons relative to the convective flow. This
is achieved by following the volume elements along their
trajectories, so that the density and the current density becomes
stationary, with values equal to the initial one. Mathematically,
this translates to the single condition

TUE D = JHE,0) = jL®).

It is important to notice that our condition must be imposed
on the contravariant components j* of the current density,
rather than on the covariant components j,,. The two choices
are, at first sight, equally plausible but not equivalent since the

(46)
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metric tensor g,,, which connects covariant and contravariant
components of vectors, is time dependent. What forces our
choice is the fact that the contravariant component of the
current density appears naturally in the continuity equation
(41). Thus, with this choice, the continuity equation (41)
guarantees that we get

n&,n =n.1=0)=no®) (47)

as soon as Eq. (46) is satisfied.
Given Eqgs. (46) and (47), the effective potential acting on
the system is determined through Eq. (36) as follows:

Joan€.1)
no(§)
where vj) (&) = ji; (§)/no(€). Equation (48) is a gauge-fixing

condition that determines the effective vector potential .4 and
thus a particular noninertial frame.

A/L(gft) zg;w(gst)v(‘)}(g)_ (48)

C. Equation of motion for the Lagrangian trajectory

After fixing the reference frame, the system is completely
characterized by two dynamical variables: the trajectory of
volume elements r,(§,7) and the transformed many-body wave
function W(r) that describes microscopic motion relative to
the convective flow. The wave function W(¢) satisfies the
Schrodinger equation (31). In order to obtain a physically
transparent form of the equation of motion for the Lagrangian
trajectory r,,(§,¢) we differentiate Eq. (33) with respect to time,
and we get

&Y

. u . 95
4+ au V()(I') + [I‘ X BO(r)];L + ari

A, = —0, Vi(r,0).
(49)

In this equation we insert the value of 9,.4, determined
through the local momentum balance equation [Eq. (42)], i.e.,

nod A, = 8, (guv o) — jo @ Ay — 86w A + /gD, P,
(50)

where we have made use of the conditions (46) and (47) and
lowered the index of the contravariant current j, = guvj"
through the action of the metric tensor g,,,. And now, on the
right-hand side of Eq. (50) we plug in expression (33) for A4,, in
the combination (d+.A, — 9¢«.A,) (notice that the contribution
of the classical action term vanishes since the curl of a gradient
is zero) and make use of the identity (45) for /gD, P,.
The result of these manipulations is

F* 4 2050, + [(Dir) x Bol,, + 8, Vo(r)
1 ~ (8H
+ — (V]
no (Sr”

D, = 9, + v}, (52)

|U) = -3, Vi(r,1), (51)
A

where

is a “convective time derivative,” which takes into account the
ground-state flow.
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In view of the last result, it is desirable to change all the
time derivatives in Eq. (51) to convective ones. To this end, we
note that

2050, = (82 + 2059,9,) ' (53)
and “complete the square” to get

4 200 0,7" = Dt — vl 0] dprt
i(SWO[g;w]

2
:Dlrﬂ+n0 Sk

L eh
where

Wolgl = 5 [ dsmi@ssod@ne. 63
Using Eq. (54) in Eq. (51), we obtain

D?r* + [(Dyr) x Bol,, + 3, Vo(r)

+ 1 {<\3| <5—H> ‘ |0) + %} = —9, Vi(r,0).
A

no Srit Srit
(56)

Equation (56) is an exact nonlinear equation for the trajectory
of current-carrying material elements in the quantum many-
body system, provided W(z) entering the stress force is the
solution to the Schrédinger equation (31).

IV. ELASTIC APPROXIMATION

We now introduce our elastic approximation by setting

TE,, . E D) =W, ... Ep). (57)

It is clear that this approximation is consistent with the
requirement of stationary transformed densities but cannot be
exact in general since the correct form of W is determined by
Eq. (31).

The approximation in Eq. (57) applies to short-time
dynamics or to fast-driving fields such that there is no time
for the wave function to adjust to minimize the energy in
the presence of fast-varying external conditions. Here we
may recognize the high-frequency approximation discussed
in Sec. II. The same approximation may be characterized as
an antiadiabatic approximation in the following sense. The
wave function in the Eulerian (inertial) frame is obtained as an
instantaneous deformation of the initial wave function. While
the initial wave function minimizes the energy (i.e., it is the
ground state), it is clear that the deformed wave function does
not minimize, at any given instant, the energy of the system.
The deformation is similar to the change in the shape of an
elastic body. Hence, the term elastic approximation.

Let us now replace Eq. (57) into the trajectory equation (56).
Because the ground-state wave function ¥, does not depend
on the Lagrangian trajectories, we can pull the functional
derivative with respect to r* out of the quantum average. In
other words, we can write

@] 18y + 2% _ 2ot wnen]| L 69)
Srit J 14 sric gm0 oo A’
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where Wo is the operator,

A

1
Wil = 5 / AERE)g (& DU EWE).  (59)

such that (o] Wo|vo) = Wo.

The functional derivative with respect to r* at constant A
can be written as an unrestricted functional derivative minus
counterterms, which cancel the unwanted contributions from
the variation of \A. In formulas, we have

(Wol H + Wo|Wp)

)
sri(&) A

(Wol H + Wo|Wo)

8
riv&)

, A& 8 ~
—/dE 5rit(E) <8A.,(§’)<%|H|%> r>, (60)

where we have used the fact that W, does not depend on .A.
Now we recall the identity

JE) = —— 61)

and the fact that 7" as well as A, [see Eq. (48)] must be here
evaluated at Wy. In particular, we notice that, according to
Eq. (48),

SALE)  8ga(E DHVE(E)
Sri(g) srg)

Therefore, Eq. (60) can be compactly and suggestively restated
as

(62)

(Wol T + Wplwg)| = 2Ll 7 ) (63)
sriv(§) A Sri(§)
Here E¢[g,v] is an elastic energy, defined as
Ealgu] = (Yol Hlguw, A = —V,0llto) , (64)

where v,0 = j,0/n0 is the paramagnetic velocity in the ground
state (in a proper gauge, this quantity always vanishes in a
one-particle system). We shall refer to F as the elastic force
acting on the systems: this is given by the functional derivative
of the elastic energy with respect to the Lagrangian trajectory.

Plugging the above definitions and formulas into the
trajectory equation (56), we finally obtain

D}r" + [(Dyr) x Bol, + 8, Vo — n—lofel,ﬂ =—3,Vi. (65)
The situation is actually analogous to what happens in the case
of a classical spring: displace it from the equilibrium, compute
the gain in energy, and get the elastic force from the derivative
of the energy with respect to displacement. Classical elasticity
theory generalizes this to continuum media, for which the
“stress field” is the functional derivative of the energy with
respect to the strain field.”® Here, in a quantum many-body
system, the corresponding quantity is the functional derivative
of the (transformed) quantum energy with respect to the
trajectories of the infinitesimal volume elements. Due to the
presence of an external static magnetic field, those material
elements carry a nonvanishing current.
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The quantum elastic energy can be naturally split into
a kinetic component and an electron-electron interaction
component. In detail, we find

Eel[gp.v] = Tel[g;w] + Wel[gp.v]v (66)
where
/88" no no
Tel[g;w] = /dEI: ) 8u 817 av W
1
+ 501", (©7)

AT = 2 lim (), 4+ #72,)70(8-&) — G/ /10)
(68)

yo(r,r’) is the ground-state one-particle density matrix,

N
ne.§) =N [ []ar,
j=2

X WgE, .. EWE .. Ey),  (69)

7t is the operator of the kinematic momentum for the relative
motion,

&= —iV — v, (70)
1
Walgn] = 5 / dEdE W((®) — rEDToE.E).  (T1)

and
N
To(r,r') = N(N — 1)/]_[er-
j=3

X ‘115(57’9'/, ""EN)\IJO(g’E,v "'7EN) (72)

is the ground-state pair distribution function.

The identification of the elastic energy defined by Egs. (66)—
(72) is the key result of this section. In comparison with the
nonmagnetic case,®’ the essential difference is the redefinition
of the kinetic contribution [see Egs. (67), (68), and (70)].

V. LINEARIZED EQUATION OF MOTION

The equations of motion for the Lagrangian trajectory
derived in the previous section are fully nonlinear. Here we
present the linearized form of those equations, which are
expected to be useful for systems performing small oscillations
about the ground state.

First of all, we insert Eqs. (46) and (47) on the left-hand
sides of Eqgs. (39) and (40). This gives

no(§) = /gn(r(.1).1), (73)
8 v
) = VB 1M &0, — n(E.0.00 ¢ E.0.0),
X
(74)
where
r§.1) =& +u(.1). (75)
Expanding to first order in u we get
n(§.,1) = no(§) =V - [no(§)u(§,n)] (76)
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and

i€.1) = jo§) + no(®)u.n) + V x [u&,1) x jo(§)1. (77)

Equation (77) expresses the response of the current density,
j — jo, as the sum of two terms: the first accounts for the
polarization, and the second accounts for the orbital magne-
tization of the quantum medium. We have thus succeeded in
deriving the relation (8) between the linearized response of the
current and the displacement field that was put forward in the
Introduction on a heuristic basis.

We notice that, up to the linear order, there is no difference
between the Lagrangian and the Eulerian descriptions of the
displacement field; thus u(§) = u(r). In this spirit, we replace
& by rin all the expressions below. It is also worth emphasizing
that Egs. (76) and (77) are general and hold true independently
of the elastic or any other approximation.

The linearized equation of motion of the displacement is
readily obtained:

DXu(r,t) + [Dyu(r,1)] x Bo(r) + (u - V) 8, Vo(r)

1
+vo X (u- V)By(r) — ——Fa(r,1)
no(r)
= _VV](I',I) 5 (78)
where F(r,1) is the (linearized) elastic force. The linearized
elastic force is given by
8% Eq[u]
Su, (r)du, (1) |,
and can be naturally separated into kinetic and electron-
electron interaction contributions:

Feiu(t) = FA (1) + F (v). (80)

L 1,

Feru(r,t) = —/dr/ u,(r',t)  (79)

Explicit expressions for the two components are obtained
by closely following the steps outlined in Ref. 6. The final
expressions are

Tt (6) = 00 [ 2T} 5 ()1t (£) 4 Ty 6(£)0010, ()
— 3§99, [no(0)3,V - u(r)]
+ 100 2LV2no(0)]uy, (1) + [0,10(r)] 9,V - u(r)
+ [9,10(r)]19,V - u(r) — 29, {[dan0(1)]u 1o (1)}),
(1)
(v (r) = [0yu,(r) + 9,u,(r)]/2 is the strain tensor), and the
interaction contribution is given by

Fat () = / dr'K (1) [, (1) — u, (¥)] . (82)
In Eq. (81), we have defined

Ts() = 2(8,9) + 3,0))y0(r. Xy — 2V2n0()38,,
+ 3n0(0)V,0,, ()00, (1) , (83)

where yy(r,r’) is the ground-state one-particle density matrix
[see Eq. (69)]. In Eq. (82)

K,(x,x') = To(r,r)3,0, W(lr —r'|), (84)

where W(|r — r’|) is the interaction potential and Ty(r,r’) is
the ground-state pair distribution function [see Eq. (72)].
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Analysis of the one-particle case within the Lagrangian
formulation is reported in the Appendix C; thus this also
completes the analysis started in Appendix B within the Euler
approach.

VI. CONCLUSIONS

In summary, we recapitulate the essential changes that
must be made in order to go from the quantum continuum
mechanics in the absence of magnetic field to the one in the
presence of magnetic field within the framework of the elastic
approximation.

(1) A Lorentz-force term must be added to the equation of
motion for the displacement field and appropriately linearized,
taking into account the presence of a nonvanishing velocity
field vo(r) in the ground state.

(ii) Everywhere, the time derivative d, must be replaced by
the convective derivative D; = 9; 4+ (vo - V). The replacement
must also be done within the Lorentz force term, compatibly
with the requirements of linearization.

(iii) The kinetic contribution to the elastic energy must be
calculated taking into account the replacement of the canonical
momentum operator —iV by the kinematic momentum & =
—iV — Vop-

(iv) The relation between linearized current density and the
displacement field is changed from Eq. (1) to Eq. (8).

The Fourier transform of Eq. (78) yields the following
generalized eigenvalue problem:

U+ io[2(Ve-V)u+ (ux By — (vo - V)’u
— [(vo - Vu) x By] — (u- V)3, Vy(r)

1
— Vo x (u-V)By(r) + —Fq =0. (85)
no

Finally, we have an explicit form of all the terms: this is a
major step forward.

In conclusion, we have presented results that open the
possibility to obtain the response of the current, and thus
the excitation energies, of systems in strong magnetic fields,
avoiding the solution of the time-dependent Schrédinger
equation and making use only of ground-state properties.
Given the required ground-state properties, the complexity of
the problem to be solved does not increase with the number
of the particles in the system. The presented framework is
expected to be useful in dealing with large systems and with
current-carrying states exhibiting an elastic behavior.
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APPENDIX A: GENERALIZED EIGENVALUE PROBLEM
Equation (24) can be represented in the form
wri+ioB - i— K- i=0, (A1)

where we introduced the following notations:

B, (r) = \/no<r>uﬂ(r> (A2)
Bp_.v(rar/) = l\/T ", (r,r W (A3)
i N o 1 / 1
Kuw,r') = —mlCu,v(r,r )—W. (Ad)

Moreover, Eq. (85) shares the same structure, although (as we
have explained) it is for a different displacement.
The operators acting on 0 have the properties

B.,(xx)=8B (rr), B,,(rr)=-B,,r'r (A5

and

K@) =K ), K@) =K, 0. (A6)

Equation (Al) has the form of a nonstandard eigenvalue
problem, which may be found, for example, also in the analysis
of the modes of rotating stars’’ and in the analysis of the
magnetohydrodynamics of hot plasma.??

In terms of the scalar product [the difference with Eq. (26)
is related to the rescaling of the displacement field, Eq. (A2)]

(Up,0y) = / driiy (D) g, (r), (A7)
the orthogonality relation get modified as follows:

(lip,iB - iia) + (wa + wp) (iip,iia) =0, (A8)

where w4 and wp are assumed to be real and different from
each. In fact, the operator defining the problem in Eq. (A1) is
Hermitian for real w, but it is also w dependent; thus solutions
of Eq. (A2) corresponding to different @ do not need to be
orthogonal in the usual sense (as for B = 0).

Let us discuss the conditions for which the solutions are
guaranteed to have real-valued w. For this, Eq. (A1) can be
brought to the quadratic form

W (0,0) + io(@,B - i) — (@, - 1) = 0. (A9)
Real-valued w are obtained for the positive-definite discrim-
inant of Eq. (A9). Since (@,B-@) is a purely imaginary
quantity, the stability condition may be stated in terms of the
stronger requirement

@K-a) >0 (A10)
Equation (A10) is not manifestly satisfied for the equations
under consideration. Nevertheless, for Egs. (22) and (85), we
expected to find stable solutions because those same equations
are valid for small displacements and short-time intervals:
within these conditions, the system must stay “close” to the
the initial minimum (the ground state) of the unperturbed
Hamiltonian.

PHYSICAL REVIEW B 84, 245118 (2011)

APPENDIX B: ONE-PARTICLE CASE IN THE EULER
DESCRIPTION WITH THE STANDARD DISPLACEMENT

Here we show that the inversion of the current re-
sponse for a one-particle system can be easily worked out
from the linearized Schrodinger equation or, equivalently, from
the linearized Euler equations for the densities. In this way, we
are able to show that the approximation put forward in the
high-frequency limit provides the exact excitation energies for
one-particle systems.

We start by observing that the wave function may be written
as follows:

U = ./ne'?; (B1)

thus
j=nVe+nA (B2)

and
V xv=B. (B3)

As aresult, the local balance equation for the linear momentum
reads as follows:

1 j?
atj/L + 8u [VB + E# + Vi| = atAM’ (B4)
where
1 V2
Vg = ___ﬁ (BS)
2 Jn

is the well-known Bohm potential. >3 Let

V=V, A=Ac+Ag (B6)

the linearization of Eq. (B4) yields
d (V-

no no
= %A1, (B7)

j n
VO+V{V13+V0 ']—l—v%—l}

where

V2L 2
VIB_—1|: P V\/‘iﬁ ("‘)}; (B8)

moreover, we may also recall that
8,n1=—V~j1. (B9)

From Eq. (B7), we obtain an important relation for the
inverse of the current-current response function:
i

i .. Vo i
—+—[(V'J1)—+V<V0'—)}
w no no

1 V[ 1 v:  Vv? V-j
YL, T v
w? 2| J/ng

27 N

(B10)
This expression tells us that the frequency dependency includes
only 1/w and 1/w” terms: therefore, it is apparent that the
inversion in the high-frequency limit of the current response
function is exact for one-particle systems.

X (@) - i
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Let us consider purely longitudinal perturbation; from
Eq. (B7) we get the equation for modes described in terms
of jj = —iwnou:

2 . Vo
w u+za)|:(V-n0u)—+V(v0-u)i|
no
VIl v: v/ V - (nou
LY (LY Yy p) Voo
2 A/ o 2 24 /o N2
=VV. (B11)

Now, we find the exact displacement for the one-particle
system. For this purpose, we use the expression of the
linearized Schrodinger equation. Without losing generality,
one may shift the ground-state energy to zero and choose the
ground-state wave function in Eq. (B1) to be a real-valued
function (i.e., ¢y = 0). In the given gauge, the relation

(B12)

holds true. By substitution in Eq. (B11), we can verify that the
solutions have the form

w=To b, (B13)
no
where
. ] 2 W,
blon = —5¥ V| — ) + Yo¥,A¢ (B14)
2 Wy

is the matrix element of the current operator evaluated for the
eigenstates W,, of H, and w, are the corresponding excitation
energies. In verifying the above results, it may be useful to
recall the continuity relations

V. [j]On = iwy VoV, . (B15)

PHYSICAL REVIEW B 84, 245118 (2011)

APPENDIX C: ONE-PARTICLE CASE IN THE
LAGRANGIAN DESCRIPTION WITH THE
NEW DISPLACEMENT

Let us consider the one-particle case but within the elastic
approximation as obtained within the Lagrangian description.
In this case, we readily arrive at

_ .
Eé\l]_l[guv] =/d§§\/§g"

no no
X <8M F (E)v IW ’ (Cl)

It is remarkable that Eq. (C1) has the same form as in the limit
of vanishing magnetic field. Moreover, it is possible to directly
verify that the elastic energy in Eq. (C1) corresponds to the
Lagrangian:

1
L= /dEno(E) [E(Dzl‘)z — (Dir) Ao(r) — V(r,l)]

Jgg" n n
() () @

which yields the exact equation of motion for the trajectory
r(&,7). In other words, the elastic approximation is exact for
one-particle systems regardless of the value of B.

Then, the linearized equation of motion is readily obtained:

i't.;l, + vO,vav’;l;/_ - uvavvo,p, + 8#(”0,1)".{\})

V2u, OqUup08/No
+ B/L {UO,aUO,ﬁuaﬂ + 4 £ + j}’l_i
+ ua8aV0} =0A1,. (C3)

The latter expression can also be obtained from Eq. (B4)
by reexpressing the response of the current in terms of
“Lagrangian” displacement:

jl,y. = I’l()l/.t,,' + 8v(j0,vu;/, - jO,pLuv)' (C4’)

In conclusion, as expected, the same equation is obtained if
the same displacement is employed consistently.
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