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Many-body effects are known to play a crucial role in the electronic and optical properties of solids and
nanostructures. Nevertheless, the majority of theoretical and numerical approaches able to capture the influence
of Coulomb correlations are restricted to the linear response regime. In this work, we introduce an approach
based on a real-time solution of the electronic dynamics. The proposed approach reduces to the well-known
Bethe-Salpeter equation in the linear limit regime and it makes it possible, at the same time, to investigate
correlation effects in nonlinear phenomena. We show the flexibility and numerical stability of the proposed
approach by calculating the dielectric constants and the effect of a strong pulse excitation in bulk h-BN.
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I. INTRODUCTION

Real-time methods have proven their utility in calculating
optical properties of finite systems mainly within time-
dependent density functional theory (TDDFT).1,2 On the other
hand, extended systems have been mostly studied by using
many-body perturbation theory (MBPT) within the linear
response regime.3 The different treatment of correlation and
nonlinear effects marks the range of applicability of the
two approaches. The real-time TDDFT makes it possible
to investigate nonlinear effects such as second harmonic
generation4 or hyperpolarizabilities of molecular systems.2

However, the standard approaches used to approximate the
exchange-correlation functional of TDDFT treat correlation
effects only on a mean-field level. As a consequence, while
finite systems (such as molecules) are well described, in
the case of extended systems (such as periodic crystals and
nano-structures), the real-time TDDFT does not capture the
essential features of the optical absorption5 even qualitatively.

On the contrary, MBPT allows us to include correlation
effects using controllable and systematic approximations for
the self-energy �, that is, a one-particle operator nonlocal
in space and time. � can be evaluated within different
approximations, among which one of the most successful is
the so-called GW approximation.6 Since its first application
to semiconductors,7 the GW self-energy has been shown
to correctly reproduce quasiparticle energies and lifetimes
for a wide range of materials.6 Furthermore, by using the
static limit of the GW self-energy as scattering potential
of the Bethe-Salpeter equation (BSE),3 it is possible to cal-
culate response functions including electron-hole interaction
effects.

In recent years, the MBPT approach has been merged
with density functional theory (DFT) by using the Kohn-
Sham Hamiltonian as zeroth-order term in the perturbative
expansion of the interacting Green’s functions. This approach
is parameter free and completely ab initio,5 and in this
paper will be addressed as ab initio-MBPT (Ai-MBPT) to

mark the difference with the conventional MBPT. However,
the Ai-MBPT is a very cumbersome technique that, based
on a perturbative concept, increases its level of complexity
with the order of the expansion. As an example, this makes
the extension of this approach beyond the linear response
regime quite complex, although there have been recently some
applications of the Ai-MBPT in nonlinear optics.8,9

Another stringent restriction of the Ai-MBPT is that it can
not be applied when nonequilibrium phenomena take place: for
example, it can not be applied to study the light emission after
an ultrafast laser pulse excitation. A generalization of MBPT
to nonequilibrium situations has been proposed by Kadanoff
and Baym.10 In their seminal works, the authors derived a set
of equations for the real-time Green’s functions, the Kadanoff-
Baym equations (KBE’s), that provide the basic tools of the
nonequilibrium Green’s function theory and allow essential
advances in nonequilibrium statistical mechanics.10

Both the standard MBPT and nonequilibrium Green’s
function theory are based on the Green’s function concept. This
function describes the time propagation of a single-particle
excitation under the action of an external perturbation. In
the equilibrium MBPT, due to the time translation invari-
ance, the relevant variable used to calculate the Green’s
functions is the frequency ω. Instead, out of equilibrium,
in all non-steady-state situations, the time variables acquire
a special role and much more attention is devoted to the
their propagation properties. The time propagation avoids
the explosive dependence, beyond the linear response, of the
MBPT on high-order Green’s functions. Moreover, the KBE
are nonperturbative in the external field, therefore, weak and
strong fields can be treated on the same footing.

One of the first attempts to apply the KBE’s for inves-
tigating optical properties of semiconductors was presented
in the seminal paper of Schmitt-Rink and co-workers.11

Later, the KBE’s were applied to study quantum wells,12

laser excited semiconductors,13 and luminescence.14 However,
only recently it was possible to simulate the Kadanoff-Baym
dynamics in real time.15–18

245110-11098-0121/2011/84(24)/245110(9) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.245110
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In this work, we combine a simplified version of the
KBE’s with DFT in such a way as to obtain a parameter-free
theory that is able to reproduce and predict ultrafast and
nonlinear phenomena (Sec. II). This approach, that we will
address as time-dependent BSE, reduces to the standard
BSE for weak perturbations (Sec. II C) but, at the same
time, naturally describes optical excitations beyond the linear
regime. After discussing some relevant aspects of the practical
implementation of our approach (Sec. III), we exemplify how it
works in practice by calculating the optical absorption spectra
of h-BN and the time-dependent change in its electronic
population due to the perturbation by means of an ultrafast
and ultra-strong laser pulse (Sec. IV).

II. TIME-DEPENDENT BETHE-SALPETER EQUATION

We derive here an approach to solve the time evolution of an
electronic system with Hamiltonian coupled with an external
field,

Ĥ = ĥ + Ĥmb + Û , (1)

where U represents the electron-light interactions (see
Sec. III A for its specific form). As usually done in MBPT,
Ĥ is partitioned in an (effective) one-particle Hamiltonian ĥ

and a part containing the many-particle effects Ĥmb.
In our derivation, we take as a starting point the KBE’s that

we briefly introduce in Sec. II A (see, e.g., Ref. 19 for a system-
atic treatment). Then, in Sec. II B, we proceed in analogy with
the equilibrium Ai-MBPT: first, we define ĥ as the Hamiltonian
of the Kohn-Sham system, and second we introduce the same
approximations for the self-energy operator. As result, we
obtain an approach analogous to the successful GW + BSE
one, for the non-equilibrium case. Indeed, in Sec. II C, we
show that our approach, the time-dependent BSE, reduces to
the GW + BSE in the linear regime.

A. Kadanoff-Baym equations

Within the KBE’s, the time evolution of an electronic sys-
tem coupled with an external field is described by the equation
of motion for the nonequilibrium Green’s functions10,19,20

G
(
r,t ; r′t ′

)
. To keep the formulation as simple as possible,

and being interested only in long-wavelength perturbations,
we expand the generic G in the eigenstates {ϕn,k} of the ĥ

Hamiltonian for a fixed momentum point k:

[Gk (t1,t2)]n1n2
≡ Gn1n2,k(t1,t2)

=
∫

ϕ∗
n1k(r1)G (r1,t1; r2,t2) ϕn2k(r2)d3r1 d3r2. (2)

As the external field does not break the spatial invariance of
the system, k is conserved.

Within a second-quantization formulation of the many-
body problem, the equation of motion for the Green’s function
described by Eq. (2) is obtained from those for the creation
and destruction operators. However, the resulting equations of
motion for Gk are not closed: they depend on the equations
of the two-particle Green’s function, which in turns depends
on the three-particle Green’s function and so on. In order to
truncate this hierarchy of equations, one introduces the self-
energy operator �k(t1,t2), a nonlocal and frequency-dependent

one-particle operator that holds information of all higher-order
Green’s functions. A further complication arises with respect
to the equilibrium case because of the lack of time-translation
invariance in nonequilibrium phenomena, which implies that
�k(t1,t2) and Gk(t1,t2) depend explicitly on both t1,t2. Then,
one can define an advanced �a

k (Ga
k), a retarded �r

k (Gr
k), a

greater and a lesser �>
k ,�<

k (G>
k ,G<

k ) self-energy operators
(Green’s functions) depending on the ordering of t1,t2 on the
time axis. Finally, the following equation for the G<

k is obtained
(see, e.g., Chap. 2 of Ref. 19 for more details):

ih̄
∂

∂t1
G<

n1n2k(t1,t2)

= δ(t1 − t2)δn1n2 + hn1n1k(t1)G<
n1n2k(t1,t2)

+
∑
n3

Un1n3k(t1)G<
n3n2k(t1,t2)

+
∑
n3

∫
dt3

[
�r

n1n3k(t1,t3)G<
n3n2k(t3,t2)

+�<
n1n3k(t1,t3)Ga

n3n2k(t3,t2)
]
. (3)

This equation, together with the adjoint one for ih̄ ∂
∂t2

G<,
describes the evolution of the lesser Green’s function G<

k ,
which gives access to the electron distribution [G<

k (t,t)] and to
the average of any one-particle operator such as, for example,
the electron density [Eq. (10)], the polarization [Eq. (32)], and
the current. However, in general �r,�< and the Ga

k depend on
G>

k , so that, in addition to Eq. (3), the corresponding equation
for the G>

k has to be solved.
Then, in principle, to determine the nonequilibrium Green’s

function in presence of an external perturbation, one needs
to solve the system of coupled equations for G>

k ,G<
k ,

known as KBE’s. Indeed, this system has been implemented
within several approximations for the self-energy in model
systems,15,16 in the homogeneous electron gas,17 and in
atoms.18 The possibility of a direct propagation in time of
the KBE’s provided, in these systems, valuable insights on
the real-time dynamics of the electronic excitations, as their
lifetime and transient effects.15–18 Nevertheless, the enormous
computational load connected to the large number of degrees
of freedom de facto prevented the application of this method
to crystalline solids, large molecules, and nanostructures. In
the next section, we show a simplified approach, grounded on
the DFT that, while capturing most of the physical effects we
are interested in, makes calculation of “real-world” systems
feasible.

B. Kohn-Sham Hamiltonian and an approximation
for the self-energy

In analogy to Ai-MBPT for the equilibrium case, we choose
as ĥ in Eq. (1) the Kohn-Sham Hamiltonian21

ĥ = − h̄2

2m

∑
i

∇2
i + V̂eI + V̂ H [ρ̃] + V̂ xc[ρ̃], (4)

where V̂eI is the electron-ion interaction, V̂ H is the Hartree
potential, and V̂ xc the exchange-correlation potential. Within
DFT, the Kohn-Sham Hamiltonian corresponds to the in-
dependent particle system that reproduces the ground-state

245110-2



REAL-TIME APPROACH TO THE OPTICAL PROPERTIES . . . PHYSICAL REVIEW B 84, 245110 (2011)

electronic density ρ̃ of the full interacting system (ĥ + Ĥmb),
that is,

ρ̃ =
∑
nk

fnk|ϕ(r)|2, (5)

where fnk is the Kohn-Sham Fermi distribution.
Equation (3) can be greatly simplified by choosing a static

retarded approximation for the self-energy:

�r(t1,t2) = [
�COHSEX(t1) − Vxc

]
δ(t1 − t2), (6a)

�<(t1,t2) = 0, (6b)

where the usual choice is �COHSEX, the so-called Coulomb-
hole plus screened-exchange self-energy (COHSEX). In
Eq. (6a), we subtracted the correlation effects already ac-
counted by Kohn-Sham Hamiltonian ĥ.22 The COHSEX is
composed of two parts:

�SEX(r,r′,t) = iW (r,r′; G<)G<(r,r′,t), (7)

�COH(r,r′,t) = −W (r,r′; G<) 1
2δ(r − r′), (8)

where W (r,r′; G<) is the Coulomb interaction in the random-
phase approximation (RPA), and G<(r,r′,t) is the time-
diagonal lesser Green’s function G<(r,r′,t) = G<(r,r′,t,t).
These two terms are obtained as a static limit of the GW

self-energy (see Chap. 4 of Ref. 19 and Refs. 22 and 23).
With the approximation in Eqs. (6a) and (6b), Eq. (3)

does not depend anymore on G>. Moreover, since the
COHSEX self-energy is local in time, and depends only on
G<(r,r′,t), Eq. (3) can be combined with the adjoint one for
∂

∂t2
G<

n1n2k(t1,t2) in such a way to have a closed equation in
t = (t1 + t2)/2:

ih̄
∂

∂t
G<

n1,n2,k(t) = [
hk + Uk(t) + VH

k [ρ] − VH
k [ρ̃]

+ (
�COHSEX

k (t) − Vxc
k [ρ̃]

)
,G<

k (t)
]
n1,n2

, (9)

where ρ is the density obtained from the G< as

ρ(r,t) = i

h̄

∑
n1n2k

ϕn1k(r)ϕ∗
n2k(r)G<

n2n1k(t). (10)

After reducing to a single time, Eq. (9) is equivalent to
a density matrix approach with a potential local in time.
However, despite that the full real-time COHSEX dynamics
[Eq. (9)] is an appealing option considerably simplifying the
dynamics with respect to the KBE’s, it neglects the dynamical
dependence of the self-energy operator. This, in practice,
induces a consistent renormalization of the quasiparticle
charge7 in addition to an opposite enhancement of the optical
properties.24 In the COHSEX approximation, both effects are
neglected. At the level of response properties for most of the
extended systems, dynamical effects are either negligible or
very small (while recently it has been shown their importance
for finite systems, see Refs. 25 and 26) and, for practical
purposes, it has been shown that they partially cancel with
the quasiparticle renormalization factors.24

Therefore, we modify Eq. (9) in order to include only the
effect of the dynamical self-energy on the renormalization of
the quasiparticle energies, which is the most important effect.
Also in this case, our idea is to proceed in strict analogy with
Ai-MBPT and to derive a real-time equation that reproduces

the fruitful combination of the G0W0 approximation(for the
one-particle Green’s function) and of the BSE with a static
self-energy (for the two-particle Green’s function). Indeed the
G0W0 + BSE is the state-of-the-art approach to study optical
properties within the Ai-MBPT.5 To this purpose, Eq. (9) is
modified as

ih̄
∂

∂t
G<

n1n2k(t)

= [
hk + �hk + Uk + VH

k [ρ] − VH
k [ρ̃]

+�COHSEX
k [G<] − �COHSEX

k [G̃<],G<
k (t)

]
n1n2

, (11)

where G̃< is the solution for the unperturbed system (U = 0)
(Ref. 27):

G̃<
nn′k = ih̄fnkδnn′ . (12)

To obtain Eq. (11), we subtracted from Eq. (9) the static
quasiparticle correction of the system at equilibrium (U = 0),
�COHSEX

k [G̃<] − V xc[ρ̃], and added the scissor operator5

�h that applies the G0W0 correction to the Kohn-Sham
eigenvalues eKS

n1k:

[�hk]n1,n2 = (
e
G0W0
n1k − eKS

n1k

)
δn1,n2 . (13)

Equation (11) is the key result of this work. In practice,
it assumed that quasiparticle dynamical effects are freezed
to their value at equilibrium. On the other hand, the
�COHSEX

k [G<] − �COHSEX
k [G̃<] operator appearing in Eq. (11)

includes correlation effects induced by the external field, which
are responsible, for example, for the band-gap shrinking.28

In the following section, we show how in the linear response
limit, this approximation corresponds to the G0W0 + BSE,
which within AiMBPT is very successful for a wide range of
materials characterized by weak correlations (see, e.g., Refs. 5
and 6).

C. Linear response limit

When an external perturbation U (t) is switched on in
Eq. (11), it induces a variation of the Green’s function,
�G<

k (t) = G<
k (t) − G̃<

k . In turn, this variation induces a
change in the self-energy and in the Hartree potential. In the
case of a strong applied laser field, these changes depend on
all possible orders in the external field. However, for weak
fields, the linear term is dominant. In this regime, it is possible
to show analytically that Eq. (11) reduces to the G0W0 + BSE
approach.3,6 Proceeding similarly to Ref. 25, we consider the
retarded density-density correlation function

χ r(r,t ; r′,t ′) = −i[〈ρ(r,t)ρ(r′,t ′)〉
− 〈ρ(r,t)〉〈ρ(r′,t ′)〉]θ (t − t ′). (14)

χ r describes the linear response of the system (initially at
equilibrium) to a weak perturbation, represented in Eq. (1)
by U :

χ r(r,t ; r′,t ′) = 〈δρ(rt)〉
δU (r′t ′)

∣∣∣∣
U=0

. (15)
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We start by expanding χ r in terms of the Kohn-Sham orbitals

χ r(r,t ; r′,t ′; q) =
∑
i,j,k
l,m,k′

χ r
i,j,k
l,m,k′

(t,t ′; q)

×ϕi,k(r)ϕ∗
j,k+q(r)ϕ∗

l,k′(r′)ϕm,k′+q(r′), (16)

where q is the momentum, and we define the matrix elements
of χ r as,

χ r
ij,k
lm,k′

(t,t ′; q) =
∫∫

d3r d3r ′χ r(r,t ; r′,t ′; q) × ϕ∗
i,k(r)ϕ∗

m,k′

+ q(r′)ϕj,k+q(r)ϕl,k′(r′). (17)

Since we are interested only in the optical response, in what
follows we restrict ourselves to the case q = 0 and drop the
q dependence of χ r (for the extension to finite momentum
transfer, see Ref. 17). By inserting the expansion for χ

[Eq. (16)], ρ [Eq. (10)], and U (Umn,k ≡ 〈mk|U |nk〉) in
Eq. (15), we obtain the following relation linking the matrix
elements of χ r to the matrix elements of G<:

χ r
ij,k
lm,p

(t,t ′) = δ〈iG<
ji,k(t)〉

δUlm,p(t ′)

∣∣∣∣
U=0

. (18)

Then, we can obtain the equation of motion for the matrix
elements of χ r by taking the functional derivative of Eq. (11)
with respect to Ul,m,k (t):

−ih̄
∂

∂t
χ r

ij,k
lm,p

(t,t ′)

= δ

δUlm,p(t ′)
(
hk + �hk + Uk(t) + VH

k [ρ(t)]

− VH
k [ρ̃] + �k[G<(t)] − �k[G̃<],G<

k (t)
)

ji
. (19)

Making use of the definitions in Eqs. (13) and (12), together
with Eq. (18), it can be verified that the functional derivative
of the one-electron Hamiltonian and of the external field give
the contribution

δ

δUl,m,p(t ′)
[hk + �hk + Uk,G<

k (t)] ji

∣∣∣∣
U=0

= (
e
G0W0
jk − e

G0W0
ik

)
χ r

ji,k
lm,p

(t − t ′)

+i(fik − fjk)δjlδimδkpδ(t − t ′). (20)

Note that χ r is invariant with respect to time translations
(χ r depends only on t − t ′) since the functional derivative in
Eq. (20), as in the rest of the section, is evaluated at equilibrium
(U = 0), and the unperturbed Hamiltonian does not depend
on time. The term in Eq. (19) containing the Hartree potential,
which is not directly depending on the external perturbation,
is expanded with respect to Ul,m,k (t) by using the functional
derivative chain rule and the definition of χ r given by Eq. (18)
as

δV H
ij,k [ρ (t)] =

∑
n,n′,p
l,m,k′

∫∫
dt ′ dt ′′

δV H
ij,k [ρ (t)]

δG<
n′n,p (t ′)

×χ r
n,n′,p
lm,k′

(t ′,t ′′)δUlm,k′(t ′′). (21)

A similar equation can be obtained for �COHSEX
ij,k [G<(t)].

Equation (21) for the Hartree potential and its analogy for
the self-energy can be explicited by using

V H
mn,k(t) = −2i

∑
ij

G<
ji,k (t) v

q=0
mn,k
ij,k

, (22)

�COHSEX
mn,k (t) = i

∑
ij,q

G<
ji,(k−q) (t) W mk,i(k − q)

nk,j (k − q)

, (23)

where the matrix elements of vq=0 and W are labeled
accordingly to Eq. (17). In Eq. (22), vq=0 is the long-range
part of the bare Coulomb potential, responsible for the local
field effects in the BSE. Then, by inserting Eq. (22) in (21),
the functional derivative for the Hartree term is

δ

δUlm,p(t ′)
[
VH

k [ρ(t)] − VH
k [ρ̃],G<

k (t)
]

ji

∣∣
U=0

= (2i2)(fik − fjk)
∑
st

v
q=0
ji,k
st,k

χ r
st,k
lm,p

(t − t ′). (24)

Similarly, an analogous equation is obtained for the self-
energy (see also the Appendix)

δ

δUlm,p(t ′)
[
�k[G<(t)] − �k[G<(t)],G<

k (t)
]

ji

∣∣
U=0

= (−i2)(fik − fjk)
∑
st,q

W jk,s(k − q)
ik,t(k − q)

χ r
st,(k − q)

lm,p

(t − t ′),

(25)

where we neglected the part containing the functional deriva-
tive of the screened interaction with respect to the external
perturbation. This is a basic assumption of the standard
BSE that is introduced in order to neglect high-order vertex
corrections.3

Finally, we insert Eqs. (20), (24), and (25) in Eq. (19), and
by Fourier transforming with respect to (t − t ′), we obtain

[
h̄ω − (

ε
G0W0
jk − ε

G0W0
ik

)]
χ r

ij,k
lmp

(ω)

= i(fik − fjk)

[
δjlδimδk,p

+ i
∑
st,q

⎧⎨
⎩W jk,s(k − q)

ik,t(k − q)

− 2v
q=0
ji,k
st,k

⎫⎬
⎭ χ r

st,k − q
lm,p

(ω)

]
, (26)

formally equivalent to the standard BSE.

III. OPTICAL PROPERTIES FROM A TIME-DEPENDENT
APPROACH

A. Practical solution of the time-dependent BSE

To solve Eq. (11) for a given electronic system [Eq. (1)], we
start from ĥ, with its eigenvalues and eigenstates determined
from a previous DFT calculation, and from the corrections
�hk, determined, e.g., from a previous G0W0 calculation.
Then, we switch on the external perturbation U and integrate
the equations of motion using the same scheme as in Ref. 15
for the diagonal part of the G<, which is equivalent to a
second-order Runge-Kutta integration scheme. Specifically,
in Eq. (1), we choose to treat the interaction with the external
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electric field E within the direct coupling, or length gauge,

Û = −er̂ · E(t). (27)

Other choices are possible and indeed in the literature, the
electron-light interaction is often described within the minimal
coupling, or velocity gauge (p̂ · A), with A the vector potential.
As it has been pointed out in Ref. 29, the length and velocity
gauges lead to the same results only if a gauge transformation
is correctly applied. However, in this respect, the velocity
gauge presents two main drawbacks. First, the wave functions
and the boundary conditions have to be transformed by
a time-dependent gauge factor T (r,t) = exp{iA(t) · r̂} and,
accordingly, in the Green’s function formalism also the
self-energy and the dephasing term have to be transformed.
Second, within perturbation theory, the velocity gauge induces
divergent terms in the response function that in principle cancel
each other, but that in practice lead to artificial divergences
in the optical response1,30 due to numerical precision and
incomplete basis sets.

The interaction Hamiltonian U is evaluated in terms of
unperturbed Kohn-Sham eigenfunctions as

〈mk|U |nk〉 = −E(t)〈mk|r|nk〉 = −E(t) rmn,k, (28)

where the dipole matrix elements rmn,k, for m �= n are
calculated by using the commutation relation i[H,r] = p +
i[Vnl,r], where Vnl is the nonlocal part of the Hamiltonian
operator.31

Since we are interested in calculating the dielectric
properties at zero momentum, we choose to work with a
homogeneous electric field E(t), with no space dependence
except its direction,1 generated by a vector potential A(t)
constant in space,

E(t) = −1

c

dA(t)

dt
. (29)

Also in this case, other choices consistent with the periodic
boundary conditions would be possible as, for example, an
external potential with the cell periodicity,32 or an electric
field with a finite momentum17 q such that q = k − k′.

Instead, the particular form of E(t) as a function of time
is not specified a priori, but given as an input parameter of
the simulation. Indeed, the possibility of providing the form
of the external field as an input is one of the key strengths of
the real-time approach, potentially allowing us to use the same
implementation to simulate a broad range of phenomena and of
experimental techniques. For example, as described in Sec. IV,
in order to calculate the linear optical susceptibility spectrum
χ (ω), we will use a delta function E(t) = E0δ(t − t0) [obtained
from Eq. (29) with A(t) = A0�(t − t0), where t0 is the time
at which the external field is switched on] and �(t) is the
Heaviside step function. This electric field probes the system
at all frequencies with the same intensity. Also, in the other ex-
ample described in Sec. IV, we can use a quasimonochromatic
source E(t) = E0 sin ω0t exp [−δ2(t − t0)2/2] to selectively
excite the system at a given frequency ω0. Furthermore, two or
more electric fields can be used to simulate, e.g., pump-probe,
sum-of-frequency, or wave-mixing experiments.

The macroscopic quantity that is calculated at the end of the
real-time simulation is the induced polarization P(t), related
to the electric displacement D(r,t) and the electric field E(r,t)

by the so-called material equation

D(r,t) = ε0E(r,t) + P(r,t), (30)

which stems directly from the Maxwell equations. P(t) is
obtained from G< [Eq. (11)] by

P(t) = − 1

V

∑
n,m,k

rmn,kG
<
nm,k(t), (31)

and from this quantity we can obtain the optical properties of
the system under study.

For instance, within linear response, the electric displace-
ment D(r,t) is directly proportional, in frequency space,
to the electric field as D(ω) = ε̂(ω)ε0E(ω). Therefore, the
polarization can be expressed as

P(ω) = ε0[ε̂(ω) − Î )E(ω] (32)

and, accordingly, the optical susceptibility that describes the
linear response of the system to a perturbation is χ̂ (ω) =
ε̂(ω) − Î . Then, the optical susceptibility χ̂(ω) can be cal-
culated by Fourier transforming the macroscopic polarization
P(ω) [or alternatively the current density j(ω)], by means of
Eq. (32) as

χ̂(ω) = P(ω)

ε0E(ω)
. (33)

Note that by choosing a deltalike E(t), the Fourier transform
of P(t) provides directly the full spectrum of the optical
susceptibility χ̂ (ω).33 Beyond the linear regime, higher-order
response functions χ̂ (2),χ̂ (3), . . . can be obtained (to calculate,
e.g., the second- or third-harmonic generation) by using a
(quasi)monochromatic field as, e.g., in Ref. 4; nonperturba-
tive phenomena, such as high-harmonic generation, can be
analyzed instead from the power spectrum (|P (ω)|2).

To summarize, the schematic flow of a time-dependent BSE
simulation is shown in Fig. 1, as has been implemented in the
YAMBO code.34

FIG. 1. (Color online) Schematic flow of a time-dependent BSE
simulation. See Sec. III A for details.
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B. Dissipative effects

In an excited electronic system, dissipative effects are
present due to inelastic electron scattering and (quasi)elastic
scattering processes with other degrees of freedom, such as
defects or phonons. Both effects contribute to the relaxation
and decay of excited electronic population as well as of the
decay of phase coherence, that is, to a finite dephasing rate. Our
approach, Eq. (11), does not account for dissipative effects:
on the one hand, the COHSEX self-energy is real, so that
the excitations lifetimes are infinite; on the other hand, the
electronic systems are perfectly isolated [Eq. (1)], so that
there is no dephasing due to interaction with other degrees
of freedom.

In practical calculations, then we introduce a phenomeno-
logical damping to simulate dissipative effects. We imple-
mented two different approaches: an a posteriori treatment,
where at the end of the simulation (in the post-processing block
of Fig. 1), the polarization (and the electric field) are multiplied
by a decaying exponential function e−t/τ , where τ is an
empirical parameter. This parameter, which is compatible with
the simulation length, effectively simulates the dephasing and
introduces a Lorentzian broadening in the resulting absorption
spectrum. This is in the same spirit of the Lorentzian broad-
ening introduced in the linear response treatment to simulate
the experimental optical spectra, and has the advantage of
producing spectra with different broadening from the same

real-time simulation. Nevertheless, this approach is limited to
the linear response case.

In order to treat dissipative effects beyond the linear regime,
an imaginary term is added to the self-energy in the form of an
additional term �k

(
G<

k (t) − G̃<
k

)
appearing on the right-hand

side of Eq. (11), with

i [�k]n1,n2
= �

ph

n1k + �
ph

n2k + �
pop
n1kδn1,n2 , (34)

where �
pop
n1k and �

ph

n1k are, respectively, the lifetime of the
perturbed electronic population and the dephasing rate, and
are given as input parameters of the simulation.

IV. EXAMPLES

To illustrate and validate the time-dependent BSE approach
and our numerical implementation, we present two examples
on h-BN. This is a wide gap insulator, the optical properties
of which are strongly renormalized by excitonic effects and
for which all the parameters necessary in DFT, G0W0, and
response calculations35 are known from previous studies.36

In these examples, we used Eq. (11), with and without
including the self-energy term. We refer to the former
approximation as TD-BSE, and to the latter as TD-HARTREE.
Within equilibrium MBPT, these two approximations would
correspond to the BSE and RPA, and in fact they reduce to
BSE and RPA within the linear response limit (Sec. II C).
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FIG. 2. (Color online) h-BN: Comparison between the real-time approach and the standard RPA and BSE approaches based on the
equilibrium MBPT. (a), (c): Polarization P(t) generated by an electric field E(t) = Eoδ(t) within the TD-HARTREE [(a)] and TD-BSE [(c)]
approximations. (b), (d): The corresponding absorption spectra (red circles) are compared with the RPA [(b)] and with the BSE [(d)] results
(black line). The experimental absorption spectrum (gray shadow) is also shown as reference.
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FIG. 3. (Color online) h-BN: Percentage of valence electrons
pumped to the conduction bands (Nc) by a quasimonochromatic
pulse as a function of the fluence. The pulse is centered either at
5.65 eV (blue boxes) or 8.1 eV (green circles) calculated within
the TD-BSE (black line) and the td-HARTREE (red dashed line)
approximations. In either case, each point corresponds to a separate
simulation and the lines are drawn to help guide the eye. The inset
shows the absorption spectra within the TD-BSE (black line) and
TD-HARTREE (red dashed line) with the arrows pointing at the
pump frequencies.

In the first example (Fig. 2), we simulated h-BN interacting
with a weak deltalike laser field.37 As explained in Sec. III A, a
deltalike laser field probes all frequencies of the system and the
Fourier transform of the macroscopic polarizability provides
directly the susceptibility [Eq. (33)] and thus the dielectric
constant [Eq. (32)]. Since we use a weak field, we expect
negligible nonlinear effects. Then, accordingly with Sec. II C,
the results from TD-BSE and TD-HARTREE can be directly
compared with the BSE and RPA within the standard Ai-MBPT
approach. Indeed, in Figs. 2(b) and 2(d), the imaginary part
of the dielectric constant (optical absorption) obtained by
Fourier transform of the polarization in Figs. 2(a) and 2(c)
is indistinguishable from that obtained within equilibrium
Ai-MBPT, validating our numerical implementation.

In the second example (Figs. 3 and 4), we exploit the
potentiality of the TD-BSE approach by going beyond the
linear regime and using a strong quasimonochromatic laser
field (see Sec. III A). This field excites the system selectively
at one given frequency, moreover, it is strong enough to induce
changes in the electronic population of the system. To track
these changes, during the dynamics we followed the evolution
of Nc(%), that is, the percentage of valence electrons that are
pumped by the electric field in the conduction bands (in our
simulation, we have 16 valence electrons in the h-BN unit cell
since core electrons are accounted for using pseudopotentials).
The total number of valence electrons in the system is given
by the trace of G<, while Nc(t) = −i

∑
ck G<

cck(t), where c

labels the empty states in the unperturbed system.
We performed the simulations37 for fields intensities in the

range of 106–109 kW/cm2 and for two values of the field
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FIG. 4. (Color online) h-BN: Percentage as function of time of valence electrons pumped to the conduction bands (Nc) by a quasimonochro-
matic pulse with field stregnth of 1.94 × 109 V/m centered either at 5.65 eV (blue boxes) or 8.1 eV (green circles) and calculated either within
the TD-BSE [(a)] or the TD-HARTREE [(b)] approximations. The brown shadow represents the fluence as a function of time. The inset shows
the absorption spectra within the TD-BSE (black line) and TD-HARTREE (red dashed line) with the arrows pointing at the pump frequencies.
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frequency, 5.65 and 8.1 eV, that, depending on the level of
the theory, are either at resonance or off resonance with the
system characteristic frequencies. More precisely, within TD-
BSE, 5.65 eV corresponds to the strong excitonic feature in
the absorption spectrum, while at 8.1 eV, the absorption is
negligible; conversely, within RPA at 5.65 eV, the absorption
is negligible, while 8.1 eV corresponds to the strongest feature
in the spectrum (see inset of Figs. 3 and 4). The results of the
various simulations are summarized in Fig. 3, which shows
Nc(%) as a function of the fluence, i.e., the pulse energy per
unit area. For a comparison, the ablation threshold of h-BN
has been determined as 78 mJ/cm2 in the femtosecond laser
operational mode.38

Finally, Figs. 4(a) and 4(b) show the evolution of Nc(%)
during the simulation for a field strength of 1.94 × 109 V/m:
one can clearly observe the enhancement in the electronic-
population change due to resonance effects. The very different
picture that is obtained within the two different approximations
emphasizes the importance of accounting for excitonic effects
(also) in the strong-field regime.

V. SUMMARY

We presented an approach to the ab initio calculation of
optical properties in bulk materials and nanostructures that
uses a time-dependent extension of the BSE. The proposed
approach combines the flexibility of a real-time approach
with the strength of MBPT in capturing electron correlation.
It allows us to perform computationally feasible simulations
beyond the linear regime of, e.g., second- and third-harmonic
generation, four-wave mixing, Fourier spectroscopy, or
pump-probe experiments. Furthermore, being the approach
based on the nonequilibrium Green’s function theory, it is
possible to include effects such as lifetimes, electron-electron
scattering,25 and electron-phonon coupling39 in a systematic
way. Finally, we have applied the TD-BSE to the case of h-BN.
First, we have calculated the optical absorption and compared
it with the results from equilibrium Ai-MBPT, validating our
approach and numerical implementation. Then, we have shown
the potentialities of the TD-BSE approach beyond the linear
regime by calculating the change in the electronic population
due to the interaction with a strong quasimonochromatic laser
field.
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APPENDIX: AN EFFICIENT METHOD TO UPDATE THE
COHSEX SELF-ENERGY DURING THE TIME EVOLUTION

In this appendix, we show how we store and update the
�COHSEX self-energy in an efficient manner. First of all, we
neglect the variation of the screened interaction W (r,r′; G<(t))
with respect to the G<(r,r′,t) by setting to zero the functional
derivative ∂W/∂G (see Sec. II C). Within this approximation,
the �COH does not contribute to the time evolution, therefore,
only �SEX needs to be updated:

�SEX(r,r′,t) = iW (r,r′)
∑
n,n′ k

ϕn,k(r)ϕ∗
n′,k(r′)G<

n,n′,k(t). (A1)

The KBE involves the matrix elements
〈m,k|�SEX|m′,k〉:
�SEX

m,m′,k(t) =
∑

G,G′,q
n,n′

ρ
m,n

k,q

(G′)ρ∗
m′,n′
k,q

(G)WG,G′(q)G<
n,n′

k − q

(t),

(A2)

where

ρ
m,n

k,q

(G) =
∫

ϕ∗
m,k(r)ϕn,k−q(r)ei(G+q)r. (A3)

In order to rapidly update �SEX after a variation of G<(r,r′,t),
we store the matrix elements

M m,m′,n,n′
q,k

=
∑
G,G′

ρm,n(k,q,G′)ρ∗
m′,n′ (k,q,G)WG,G′ (q), (A4)

in such a way that �SEX
m,m′ can be rewritten as

�SEX
m,m′,k(t) =

∑
n,n′

q

M m,m′,n,n′
q,k

· G<
n,n′

k − q

(t). (A5)

The M matrix can be very large, but its size can be reduced
by noticing that (i) the matrix M is Hermitian with respect
to the (m,m′) indexes; (ii) the number of k and q points is
reduced by applying the operation symmetries that are left
unaltered by the applied external field; (iii) for converging
optical properties, only the bands close to the gap are needed
(see Sec. IV). As an additional numerical simplification, we
neglected all terms such that M m,m′,n,n′

q,k
/ max{M m,m′,n,n′

q,k
} <

Mc, where Mc is a cutoff that, if chosen to be Mc 	 5 × 10−3,
does not appreciably affect the final results. In principle, by
using an auxiliary localized basis set,40 one can obtain a further
reduction of the matrix dimensions, but in the present work we
did not explore this strategy.
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