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Kondo effect in the presence of van Hove singularities: A numerical renormalization group study
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A numerical renormalization-group investigation of the one-center t − t ′ Kondo problem is performed for the
square lattice accounting for logarithmic Van Hove singularities (VHS) in the electron density of states near the
Fermi level. The magnetic susceptibility, entropy, and specific heat are calculated. The temperature dependencies
of the thermodynamic properties in the presence of VHS turn out to be nontrivial. When the distance �

between VHS and the Fermi level decreases, the inverse logarithm of the corresponding Kondo temperature TK

demonstrates a crossover from the standard linear to square-root dependence on the s-d exchange coupling. The
low-temperature behavior of the magnetic susceptibility and specific heat are investigated, and the Wilson ratio
is obtained. For � → 0 the Fermi-liquid behavior is broken.
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I. INTRODUCTION

The Kondo effect is extensively studied starting from
pioneering works by Kondo,1 who explained the minimum of
resistance in metallic alloys owing to resonance s-d scattering
of conduction electrons by magnetic impurities. The solution
of the Kondo problem2–4 is a very beautiful chapter in the
history of modern theoretical physics.

The Kondo phenomenon is a key for explaining the
behavior of heavy-fermion compounds and Kondo lattices,5,6

non-Fermi-liquid (NFL) systems,7,8 anomalous electronic
properties of metallic glasses,9 quantum dots,10 and other
systems. The Kondo anomalies are also studied in systems
of reduced dimensionality, where they have a number of
experimental peculiarities.11 It is evident that the Kondo effect
in such systems has a number of peculiar features from the
theoretical point of view too.

The Kondo effect owing to Cu2+ spins in the CuO2

planes is observed in layered n-type cuprates (La,Ce)2CuO4,
(Pr,Ce)2Cu4, and (Nd,Ce)2CuO4−δ .12

Recently, the Kondo effect in graphene (a truly two-
dimensional system with a peculiar electron spectrum) has
been discussed.13–15 Because of the pseudogap in the spectrum,
the Kondo effect for the undoped graphene exists under
restricted conditions only, but for a doped substance the Kondo
phase is present for all parameters.14

We can mention also some layered f systems where ex-
perimental investigations and first-principle band calculations
demonstrate existence of two-dimensional features in electron
properties. Examples are the compounds CeCoIn5 (where the
layers CeIn are present),16 CeCoGe2,17 CePt2In7,18 CeRhIn5,
Ce2RhIn8,19 and UCo0.5Sb2 (where two-dimensional weak
localization is observed).20

The layered Kondo lattice model was proposed for quantum
critical beta YbAlB4, where two-dimensional boron layers
are Kondo coupled via interlayer Yb moments.21 CeRuPO
seems to be one of the rare examples of a ferromagnetic
Kondo lattice where LSDA + U calculations evidence a
quasi-two-dimensional electronic band structure, reflecting a
strong covalent bonding within the CeO and RuP layers and a
weak ioniclike bonding between the layers.22

The above f systems demonstrate often both local-moment
and itinerant-electron features. A large linear specific heat

coefficient and NFL behavior are observed also in some
d systems, including layered ruthenates Sr2RuO4

23 and
Sr3Ru2O7.24 Besides correlation effects, anomalies of electron
properties in such systems are owing to the presence of Van
Hove singularities (VHS) near the Fermi level.

In the present work we treat the one-center Kondo problem
with the singular electron density of states. Earlier this problem
was considered by Gogolin,25 who used a “fast parquet”
approach. In fact, such complicated methods are somewhat
ambiguous, and the numerical renormalization-group (NRG)
results of the paper26 do not agree with the results of Ref. 25.
Therefore we start in Sec. 2 from the standard perturbation
theory and also apply the “poor man scaling” approach by
Anderson.27

In Sec. 3 we apply to the problem the NRG method, the
technical details for our case being considered in the Appendix.
The simple perturbation results for the Kondo temperature
agree with NRG much better than the parquet results.25

The physical quantities in the presence of the logarithmic
singularity near the Fermi level are investigated. We calculate
the magnetic susceptibility and specific heat, in particular at
low temperatures, obtain the Wilson ratio, and discuss the
problem of universal behavior.

II. THE KONDO MODEL WITH VAN HOVE
SINGULARITIES

We use the Hamiltonian of the one-center s-d(f ) exchange
(Kondo) model:

Hsd =
∑
kσ

εkc
†
kσ ckσ −

∑
kk′αβ

Jkk′Sσ αβc
†
kαck′β. (1)

Here εk is the band energy; S are spin operators; σ are the Pauli
matrices; in the case of contact coupling, Jkk′ = J/Ns , where
J is the s-d(f ) exchange parameter; and Ns is the number of
lattice sites.

Kondo1 found that high-order perturbation contributions to
various physical properties contain logarithmically divergent
corrections. As demonstrated by further investigations of the
Kondo problem, there occurs a pole at the boundary of the
strong-coupling region, which is called the Kondo temperature
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(in fact, this is a crossover scale). For a smooth density of states
ρ(E) this quantity is estimated as

TK ∝ D exp
1

2Jρ(0)
, (2)

where D is the half bandwidth. We treat the case of the
logarithmically divergent bare density of electron states:

ρ(E) = A ln
D

B|E + �| , (3)

(the energy is referred to the Fermi level; the constants A, B,
and � are determined by the band spectrum). The logarithmic
divergence in ρ(E) is typical for the two-dimensional case
(in particular, for the layered ruthenates). However, simi-
lar strong Van Hove singularities can occur also in some
three-dimensional systems, like Pd alloys and weak itinerant
ferromagnets ZrZn2 and TiBr2.28,29

First we consider the perturbation expansion for the
resistivity, following the original approach by Kondo.1 We
write down the inverse transport relaxation time with the
Kondo correction:

τ−1(E) = τ−1
0 (E)[1 + 4J g(E,0)], (4)

Here,

g(E,T ) =
∑

k

1/2 − nk

E − εk
=

∫
dE′ρ(E′)

1/2 − f (E′)
E − E′ , (5)

with nk = f (εk) being the Fermi function. After integration
by part, in the case � = 0 we obtain logarithmic accuracy for
the resistivity:

Rsd ∼
∫

dEρ(E)

(
−∂f (E)

∂E

)
τ−1

0 (E)

×
[

1 − 2AJ

∫
dE′

(
−∂f (E′)

∂E′

)
ln2

∣∣∣∣ D

E′

∣∣∣∣] , (6)

so that

Rsd = R
(0)
sd

(
1 − 2AJ ln2 D

T

)
,

(7)

R
(0)
sd ∼ J 2S(S + 1)A ln

D

T
.

Applying the Abrikosov–Suhl summation (see Ref. 1), we
have

Rsd = R
(0)
sd

(
1 + JA ln2 D

T

)−2

, (8)

which yields a nonstandard expression for the Kondo temper-
ature:

TK � D exp

[
−

∣∣∣∣ 1

AJ

∣∣∣∣1/2
]

. (9)

We calculate also the Kondo corrections to the static impu-
rity magnetic susceptibility by generalizing a consideration of
Ref. 1 to the case of the singular density of states. Expanding
to second order in J , we derive (cf. Refs. 1,4, and 30)

χ (T ) = S(S + 1)

3T

[
1 + 2Jχ (0) − 2J 2

∑
kk′

nk(1 − nk′)

(εk − εk′ )2

]
,

(10)

FIG. 1. The temperature dependence of noninteracting magnetic
susceptibility for conduction electrons χ (0)(T ) at � = 0, 0.02, 0.04,
and 0.08.

where

χ (0)(T ) = −
∑

k

∂nk

∂εk
=

∫
dEρ(E)

[
−∂f (E)

∂E

]
� A ln

D

max(� − T ,T )
(11)

is the Pauli susceptibility of noninteracting conduction elec-
trons with the singular density of states, which is shown in
Fig. 1. For � �= 0 this quantity has a maximum at T � �/2.
Such a behavior is typical for the case where a density-of-states
peak is present near the Fermi level.31

Performing integration and summation of the series of
logarithmic terms, we have

χ (T ) = S(S + 1)

3T

[
1 + 2Jχ (0)

1 + Jχ (0) ln(D/T )

]
, (12)

which yields at � = 0 the same result for the Kondo temper-
ature Eq. (9).

The correction to magnetic impurity entropy can be written
down in an analogous way to obtain1,4

Simp(T ) = ln(2S + 1) + π2

3

S(S + 1)[2Jχ (0)]3

[1 + Jχ (0) ln(D/T )]3
. (13)

Then we have, for impurity specific heat,

Cimp(T ) = T
dSimp(T )

dT
= π2S(S + 1)

[1 + Jχ (0) ln(D/T )]4

×
{

[2Jχ (0)]4 + 8J 3T
dχ (0)

dT
[χ (0)]2

}
. (14)

The first term in the brackets yields the same structure as in
the case of a smooth density of states [where χ (0) = ρ and the
singular contribution occurs in the fifth order in J only], and
the second term is owing to logarithmic singularity in χ (0).
Being of the third order in J , the latter term can dominate.
Additionally, it can change its sign and become negative; as
we shall see below in Sec. III, this fact is important for the
Cimp(T ) behavior.
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Of course, the above expressions are applicable for T > TK

only.
To perform a more formal consideration, we can ap-

ply the “poor man scaling” approach by Anderson.4,27 He
progressively reduced the effective half bandwidth D̃ of
the conduction electrons and calculated perturbatively the
effective interaction J̃ renormalized due to the elimination of
virtual excitations to the band edges. To carry out this scaling
one divides the conduction band into states |εk| < D̃ − |δD̃|,
which are retained, and states within the intervals |δD̃| at the
band edges, which are to be eliminated. In our model we obtain

δJ̃ = J̃ 2[ρ(D̃) + ρ(−D̃)]
|δD̃|
D̃

. (15)

Then we derive the scaling equation:

∂

∂|D̃|
1

J̃
= − A

D̃

(
ln

D

B|D̃ + �| + ln
D

B| − D̃ + �|
)

, (16)

with the initial condition J̃ (D) = J .
Solving this equation for � → 0 (as we shall see below, for

TK � �), we derive

1

J̃
= 1

J
+ A ln2

∣∣∣∣ D

BD̃

∣∣∣∣ − A ln2

∣∣∣∣ 1

B

∣∣∣∣ . (17)

Then we obtain from the condition 1/J̃ (TK ) = 0 to the leading
logarithmic approximation the result Eq. (9) again.

One can see that expression (9) is different from the
corresponding parquet result:25

TK � D exp

[
−

∣∣∣∣ 2

AJ

∣∣∣∣1/2 ]
. (18)

However, the NRG calculations26 confirm the perturbation
expression (9) rather than Eq. (18) (see the discussion below).
The corresponding problems of the parquet approximation in
the Hubbard model are treated in the works.32

III. RESULTS OF NUMERICAL CALCULATIONS

We consider the S = 1/2 Kondo model for the square lattice
with the band energy

εk = 2t(cos kx + cos ky) + 4t ′(cos kx cos ky − 1). (19)

The spectrum Eq. (19) is shifted to restrict the band edges by
|E| < D = 4|t |. The corresponding density of states is

ρ(E) = 1

2π2
√

t2 + Et ′ + 4t ′2
K

(√
t2 − E2/16

t2 + Et ′ + 4t ′2

)
, (20)

where K(E) is the complete elliptic integral of the first kind.
For t ′ = 0 we have

ρ(E) = 2

π2D
K

(√
1 − E2

D2

)
� 2

π2D
ln

4D

|E| , (21)

so that, according to Eq. (9),

TK � D exp

[
−

∣∣∣∣π2D

2J

∣∣∣∣1/2 ]
. (22)

For nonzero t ′ the logarithmic Van Hove singularity is
located at E = −8t ′:

ρ(E) � 1

2π2
√

t2 − 4t ′2
ln

16
√

t2 − 4t ′2

|E + 8t ′| . (23)

The distance � from the Van Hove singularity to the
chemical potential μ is � = μ + 8t ′. Thus the cutoff for the
singular contributions is given by a single parameter �, which
takes into account the shift of both the chemical potential and
VHS from the band center. The NRG calculations performed
demonstrated that for a fixed � the results depend very weakly
on the concrete choice of t ′ and μ. The corresponding curves
are visually indistinguishable (small deviations occur at high
temperatures only). Therefore we present the results for μ = 0
only.

The details of NRG calculations are discussed in the
Appendix. When presenting numerical results in terms of �

and J , we put D = 1.
The Kondo temperature in NRG calculations is deter-

mined from the temperature dependence of impurity magnetic
susceptibility χimp(T ) by using the condition TKχimp(TK ) =
0.0701 that is standard in the NRG method.2

Figures 2 and 3 show the dependence of the Kondo
temperature on the bare coupling |J | in the logarithmic
scale. One can see that for finite � there occurs a crossover
with decreasing |J | from the square-root dependence Eq. (9)
to the standard Kondo behavior Eq. (2). This crossover is
qualitatively described by the lowest-order scaling.

It should be noted that the Kondo phenomenon should be
invariant under the transformation εk → −εk, i.e., ρ(ε) →
ρ(−ε). However, the case of a nonsymmetric density of
states using the formula 1 = 2Jg(TK,0) [where g(E,T ) is
determined by Eq. (5)] yields slightly different results for the
VHS peak above and below the Fermi level. Therefore we use
the Nagaoka-Suhl formula (see Ref. 1):

1 = 2Jg(0,TK ), (24)

FIG. 2. The dependence TK (J ) for � = 0. Circles are NRG
results, solid line corresponds to the Nagaoka-Suhl formula (24),
dashed line corresponds to Eq. (22), and dotted line corresponds to
Eq. (18) (without accounting for the pre-exponential multiplier).
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FIG. 3. (Color online) The dependencies TK (J ) for � =
0,0.04,0.08,and 0.24. Circles, top-up triangles, squares, and top-
down triangles are the corresponding NRG results; solid lines (from
above to below) correspond to the Nagaoka-Suhl (NS) formula (24);
and dashed lines (from above to below) are results for small |J |
Eq. (25) with fitted constants k.

which works somewhat better at large |J |, but slightly worse
at small |J |. (In fact, all such approximations yield nearly the
same result at small |J |.)

According to Eq. (16), for � 
 TK we have ln TK ∼
1/

√|J | and for � � TK we come to the standard linear
behavior ln TK ∼ 1/|J | with enhanced ρ(0). For intermediate
J , a crossover takes place.

The lowest-order scaling describes satisfactorily the nu-
merical data at large |J |. However, it is insufficient to fit the
numerical results at small |J |. Therefore we use the two-loop
scaling result:2,4

TK = kD|2Jρ|1/2 exp [1/2Jρ] . (25)

This expression implies that only a small vicinity of the
Fermi surface with nearly constant ρ(E) � ρ works. This
assumption becomes not valid with increasing |J |, since
the whole logarithmic peak becomes important. The fitting
constant k should be determined by the whole form of the
function ρ(E). At small �, k is small since the quantity ρ(0) is
large owing to VHS peaks. On the contrary, for larger � (e.g.,
� = 0.24), ρ(0) becomes small.

Since TK is high in our case of the singular density of
states, the consideration of the situation with � ∼ TK is quite
realistic. We can see that appreciable deviations from Eq. (25)
owing to the singularity occur even for � being not too small
and exceeding TK .

The magnetic susceptibility owing to impurity spin can be
expressed as a difference of magnetic susceptibilities of the
whole system and the system without impurity:

χ (T ) ≡ χimp(T ) = χtot(T ) − χband(T ), (26)

where χtot is the total magnetic susceptibility and χband =
2Nsχ

(0) is the susceptibility of noninteracting band electrons
(for two-spin projections). Apart from the susceptibility

FIG. 4. The temperature dependence T χimp(T ) for � = 0 and
J = −0.2, − 0.1, − 0.07,and − 0.05 (lines from below to above).

Eq. (26), the so-called local magnetic susceptibility χloc is
frequently introduced as well:

χloc(T ) =
∫ 1/T

0
〈Sz(τ )Sz〉dτ. (27)

This is the susceptibility of a single impurity in a magnetic
field that acts locally only on this impurity; its magnitude,
therefore, can hardly be measured experimentally, unlike χimp.
In principle, χimp and χloc can behave quite differently. Such a
possibility was mentioned in Ref. 33, where the reason for the
difference is related to the energy dependence ρ(E) and it is
asserted that this difference disappears for a flat band of half
width D in the limit of D → ∞.

Figures 4–6 show the temperature dependence of magnetic
susceptibility for different � values. χ (T ) obeys the Curie
law at high temperatures and demonstrates the Fermi-liquid
behavior at low temperatures (except for the case � → 0).

For the standard flat-band case one has T χ (T ) = φ(T/TK ),
so that the curves T χ (T ) are universal: a change in J results in
a change of TK only. In our situation, such a simple universality

FIG. 5. (Color online) The temperature dependence T χimp(T ) for
J = −0.2 and � = 0, 0.004, 0.008, 0.016, 0.04, 0.08, 0.24, and 0.4
(lines from below to above).
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FIG. 6. (Color online) The temperature dependence χimp(T ) for
different J and �.

does not hold. In particular, for � = 0 this fact (illustrated by
Fig. 4) was demonstrated in Ref. 26.

One can see from Fig. 6 that a minimum in χ (T ) occurs
with decreasing �, its position being determined by the
maximum of χ (0)(T ) in Eq. (11). This minimum is due to
the strong energy dependence of the bare density of states;
see Eqs. (10)–(12). Thus, besides the Kondo temperature
TK , a second characteristic scale can occur in our problem,
which is determined by �. Therefore, we have to discuss
the meaning of the Kondo temperature TK in more detail.
This quantity comes from the expansion in J starting from
high temperatures where the impurity susceptibility χ (T )
demonstrates the Curie behavior. TK is determined as a
temperature scale where a considerable deviation from this
behavior occurs. In the flat-band situation and for smooth
ρ(E), χ (T ) decreases monotonously with increasing T , the
universal behavior taking place. This picture is characterized
by the ratio w = 4TKχ (0) ≈ 0.41,2–4 which relates high- and
low-temperature scales TK and χ (0). Such a behavior holds for
TK < �, but for small � values the universality is broken, so
that the intermediate-temperature dependence χ (T ) becomes
complicated and w deviates from 0.41 (see Table I).

The impurity entropySimp and specific heat Cimp are defined
similarly to Eq. (26).

The Wilson ratio R = (4π2/3)χimp(0)/γimp relating the
low-temperature susceptibility and linear specific heat coeffi-
cient γimp = Cimp/T is also presented in Table I. It is important
that even for rather small � the value of R is still close to 2.
Therefore a Fermi-liquid behavior, characteristic for the Kondo
problem,2 is restored at low temperatures, except for the case
of extremely small � where χimp(0) and Cimp(0) can even
become negative.

Occurrence of negative values of χimp and Simp was
demonstrated in Ref. 26 by a strict analytical consideration
of the simple case J = −∞ for the semielliptic density of
states. This is a common property of the Kondo model Eq. (1)
with very narrow density-of-states peaks near the Fermi level.
Of course, the quantities χtot and χband remain positive.

The singular case � → 0 demonstrates an essentially
non-Fermi-liquid behavior (divergence of impurity magnetic

TABLE I. Results of our NRG calculations for different � and
J : TK (first line), Wilson ratio R (second line), and the quantity
w = 4TKχ (0) (third line; Wilson’s value is w = 0.4128 ± 0.002).

� J = −0.1 J = −0.15 J = −0.2 J = −0.3

1.19·10−5 4.76·10−4 3.33·10−3 0.0277
0.4 2.008 2.008 2.014 1.99

0.414 0.416 0.416 0.415

3.62·10−5 1.03·10−3 6.13·10−3 0.0450
0.24 1.995 1.988 2.005 1.98

0.413 0.413 0.414 0.413

3.45·10−4 4.36·10−3 1.84·10−2 0.0930
0.08 1.998 1.995 1.991 2.12

0.415 0.416 0.425 0.386

7.49·10−4 7.26·10−3 2.88·10−2 0.0989
0.04 1.999 1.997 2.069 2.237

0.416 0.418 0.447 0.269

1.12·10−3 1.02·10−2 3.20·10−2 0.1000
0.024 2.002 1.992 1.998 3.18

0.417 0.449 0.392 0.184

1.44·10−3 1.21·10−2 3.30·10−2 0.1004
0.016 1.996 1.97 2.040 -177a

0.417 0.447 0.337 0.108

2.08·10−3 1.34·10−2 3.37·10−2 0.1006
0.008 1.989 2.03 2.41 0.343a

0.43 0.38 0.24 -0.048

aχ (0) = 0.27, γimp = −0.02
aχ (0) = −0.12, γimp = −4.6

susceptibility and specific heat at T → 0). The low-
temperature behavior at � = 0 can be fit as26

χimp = − a

T | ln(T/D)|α , a ≈ 0.072, α ≈ 0.77, (28)

Simp = − b

| ln(T/D)|δ , b ≈ 1.065, δ ≈ 0.89, (29)

(see Fig. 7), so that

Cimp = − bδ

| ln(T/D)|δ+1
. (30)

These asymptotics are independent of J (cf. Fig. 4), since
at sufficiently low temperatures any value of |J | manyfold
exceeds both the temperature and the width of the infinitely
thin logarithmic peak in ρ(E).

This situation is somewhat similar to the overscreened
Kondo problem,35 where the number of the scattering channels
of conduction electrons n > 2S (S is the localized spin value);
in this case χ (T ) demonstrates a power-law behavior, but
remains positive.

As discussed in Ref. 36, a violation of the Fermi-liquid
behavior with C ∝ 1/ ln4(TK/T ) takes place in the case of the
underscreened (n < 2S) Kondo problem.36 This behavior of
specific heat, as well as the correction to impurity magnetic
susceptibility of the form 1/[T ln(TK/T )], occurs in the Bethe
ansatz solution3 of the Kondo model too (as mentioned on
page 621 of Ref. 3, such singularities can be also obtained
from the solution of the Nagaoka equation starting from the
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FIG. 7. The fitting of thermodynamic properties at low tempera-
tures for � = 0.

high-temperature perturbation expansion;1 cf. equations of
Sec. 2). It should be stressed that in this situation the magnetic
moment remains positive (S → S − n/2), and the singular
contributions to thermodynamic properties have positive signs,
unlike our case where such contributions are negative.

At the same time, in the standard Kondo screening situation
[n = 1, S = 1/2, smooth ρ(E)] one has T χ (T ) = O(T ),
so that the impurity moment is completely compensated by
conduction electrons (note that T χ = 〈S2

z 〉tot − 〈S2
z 〉band; see

the Appendix). On the contrary, in the pseudogap situation
(low density of states near μ, ρ(E) ∝ |E − μ|r ,r > 0), the
screening is incomplete: T χ (T ) > 0.34 In our case we have
the opposite situation: ρ(E → 0) diverges and we have a
(rather weak) overcompensation: T χ (T ) < 0. In other words,
the Curie law is nearly fulfilled with a negative Curie constant,
which tends very slowly to zero and remains appreciable at
any reasonable low temperature (see Figs. 4–6).

FIG. 8. (Color online) The temperature dependence of impurity
specific heat for J = −0.2 and � = 0, 0.016, 0.04, 0.08, 0.24, and
0.4 (lines from below to above, if one sees the left-hand part of the
figure); circles mark TK , and triangles mark �.

FIG. 9. (Color online) The temperature dependence of magnetic
entropy for J = −0.2 and � = 0, 0.004, 0.008, 0.016, 0.04, 0.08,
0.24, and 0.4 (lines from below to above).

Figure 8 shows the temperature dependence of impurity
specific heat Cimp = Ctot − Cband for different �. As a rule,
this dependence demonstrates two peaks. At not too small
�, the high-temperature maximum occurs at the temperature,
determined by the distance from VHS to the chemical potential
μ. This is owing to the nonmonotonous dependence of χ (0)(T );
see Eqs. (11) and (14). When decreasing temperature and
passing this maximum, Cimp(T ) acquires a minimum and can
even become negative. The low-temperature peak is owing to
the Kondo effect and takes place in the standard flat-band
situation too (see Ref. 38). One can see that its position
corresponds roughly to the Kondo temperature. For small
� < TK , the order of positions of the maxima becomes
interchanged.

The corresponding magnetic entropy Simp is shown in
Fig. 9. One can see that this quantity tends to the value
ln 2 = ln(2S + 1) at high temperatures and demonstrates
the Kondo compensation at low temperatures (except for
overcompensation at � = 0). The behavior turns out to be
nonmonotonous due to the maximum in χ (0)(T ) [see Eq. (13)].

IV. CONCLUSIONS

The considered t − t ′ Kondo problem is a nontrivial
example of the influence of density-of-states peaks near the
Fermi level on electron properties, which is combined with
correlation effects (see a general discussion in Refs. 28
and 31). Our treatment gives an exact numerical solution
of this problem. The overall picture obtained is rather rich,
since this is governed by two key parameters: the Kondo
temperature TK (or the s-d coupling J ) and the distance �

between the Fermi level and VHS. The resulting temperature
dependencies of thermodynamic properties include both one-
particle effects connected with the Van Hove singularity and
many-electron Kondo features and can be nonmonotonous. At
low temperatures, as well as in the usual Kondo problem, the
Fermi-liquid behavior is restored, except for the case of very
small �. In the latter case, a non-Fermi-liquid behavior takes
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place which should be studied in detail by more advanced
analytical methods.

It would be also of interest to perform similar calculations
for the Kondo lattice (heavy-fermion) problem, e.g., in some
“mean-field” approximation. A “poor man scaling” approach
was applied to this problem in Ref. 37.
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APPENDIX: NUMERICAL RENORMALIZATION-GROUP
APPROACH FOR THE SINGULAR DENSITY OF STATES

Here, we discuss some important details of the numerical
renormalization-group (NRG) method,2,39 as applied to our
problem of the singular electron density of states.

1. Construction of the Wilson chain

Following Wilson,2 we use a unitary transformation to pass
from the operators ck to the operators fn. Then the impurity
model with a Hamiltonian of the type Eq. (1) is reduced to a
semi-infinite chain (Fig. 10) with a Hamiltonian of the type

Hsd = −J [S+f
†
0↓f0↑ + S−f

†
0↑f0↓ + Sz(f

†
0↑f0↑ − f

†
0↓f0↓)]

+
∞∑

σ,n=0

[εnf
†
nσ fnσ + γn(f †

nσ fn+1σ + f
†
n+1σ fnσ )].

(A1)

The renormalization-group procedure starts from the solu-
tion of the isolated-impurity problem (sites “imp” and ε0 in
Fig. 10). At the first step, we add a first conducting electronic
site ε1 and construct and diagonalize a Hamiltonian matrix
on this Hilbert space (with a fourfold higher dimensionality).
This procedure is multiple repeated. However, since the
dimensionality of the Hilbert space grows as 4N (N is the
number of an iteration), it is impossible to store all the
eigenstates during the calculation. Therefore, it is necessary
to retain after each iteration only the states with the lowest
energies. If we restrict ourselves to a certain maximum
number of stored states (determined by the computational
possibilities), it is necessary, starting from a certain iteration,
to retain the order of one quarter of the states at each step.

Unfortunately, direct application of this scheme fails, since
the disturbance introduced by the elimination of the high-lying

imp

J

0

γ0

1

γ1

2

γ2

3

. . .

FIG. 10. Representation of the Kondo model in the form of a
semi-infinite Wilson chain.

states turns out to be too large. Wilson found a method
of overcoming this difficulty. This reduces to the artificial
introduction of an exponential suppression of matrix elements
γn, which decreases the coupling between the retained and
eliminated states, thereby decreasing the influence of the
eliminated states. To this end, Wilson2 used a logarithmic
discretization of the conduction band, i.e., replacement in
Eq. (1) of an energy range εk ∈ [μ + ηD�−m,μ + ηD�−m+1]
(η = 1, − 1, m = 1,2,3,...) by a single level with an energy
ε̄ηm equal to the average energy of this interval (D is the
maximum of the distances between the chemical potential μ

and two conduction band edges, � > 1). This results in a
change of the density of states:

ρ(ε) →
∑
η,m

α2
ηmδ(ε − ε̄ηm), (A2)

where

α2
ηm = η

∫ μ+ηD�−m+1

μ+ηD�−m

ρ(ε)dε.

As a result, the jumps will have the required decay, γn ∝
�−n/2. For a flat band, Wilson obtained, analytically (μ = 0),

γn = D(1 + �−1)(1 − �−n−1)

2
√

1 − �−2n−1
√

1 − �−2n−3
�−n/2, εn = 0. (A3)

In more complicated situations, the construction of the Wilson
chain should be performed numerically. Usually (see, e.g.,
Ref. 40), this is performed in the spirit of the initial work,2

by numerically reproducing Wilson’s analytical flat-band
procedure for an arbitrary density of states. However, there
exists another way which yields equivalent results, but seems
to be more natural. To bring the matrix of Hamiltonian

Hσ =
∑
η,m

ε̄ηmc†ηm,σ cηm,σ (A4)

to the tridiagonal form, one can use the Lanczos tridiag-
onalization algorithm,41 which is adapted namely for this
problem. For the model Eq. (1), this method was described in
Ref. 4, where a Wilson chain for the nondiscretized semielliptic
density of states was also analytically constructed. We perform
this procedure numerically for an arbitrary logarithmically
discretized density of states. Starting from the vector |0〉 =
f

†
0σ |vac〉 (where f

†
0σ = ∑

η,m αηmc
†
ηm,σ ), we generate a new

basis |0〉,|1〉,|2〉... for the conduction electron states by the
Schmidt orthogonalization:

|1〉 = 1

γ0
(Hσ |0〉 − |0〉〈0|Hσ |0〉),

|2〉 = 1

γ1
(Hσ |1〉 − |1〉〈1|Hσ |1〉 − |0〉〈0|Hσ |1〉), (A5)

|n + 1〉 = 1

γn

(Hσ |n〉 − |n〉〈n|Hσ |n〉 − |n − 1〉〈n − 1|Hσ |n〉),

where each γn is chosen to normalize |n + 1〉. One can
see that 〈n′|Hσ |n〉 = 0 for n′ = 0,1,2...n − 2. This means
that Hσ is tridiagonal in the new basis. The off-diagonal
elements are 〈n + 1|Hσ |n〉 = γn. Defining εn ≡ 〈n|Hσ |n〉, we
consecutively obtain the coefficients γn and εn for Eq. (A1).
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2. Calculation of thermodynamical averages

In our calculations, we put � = 1.5 and store 1 × 104 states
per iteration.

Diagonalizing the Hamiltonian Eq. (A1) for a given chain
length N yields a set of eigenvalues. As indicated in Ref. 2,
because of retaining only part of the energy spectrum at the
N th step of the NRG procedure, thermodynamic averages
should be calculated at a temperature that depends on �,
TN = �−N/2T0, where the starting temperature T0 is chosen
more or less arbitrarily. However, it should be neither too large
(then contributions of eliminated high-energy states become
important), nor too small (then the discreteness of the energy
spectrum become appreciable).

The total entropy and specific heat read39

Stot = 〈H 〉tot/T + ln Ztot,
(A6)

Ctot = [〈H 2〉tot − 〈H 〉2
tot

]
/T 2,

where Z is partition function. Since the total spin commutes
with the Hamiltonian H , each eigenvalue is characterized by a
well-defined spin projection Sz,tot; therefore, the quantities like
〈S2

z 〉tot can be calculated straightforwardly. On differentiating
〈Sz〉tot with respect to the magnetic field, one obtains2

T χtot(T ) = 〈
S2

z

〉
tot − 〈Sz〉2

tot. (A7)

The quantities T χband(T ), Sband, and Cband are calculated in a
similar way, and the corresponding impurity contributions are
obtained by subtracting them from Eqs. (A6) and (A7).

Because of the finite length of the chain, the thermody-
namic quantities like TNχimp(TN ) and Cimp(TN ) demonstrate

even-odd oscillations depending on TN , which have nearly
constant amplitudes. Therefore, the amplitudes of the oscilla-
tions in χimp(T ) and Cimp(T )/T = γimp(T ) increase strongly
with lowering T .

To suppress the oscillations in χimp(T ), we used smoothing
according to Euler.42 For a certain oscillating sequence An

we introduce a new sequence A(1)
n whose members are equal

to averages of the adjacent members of the initial sequence:
A(1)

n = (An + An+1)/2. If necessary, the procedure is repeated:
A(2)

n = (A(1)
n + A

(1)
n+1)/2. In particular, this was performed in

the calculation of χimp. By designating χN ≡ χimp(TN ), we
obtain

χ (1)(
√

TNTN+1) = 1
2χN + 1

2χN+1,

χ (2)(TN ) = 1
4χN−1 + 1

2χN + 1
4χN+1, (A8)

χ (3)(
√

TNTN+1) = 1
8χN−1 + 3

8χN + 3
8χN+1 + 1

8χN+2.

A similar problem, which occurs calculating the slope of
specific heat γimp, is solved in the same way. The method
was tested for the flat-band case to obtain the values
R = 2.008,2.016 and w = 0.416,0.417 for J = −0.1, − 0.2,
respectively (cf. Table I). Our method differs from Ref. 2
by the fact that we calculate χimp and γimp directly rather
than by explicitly constructing an effective Hamiltonian near
the fixed point J = −∞. Although resulting in a slight
decrease of accuracy, such an approach can be applied
more widely, in particular to obtain a NFL behavior (see
Figs. 4–6).
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