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Role of the van Hove singularity in the quantum criticality of the Hubbard model
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A quantum critical point is found in the phase diagram of the two-dimensional Hubbard model [Vidhyadhiraja
et al., Phys. Rev. Lett. 102, 206407 (2009)]. It is due to the vanishing of the critical temperature associated
with a phase-separation transition, and it separates the non-Fermi-liquid region from the Fermi liquid. Near
the quantum critical point, the pairing is enhanced since the real part of the bare d-wave pairing susceptibility
exhibits an algebraic divergence with decreasing temperature, replacing the logarithmic divergence found in a
Fermi liquid [Yang et al., Phys. Rev. Lett. 106, 047004 (2011)]. In this paper, we explore the single-particle and
transport properties near the quantum critical point using high-quality estimates of the self-energy obtained by
direct analytic continuation of the self-energy from the continuous-time quantum Monte Carlo method. We focus
mainly on a van Hove singularity coming from the relatively flat dispersion that crosses the Fermi level near
the quantum critical filling. The flat part of the dispersion orthogonal to the antinodal direction remains pinned
near the Fermi level for a range of doping that increases when we include a negative next-near-neighbor hopping
t ′ in the model. For comparison, we calculate the bare d-wave pairing susceptibility for noninteracting models
with the usual two-dimensional tight-binding dispersion and a hypothetical quartic dispersion. We find that
neither model yields a van Hove singularity that completely describes the critical algebraic behavior of the bare
d-wave pairing susceptibility found in the numerical data. The resistivity, thermal conductivity, thermopower,
and the Wiedemann-Franz law are examined in the Fermi liquid, marginal Fermi liquid, and pseudogap doping
regions. A negative next-near-neighbor hopping t ′ increases the doping region with marginal Fermi liquid
character. Both T and negative t ′ are relevant variables for the quantum critical point, and both the transport
and the displacement of the van Hove singularity with filling suggest that they are qualitatively similar in their
effect.
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I. INTRODUCTION

A plausible scenario for the high-temperature supercon-
ductivity in cuprates is based on the presence of a van Hove
singularity corresponding to the saddle points in the single-
particle energy dispersion.1–4 These flat regions in the energy
dispersion are directly observed in angle-resolved photoemis-
sion spectroscopy (ARPES) experiments on various cuprate
compounds.5–9 Recently, the van Hove singularity was also
observed in the tunneling spectra of Bi-2201.10 The presence
of saddle points in the energy dispersion is also argued to lead
to a superconducting instability in other correlated systems,
e.g., graphene.11 If the Fermi level is doped to coincide with
the van Hove singularity, then the superconducting transition
temperature can be greatly enhanced.

The van Hove scenario is also argued12–14 to be responsible
for the marginal Fermi liquid behavior15 in which the lifetime
broadening of the quasiparticles is of the order of its energy.
Thus the van Hove scenario is argued to account for the
linear-T resistivity,13,14,16 T -independent thermopower,13 the
anomalous isotope effect,14 etc.

There is numerical evidence for the presence of van
Hove singularities in models of strongly correlated systems.
The energy dispersion of one hole in an antiferromagnetic
background has been considered in studies of the Hubbard
model17,18 and the t-J model.19 These studies report the
presence of extended saddle points. Assaad and Imada17 found

that the dispersion has a quartic dependence with momentum
near the antinodal point (π,0).

These examples of extended saddle points in various
correlated superconducting systems, and their proximity to
the Fermi level at the doping where the maximum transition
temperature occurs, demonstrate that it is extremely important
to understand the role played by these singularities. A plethora
of scientific efforts have been devoted toward achieving this
understanding.20–41 At the simplest level, the role of the
van Hove singularity may be interpreted within the BCS
formalism. Here, the superconducting transition temperature,
Tc, is determined by the condition V χ ′

0(ω = 0) = 1, where
χ ′

0 is the real part of the q = 0 bare pairing susceptibility
and V is the strength of the pairing interaction. In a BCS
superconductor, χ ′

0(ω = 0) displays a logarithmic divergence
as T → 0, yielding the BCS exponential form for Tc. The
van Hove singularity enhances the divergence of χ ′

0(ω = 0),
yielding higher transition temperatures.

There is also strong evidence for a quantum critical point
located beneath the superconducting dome in the cuprates,
and in close proximity to the doping with the maximum
Tc.42,43 Above the quantum critical point, in a range of
doping associated with marginal Fermi liquid behavior, the
in-plane resistivity is known to vary linearly with T over a
wide range of temperatures.44–50 In the Fermi liquid region,
the low-temperature resistivity varies as T 2. The resistivity
increases as the doping decreases from the Fermi liquid into

245107-11098-0121/2011/84(24)/245107(13) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.102.206407
http://dx.doi.org/10.1103/PhysRevLett.106.047004
http://dx.doi.org/10.1103/PhysRevB.84.245107


K.-S. CHEN et al. PHYSICAL REVIEW B 84, 245107 (2011)

the pseudogap region. Moreover, the thermal conductivity
κ ,51,52 the thermopower S,53,54 and the tunneling conductance
g55 have been investigated near the quantum critical point
of the cuprates. κ is observed to be nearly independent of
temperature in the marginal Fermi liquid state56 and depends
on 1/T in the Fermi liquid region. This is consistent with
the Wiedemann-Franz law,57 κρ ∝ T . Chakraborty et al.53

suggested that the thermopower changes sign abruptly near
the optimal doping in most of the cuprate materials, signaling
a state with particle-hole symmetry. Also in the marginal Fermi
liquid, the tunneling conductance g(V ) ∼ g0 + g1|V |, where
g0 and g1 depend weakly on T and V .

A recent study58 reported the presence of a quantum
critical point in the two-dimensional Hubbard model, where
the quasiparticle spectral weight becomes zero. This quantum
critical point separates the non-Fermi-liquid pseudogap from
the Fermi liquid region, and is surrounded by a supercon-
ducting dome (cf. the inset in Fig. 1). At finite temperatures,
the Fermi liquid and pseudogap regions are separated by the
marginal Fermi liquid. Interestingly, at the quantum critical
point, the density of states is found to be nearly particle-hole
symmetric at low frequencies with a sharp peak at ω = 0.
This filling is tantalizingly close to the optimal doping
where the superconducting transition temperature Tc attains
its maximum. The proximity of the superconducting dome to
the quantum critical point was recently investigated by Yang
et al.59 Unlike the BCS case, they found that the bare d-wave
pairing susceptibility χ ′

0d (ω = 0) diverges algebraically as
1√
T

at the quantum critical point, thus leading to a strongly
enhanced Tc. Using the Kramers-Krönig relation between
the real part and the imaginary part of the susceptibility,
χ ′

0d (T ) = 1
π

∫ χ ′′
0d (ω)
ω

dω, the algebraic divergence of χ ′
0d (T )

was found to come from a scaling behavior of the imaginary
part χ ′′

0d (ω). When T 3/2χ ′′
0d (ω)/ω is plotted against ω/T , the

different temperature curves fall on top of each other when
ω � Ts ≡ 4tT /J , determining a scaling function H (x) such
that T 3/2χ ′′

0d (ω)/ω = H (ω/T ) ≈ (ω/T )−3/2 (see Fig. 1). The
contribution from H to χ ′(T ) = T −3/2

π

∫
H (ω/T )dω ∝ T −1/2,

which will dominate at low T .
Since this enhanced behavior is expressed in the bare

pairing bubble, dressed by the self-energy but with no vertex
corrections, this discussion naturally raises the question of
the role played by the van Hove singularity in the quantum
criticality and its possible connection to the superconducting
Tc. In this paper, we use the dynamical cluster quantum
Monte Carlo method to explore the relationship between
the quantum critical point and the van Hove singularity for
high-temperature superconductivity in the Hubbard model.
We obtain high-quality estimates of the real-frequency single-
particle self-energy �(K ,ω) at the cluster momenta K by
direct analytic continuation of the Matsubara frequency self-
energy �(K ,iωn) using the maximum entropy method.60,61

This direct method avoids the artifacts on the self-energy
that come about by inverting the coarse-grained Dyson’s
equation.60 In the model without next-near-neighbor hopping
(t ′ = 0), we find that, as we dope the system across the
quantum critical filling, a flat region in the dispersion crosses
the Fermi level, accompanied by a sharp nearly symmetric
peak in the density of states that also passes through the Fermi
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FIG. 1. (Color online) Frequency dependence of the imaginary
part of the particle-particle d-wave susceptibility obtained from the
dynamical cluster approximation for various temperatures at the
critical filling n = 0.85 when U = 6t , t ′ = 0, and 4t = 1. The arrow
denotes the direction of decreasing temperature. All the curves fall
on top of each other for frequencies greater than Ts/T ≈ 4t/J .
The inset shows the phase diagram for the same parameters (t ,
t ′, and U ), including the Fermi liquid (FL), marginal Fermi liquid
(MFL), and pseudogap (PG) regions. The lines indicate the d-wave
transition temperature Tc (determined by extrapolation of data from
Nc = 8-, 12-, and 16-site clusters), the pseudogap temperature T ∗,
and the Fermi liquid temperature TF . (Taken from Yang et al.59) The
quasiparticle fraction on the Fermi surface vanishes at the quantum
critical point where T ∗ = TF = 0, and remains zero in the pseudogap
region.58

level. We find that the resistivity follows a linear-T dependence
over a wide range of temperatures yet a narrow range of
doping (see Fig. 14). We use these high-quality estimates
of the self-energy to calculate the bare pairing susceptibility;
we again find the collapse of the data found in Fig. 1. To
understand the role played by the van Hove singularity in
determining this critical behavior, we have calculated the
pairing susceptibility in the d channel for two noninteracting
models at half-filling—the standard quadratic dispersion and
a hypothetical quartic dispersion. While the quartic dispersion
can yield the observed algebraic divergence of χ ′

0d (ω = 0),
neither dispersion produces the collapse of the data found
in Fig. 1, suggesting that a van Hove singularity alone does
not capture this phenomenon. For negative t ′, the resistivity
follows a linear-T behavior over a wider range of doping, and
the sharp peak in the density of states and the flat region of the
dispersion linger near the Fermi level for the same wider range
of doping. These results suggest that the doping region affected
by quantum criticality at low temperature becomes larger when
t ′ < 0. We also show that the zero-frequency imaginary part of
the self-energy �′′(T ,ω = 0), the dominant contribution to the
resistivity, has a wider range of linear-T behavior for t ′ < 0
than t ′ = 0. All this motivates us to speculate a phase diagram
near the quantum critical point in the Discussion section.

This paper has been organized as follows. Section II briefly
outlines the model and methods used in this study. Results are
presented in Sec. III. Single-particle properties are discussed
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in Sec. III A, the pairing susceptibility calculation in Sec. III B,
the effect of t ′ on the dispersion in Sec. III C, and transport
results in Sec. III D. The broader implications of our results
are discussed in Sec. IV and the paper is concluded in Sec. V.

II. FORMALISM

In this work, we look for direct evidence of the van
Hove singularity and marginal Fermi liquid behavior in the
spectra, electronic dispersion, and transport properties of the
two-dimensional Hubbard model,

H =
∑
kσ

ε0
kc

†
kσ ckσ + U

∑
i

ni↑ni↓, (1)

where c
†
kσ (ckσ ) is the creation (annihilation) operator for

electrons with wave vector k and spin σ , niσ = c
†
iσ ciσ is the

number operator, and the bare dispersion is given by

ε0
k = −2t(cos kx + cos ky) − 4t ′(cos kx cos ky − 1) , (2)

with t and t ′ being the hopping amplitude between the nearest-
neighbor and the next-near-neighbor sites, respectively, and U

is the on-site Coulomb repulsion.
We employ the dynamical cluster approximation

(DCA)62,63 with a quantum Monte Carlo algorithm as the
cluster solver. The DCA is a cluster mean-field theory that
maps the original lattice onto a periodic cluster of size
Nc = L2

c embedded in a self-consistently determined host.
This many-to-one map is accomplished by dividing the lattice
Brillouin zone into cells centered at momenta K , and coarse
graining the lattice Green’s functions by summing over the
momenta labeled with k̃ within each cell,

Ḡ(K ,ω) = Nc

N

∑
k̃

G(K + k̃,ω), (3)

where Ḡ and G are the coarse-grained and lattice single-
particle propagators, respectively. The coarse-grained Green’s
function defines the cluster problem. Spatial correlations up
to a range Lc within the cluster are treated explicitly, while
those at longer length scales are described at the mean-field
level. However, the correlations in time, essential for quantum
criticality, are treated explicitly for all cluster sizes. To solve
the cluster problem, we use the continuous-time quantum
Monte Carlo method,64 which has no Trotter error,65 and the
Hirsch-Fye quantum Monte Carlo method66,67 for the charge
polarizability in Fig. 2. We employ the maximum entropy
method60 to calculate the real-frequency spectra.

A. Calculation of single-particle spectra

As in previous calculations of the single-particle spectra,
we analytically continue the quantum Monte Carlo Ḡ(K ,τ ) to
obtain Ḡ(K ,ω), and then invert the coarse-graining Eq. (3) to
obtain the self-energy �(K ,ω). This last step can introduce
spurious features in �(K ,ω). As observed previously,61 it is
better to analytically continue the self-energy directly. How-
ever, the self-energy spectra do not share the normalization
of

∫
dωĀ(K ,ω) = 1, where Ā(K ,ω) = − 1

π
Ḡ′′(K ,ω). This

normalization is a desirable feature since it allows us to
treat the spectrum as a normalized probability distribution.
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FIG. 2. (Color online) The local r = 0 imaginary part of the
dynamical charge polarizability divided by the initial slope at ω = 0
for n = 0.85, U = 6t , 4t = 1, t ′ = 0, and Nc = 16. It satisfies the
marginal Fermi liquid form given by Eq. (8). Inset: the zero-frequency
slope of χ ′′

c (r = 0,ω) is roughly linear in inverse temperature, as
expected. The line is a linear fit to the expression a + b/T .

Since the Hubbard self-energy �(K ,iωn) = �H + U 2χσ,σ /

iωn + · · ·, where χσ,σ = 〈nσ nσ 〉 − 〈nσ 〉2 = nσ (1 − nσ ) is the
local polarizability of a single spin species σ and �(K ,iωn) −
�H = − 1

π

∫
dω�′′(K ,ω)

iωn−ω
, it is easy to see that the integral of

�(K ,iωn) − �H is U 2χσ,σ . Therefore, we will analytically
continue

�(K ,iωn) − �H

U 2χσ,σ

=
∫

dω
σ (K ,ω)

iωn − ω
, (4)

where σ (K ,ω) = − 1
π
�′′(K ,ω)/U 2χσ,σ ,

∫
dω σ (K ,ω) = 1,

using χσ,σ calculated in the Monte Carlo process. After that,
we obtain the lattice self-energy �(k,ω) by interpolating the
cluster self-energy �(k,ω) to get the single-particle spectral
function A(k,ω).

B. d-wave pairing susceptibility

We calculate the susceptibility in the d-wave channel to the
pair field V = −fdb

†
d + H.c. for various models with a van

Hove singularity at the Fermi level. Here b
†
d = 1

2

∑
i(b

†
i+x̂ −

b
†
i+ŷ) is the singlet creation operator, where b

†
i+α̂ creates a

singlet at bond i-(i + α̂), α = x,y, and fd is a complex
constant. The noninteracting d-wave pairing susceptibility χ0d

can be computed by calculating the susceptibility bubble

χ0d (T ) = T
∑
k,iωn

g2
d (k)G0(k,iωn)G0(−k, − iωn), (5)

where gd (k) is the d-wave form factor given by gd (k) =
cos kx − cos ky . G0(k,iωn) is the noninteracting Green func-
tion given by

G0(k,iωn) = 1

iωn − ε0
k

, (6)
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with ε0
k the bare band dispersion in Eq. (2). χ0d can be evaluated

using the standard Matsubara summation, which gives

χ0d (T ) =
∑

k

g2
d (k)

(
1 − 2fk

2ε0
k

)
, (7)

where fk is the Fermi function.

C. Transport coefficients

To explain the anomalous transport properties of the
marginal Fermi liquid, Varma et al.15,68 postulated that for a
wide range of wave vectors q, excitations make a contribution
to the absorptive spin and charge polarizabilities reflected by

χ ′′(q,ω) ∝ min (|ω/T | ,1) sgn(ω). (8)

Electrons scattering from these excitations acquire a self-
energy

�(k,ω) ∝ ω ln (x/ωc) − iπx/2, (9)

where x = max(|ω|,T ), and ωc is a cutoff. The marginal Fermi
liquid ansatz has several consequences on experimentally
relevant quantities, including transport anomalies, such as
the linear-T electrical resistivity, the tunneling conductance
g(V ) ∼ g0 + g1|V |, the photoemission, the nuclear relaxation
rate T −1

1 ∼ aT + b, the optical conductivity σ (ω), the Raman
scattering, and the superconductive pairing. For the specific
heat Cv(T ) and thermal conductivity κ(T ), Varma argued that
the normal state’s electronic contribution is hard to extract from
the experimental data due to the large phonon contribution. The
electronic thermal conductivity for the marginal Fermi liquid
approximates to a constant because the Wiedemann-Franz law
roughly holds.

To calculate the various Onsager transport coefficients, we
use the Kubo formula:69

L
ij

αβ = π

∫
dω

(
− df

dω

)
ωi+j−2Dαβ(ω), (10)

where f is the Fermi function and

Dαβ(ω) = 1

N

∑
k

vα(k)vβ(k)A(k,ω)2, (11)

where vα(k) is the α-component of the electron group
velocity and A(k,ω) is the single-particle spectral function.
The different transport coefficients are given by combi-
nations of Lij . For example, in units where e = 1 and
the chemical potential μ = 0, the resistivity ρ(T ) = 1/L11,
the thermopower S = −L12/T L11, the thermal conductivity
κ = 1

T
[L22 − (L12)2/L11], and the Peltier coefficient  =

L21/L11.
We note that a simpler estimate exists for the thermopower

S. Here, we perform a Sommerfeld expansion of L12 at the
Fermi level and get an alternative form:

S = −π2

3
T

∂ log[Dαβ(ω)]

∂ω

∣∣∣∣
ω=0

. (12)

If the electron group velocity is a constant, and the square
of the single-particle spectra is approximated by δ(ω − εk)τk,
where τk is the relaxation time, also assumed constant, the

thermopower over temperature becomes just the derivative of
the logarithm of the density of states at the Fermi level.70

III. RESULTS

A. Single-particle properties for t ′ = 0

We first explore the charge polarizability in the marginal
Fermi liquid region at n = 0.85. The imaginary component of
the local charge polarizability χ ′′

c (r = 0,ω) is plotted in Fig. 2.
The main plot shows χ ′′

c (r = 0,ω) divided by its initial slope
at zero frequency (determined in the inset), so that the curves
coincide for low ω. At higher frequencies, the curves break
from this linear rise at a frequency roughly proportional to the
temperature. The inset shows that the zero-frequency slope,
χ ′′

c (r = 0,ω)/ω|ω=0, is roughly linear in inverse temperature
up to T ≈ 0.2 or roughly 2J = 8t2/U . These features are
consistent with the marginal Fermi liquid polarizability in
Eq. (8). The spin polarization (not shown) does not display
such an extended region of marginal Fermi liquid character.
This result is consistent with marginal Fermi liquid behavior
due to the proximity of a quantum critical point associated
with phase separation.

Figure 3 shows the frequency dependence of the imagi-
nary self-energy at the Fermi momenta along the antinodal
(X�) and the nodal (�M) directions for three fillings: n =
0.75 (Fermi liquid), n = 0.85 (marginal Fermi liquid), and
n = 0.95 (pseudogap). For the self-energy at n = 0.75, the
quadratic dashed line (bottom right panel) provides a good fit
to �′′(kF ,ω) for small ω, as expected from the Fermi liquid
theory.71 The marginal Fermi liquid self-energy has a form
given by Eq. (9), which states that the imaginary self-energy is
proportional to the negative temperature for small frequency
and to the negative ω when the temperature is low. The
marginal Fermi liquid self-energy in Fig. 3 (upper right panel)
shows a linear behavior, but interestingly with different slopes
for positive and negative ω. This is not consistent with Eq. (9),
but this may be due to the presence of some short-range
order. That is, Markiewicz et al.72 calculated the self-energy
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FIG. 3. (Color online) Frequency dependence of the imaginary
part of the self-energy at the Fermi momentum, �′′(kF ,ω), along
�M and X� for U = 6t , 4t = 1, t ′ = 0, Nc = 16, and β = 58. Right
panels show an enlarged view of the low-frequency region. Dashed
lines fit the data linearly for n = 0.85 and quadratically for n = 0.75.
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FIG. 4. (Color online) Temperature dependence of the imaginary
part of the self-energy �′′(kF ,ω = 0) at the Fermi energy and
momenta, U = 6t , 4t = 1, t ′ = 0, and Nc = 16. The linear dashed
lines fit the self-energies for n = 0.85 and 0.86 below T = 0.031.

due to the random-phase approximation (RPA) magnetic
polarizability for a single band model with dispersion obtained
by a fitting to the tight-binding local-density approximation.
They found that the self-energy has linear forms but with
different slopes on positive and negative ω when the van Hove
singularity is at the Fermi level and quadratic otherwise.

Figure 4 shows the temperature dependence of the self-
energy when ω = 0 and t ′ = 0. Again we find a result
consistent with Eq. (9), �′′(kF ,ω → 0) ∝ −T , around the
marginal Fermi liquid filling for n = 0.85 and 0.86. The
dashed lines are linear fits. The error bars are estimated by
changing the random seeds in the Monte Carlo calculation.
However, they do not reflect the systematic error that comes
from the bias toward the default model, which is the spectra
from the next higher temperature in this case. This error is
largest at low T , where the data are weak due to the minus
sign problem.

The self-energy and dynamic charge polarizability near
the critical filling nc = 0.85 are generally consistent with
Varma’s marginal Fermi liquid ansatz, as are the results
found previously for the kinetic and potential energies, which
vary with temperature like T 2 ln(T )73 and the vanishing
wave-function renormalization factor.58 To understand the
relationship of these results to the van Hove singularity, we will
explore the density of states and the quasiparticle dispersion.

The density of states for several fillings is shown in Fig. 5.
Since we have highly enhanced the quality of the self-energy
by direct analytic continuation of �(K,iωn), the density of
states in Fig. 5 shows sharper features as compared to the
results of Vidhyadhiraja et al.58 As the doping decreases from
the Fermi liquid to the pseudogap region, the peak of the
density of states moves from positive to negative energy while
its intensity is reduced. For n = 0.95, a pseudogap begins to
open and a peak begins to form at positive frequencies. The
half-filled case (n = 1, not shown) shows upper and lower
Hubbard bands located at positive and negative frequencies,
respectively. The density of states for filling 0.88, close to
the critical filling of 0.85, shows low-frequency particle-hole
symmetry.
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FIG. 5. (Color online) The single-particle density of states for
t ′ = 0, U = 6t , 4t = 1, Nc = 16, and β = 58. The density of states
shows low-energy particle-hole symmetry at the filling of n = 0.88.

Figure 6 shows the dispersion obtained from the peaks of the
spectral function A(k,ω) for four fillings: n = 0.85, 0.87, 0.88,
and 0.95, along the antinodal direction and around the Fermi
vector kF . In order to define kF , we look for the maximum
value of the zero-frequency spectral function A(k,ω = 0).
In the Fermi liquid and marginal Fermi liquid regions, this
definition is roughly equivalent to the Luttinger surface defined
where G′(k,ω = 0) changes sign. The two definitions yield
different results for the pseudogap region, especially when t ′ <

0, which enhances the pseudogap. However, this difference
is not large enough to qualitatively change our results or
to change any of our conclusions. Therefore, for simplicity,
we only show results using the first definition of kF . For a
particular filling, the left panel shows the dispersion along
the kx direction (ky = 0), while the right panel shows the
dispersion along ky (kx = kFx). A common identifiable feature
for all fillings is the presence of a flat region in the dispersion.
This flat region is responsible for the van Hove singularity in
the density of states. The van Hove singularity passes through
the Fermi level at a filling of n ≈ 0.88, which is near the
quantum critical filling, n ≈ 0.85, where the quasiparticle
weight Z goes to zero.58 At this filling, the topology of
the Fermi surface also changes from holelike [closed around
the point k = (π,π )] to electronlike [closed around k = (0,0)]
with increasing filling (not shown), as seen in experiments.74

The dispersion along the ky direction remains pinned near
the Fermi level for a range of doping near the center of
the superconducting dome, while the dispersion along the kx

direction passes continuously through the Fermi level. This
anisotropic motion of the flat dispersion is consistent with a
van Hove peak that moves continuously through the Fermi
level, as shown in Fig. 5, and would correspond to a flat region
at the Fermi level that is most isotropic at the crossing and
shrinks to narrow pencil-like regions for fillings above and
below the crossing.

The dispersion along the antinodal direction as a function
of kx for various fillings is displayed in Fig. 7. Interestingly,
a quadratic form fits well to the data for all fillings. Next, we
investigate whether such a dispersion can capture the critical
algebraic divergence of the pairing susceptibility.
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FIG. 6. (Color online) Energy dispersion obtained from the peaks of the spectral function A(k,ω) for various fillings around the Fermi
vector kF along the antinodal direction for t ′ = 0, U = 6t , 4t = 1, Nc = 16, and β = 58. By fixing ky = 0, we explore the dispersion along
the kx direction, and for kx = kFx the dispersion along the ky direction is plotted. Notice that the energy axes are inverted so that positive
energies are plotted down. The dispersion along the ky direction remains pinned near the Fermi level for a range of doping near the center of
the superconducting dome (cf. the inset of Fig. 1).

B. Pairing susceptibility

The density of states and the dispersion show clear evidence
for a van Hove singularity that crosses the Fermi level near the
critical filling. In order to see whether the van Hove singularity
alone is sufficient to explain the enhanced bare pairing bubble,
we calculate the pairing susceptibility in the d-wave channel
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FIG. 7. (Color online) Single-particle dispersion around the
Fermi energy taken along the antinodal direction (ky = 0). The data
is from Fig. 6. The solid lines are fits to a quadratic dispersion.

for two simple models having a van Hove singularity at the
Fermi level. We begin with the tight-binding model given by
Eq. (2) at half-filling and t ′ = 0. The associated density of
states has a logarithmic singularity at ε = 0, N (ε) = log |ε|.
The temperature dependence of χ ′

0d can be obtained by
converting Eq. (7) to an integral over energy with a temperature
T cutoff. It results in a −(log T )2 behavior. This is confirmed
by explicit calculation of the sum in Eq. (7), as illustrated in
Fig. 8. As shown in the inset, the imaginary part does not show
scaling behavior as seen in Fig. 1.

We also consider the next higher order model allowed by
the symmetry of the square lattice, a hypothetical model with
a quartic dispersion,

εk = − 4

π4

[
(|kx | − π )4 − k4

y

]
. (13)

Such an extended form has been observed in experiments6

and also confirmed by theoretical studies.18 The low-energy
density of states for the quartic dispersion becomes N (ε) ∼
1/

√|ε|.27 Following a similar logic to that used for the tight-
binding dispersion, for a quartic dispersion we get χ ′

0d ∼ 1√
T

.
Results for the explicit calculation [Eq. (7)] are shown

in Fig. 9, and are consistent with the analytical arguments
above. Though the temperature dependence of the real part
of the bare susceptibility is found to be algebraic for this
quartic dispersion, the inset reveals that the imaginary pairing
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FIG. 8. (Color online) Temperature dependence of the real part
of the particle-particle d-wave susceptibility at ω = 0 for the two-
dimensional tight-binding dispersion at half-filling. Note that χ ′

0d

diverges logarithmically as T → 0. Inset: Frequency dependence of
the imaginary part of the particle-particle d-wave susceptibility. Note
that the curves corresponding to various temperatures do not scale
at large frequency. The arrow denotes the direction of decreasing
temperature.

susceptibility does not exhibit the scaling found by Yang
et al.59 Thus, the simple noninteracting picture of the van
Hove singularity at the Fermi level does not completely
describe the true temperature and frequency dependence of
the susceptibility.

C. Effect of negative t ′

The single-band Hamiltonian used to model the hole-doped
cuprates generally includes a negative next-near-neighbor
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FIG. 9. (Color online) Temperature dependence of the real part
of the particle-particle d-wave susceptibility at ω = 0 for the
quartic dispersion of Eq. (13) at half-filling. Note that χ ′

0d diverges
algebraically ∼ 1/

√
T as T → 0. A fit to a + b/xc gives values of

a = −10.6, b = 1.98, and c = 0.54. Inset: Frequency dependence
of the imaginary part of the pairing d-wave susceptibility. Note that
the curves corresponding to various temperatures do not scale well
at large frequency. The arrow denotes the direction of decreasing
temperature.
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FIG. 10. (Color online) Temperature dependence of the imag-
inary part of the self-energy �′′(kF ,ω = 0) at the Fermi energy
and momenta, U = 6t , Nc = 16, 4t = 1, and t ′/t = −0.1. The
self-energy for fillings between n = 0.83 and 0.87 shows a linear-T
behavior.

hopping t ′. For t ′ = −0.1t , the temperature dependence of
the self-energy at the Fermi momenta and energy is shown in
Fig. 10. We find that �′′(kF ,ω = 0) follows a linear behavior
over a wider range of fillings, from n = 0.83 to 0.87.

Figure 11 demonstrates that the inclusion of a negative t ′
also results in the pinning of the flat part of the ky dispersion
to the Fermi level. However, now the pinning is observed for
a larger range of fillings, roughly 0.80 to 0.86. Thus both
measurements, the temperature dependence of the self-energy
and the pinning of the flat dispersion to the Fermi level, are
consistent. If we take the viewpoint that the quantum critical
point and the pinning of the dispersion along ky to the Fermi
level are concomitant aspects of quantum criticality, then a
negative t ′ leads to a larger range of quantum critical fillings.
We will also see the signature of this behavior in various
transport properties discussed in Sec. III D.

Figure 12 shows the density of states for t ′/t = −0.1 and
various fillings as a function of ω. For a given filling, the inset
of Fig. 12 shows that the peak in the density of states is slightly
shifted to smaller frequencies when compared with the peak
in the density of states for t ′ = 0. It displays particle-hole
symmetry roughly at n = 0.84, not n = 0.88 as for t ′ = 0.
Moreover, if we use �ωp/�n, where ωp is the location of a
peak in the density of states and n is the filling, to estimate
the rate at which the peak crosses the Fermi level, we find that
the peak of the density of states for t ′ = 0 crosses the Fermi
level more quickly than the peak for negative t ′. This can be
seen in the inset of Fig. 12, where the filling dependence of
the peak location has a steeper slope for t ′ = 0 than that for
t ′/t = −0.1 at the Fermi level. This confirms that negative t ′
leads to a wider range of fillings with a van Hove peak near
the Fermi level. The fact that this range of fillings coincides
with the region where marginal Fermi liquid behavior is seen
in the self-energy suggests that the van Hove singularity and
quantum criticality are related.

Another interesting point to be noted here is that, when com-
pared to the t ′ = 0 result, the quasiparticle peaks become more
incoherent for negative t ′. This can be seen in the Matsubara
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FIG. 11. (Color online) Energy dispersion obtained from the peaks of the spectral function A(k,ω) for various fillings around the Fermi
vector kF along the antinodal direction for t ′/t = −0.1, U = 6t , 4t = 1, Nc = 16, and β = 48. The dispersion along the ky direction remains
pinned near the Fermi level for a broader range of dopings than found when t ′ = 0. Again, the dispersion along the kx direction moves
continuously across the Fermi level.

quasiparticle weight along the antinodal momentum direction,
ZAN,58 displayed in Fig. 13 as a function of temperature for
different fillings. The quasiparticle fraction is consistently
smaller for t ′/t = −0.1 than for t ′ = 0 for all fillings. This
can also be seen through the increase of the blue color in the
dispersion curves in Fig. 11 when compared with Fig. 6.
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FIG. 12. (Color online) Single-particle density of states for t ′/t =
−0.1 when U = 6t , Nc = 16, 4t = 1, and β = 48. Inset: Comparison
of the filling dependence of the position of the peak of the density of
states (ωp) for t ′ = 0 and t ′/t = −0.1. As the filling changes, ωp for
t ′ = 0 crosses the Fermi level more quickly than for t ′/t = −0.1.

D. Transport properties

Matrix element effects75,76 and the low precision of inverse
photoemission can complicate the direct measurement of the
flat dispersion resulting in the van Hove singularity, making
indirect probes like the Fermi surface topology74,77 and
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ara fraction along the antinodal direction, ZAN, for various fillings
for t ′ = 0 and t ′/t = −0.1. At the same filling and temperature, the
Matsubara fraction decreases when t ′ < 0.
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transport measurements more important. The van Hove
singularity and the quantum critical point will also impact the
transport properties of the system. Using the Kubo formula un-
der the relaxation-time approximation in Eqs. (10) and (11), we
obtain the resistivity, thermal conductivity, and thermopower
in the Fermi liquid, marginal Fermi liquid, and pseudogap
regions.

Figure 14 shows the resistivity as a function of temperature
for t ′ = 0, left panel, and t ′/t = −0.1, right panel. Linear re-
sistivity reveals evidence of the marginal Fermi liquid because
the electronic cross section is proportional to −�′′(kF ,ω = 0)
at low T , and, as seen in Figs. 4 and 10, this self-energy
is linear in T . Again, for t ′ = 0, a narrow range of fillings,
from n = 0.85 to 0.86, displays a linear-T resistivity at low
T , while for t ′/t = −0.1, a larger range of filling, n = 0.83
to 0.87, exhibits a linear temperature dependence. The linear
resistivity in the marginal Fermi liquid region is consistent with
experiments.44–47 For n = 0.75, both t ′ = 0 and t ′/t = −0.1
show Fermi liquid character, with a resistivity that goes to
zero quadratically when T approaches zero. The fact that the
doping region with marginal Fermi liquid character increases
with negative t ′ has consequences for the phase diagram near
the quantum critical point, which we will discuss in Sec. IV.

According to the Wiedemann-Franz law, κ/(σT ) = π2/3
(kB = e = 1), the thermal conductivity of a Fermi liquid is
inversely proportional to T .57 Figure 15 shows that κ ∝ 1/T

for n = 0.75 when t ′/t = 0 and −0.1, but depends weakly on
T for the marginal Fermi liquid and the pseudogap regions.
The inset shows that, for n = 0.75, the Wiedemann-Franz ratio
κ/(σT ) approaches a constant that is less than π2/3 when T �
0.08. Dahm et al.78 investigated the two-dimensional Hubbard
model for n � 0.9 and also found a smaller Wiedemann-Franz
ratio. However, we find that the Wiedemann-Franz ratio is
larger than π2/3 for the marginal Fermi liquid (n = 0.85) and
pseudogap (n = 0.95) regions. We also see that the thermal
conductivity becomes very small as T → 0 for n = 0.95 and
saturates to a constant for n = 0.85. So, when studying κ ,
the marginal Fermi liquid seems to separate the Fermi liquid
from the pseudogap region. The dashed curves in Fig. 15 for

t ′/t = −0.1 data are always below the solid curves for t ′ = 0
when plotting κ . However, the t ′/t = −0.1 data are above the
t ′ = 0 results when we focus on the ratio κ/σT . This implies
that negative t ′ reduces the electrical conductivity more than
the thermal conductivity.

Chakraborty et al.53 argue that the thermopower changes
sign near the quantum critical point, and that this is related
to the development of a state with particle-hole symmetry.
Figure 16 shows the thermopower S as a function of filling.
For t ′ = 0 and β = 58, the filling at which S changes sign
is roughly 0.80. We expect that the zero crossing of the ther-
mopower will approach the critical filling of 0.85 for decreas-
ing T . However, this is different from the filling, n = 0.88, at
which the density of states displays particle-hole symmetry.

We find that due to the k dependence of the relaxation
time and the electron group velocity, the filling at which
the thermopower crosses zero does not occur at the filling
where the density of states shows a particle-hole symmetry
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fillings when t ′ = 0, β = 58]. The slope of logDxx(ω) at ω = 0 is
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at low energies. In Fermi liquid theory,70 if we assume
constant relaxation time and group velocity, the thermopower
is proportional to the derivative of the logarithm of the density
of states at the Fermi level. This would suggest a thermopower
that changes sign as the van Hove singularity crosses the
Fermi level. However, in this approach, A(k,ω)2 in Eq. (11) is
approximated by δ(ω − εk)τ , where τ = τk is a k-independent
relaxation time. In addition, the electron group velocity we use
in our calculation also has a k dependence:

vx(k) = ∂ε0
k

∂kx

= 2t sin kx + 4t ′ sin kx cos ky. (14)

If we compare the quantity Dxx(ω) (the inset of Fig. 16) and
the density of states (Fig. 5) for different fillings and the same
t ′ = 0, we find that the effect of vx(k)2 is to pull the peak of the
density of states to the left, because the sin kx term suppresses
the contribution of the van Hove singularity at X(π,0) and
enhances the contribution from the states below the Fermi
level. As a result, the thermopower changes sign continuously
and at a filling where the quantity D(ω) has a zero slope at
the Fermi level, around n = 0.85. As noted by Chakraborty
et al.,53 this filling is different from the one where the density
of states displays particle-hole symmetry, n = 0.88 for t ′ = 0.
The impact of the van Hove singularity on the thermopower
and other transport coefficients is diminished by the fact that
the van Hove singularity comes predominantly from a region
in k space where the group velocity goes through zero.

IV. DISCUSSION

The results presented here have implications for both the
quantum critical phase diagram and the proximity of the
superconducting dome to the quantum critical point.

The close proximity of the quantum critical filling and the
filling where the van Hove singularity crosses the Fermi level
suggests that the two are related or even concomitant. Near
the quantum critical point, we find that the flat part of the
dispersion orthogonal to the antinodal direction is pinned to the

Fermi level, but not the dispersion along that direction (Fig. 6).
We also find that the low-energy density of states exhibits
particle-hole symmetry (Fig. 5). The linear-T resistivity and
self-energy, characteristic of a marginal Fermi liquid, are
observed for the same fillings where this pinning is observed.
Within the dynamical mean-field approximation (DMFA),16 it
is known that if the van Hove singularity is pinned to the Fermi
level for the noninteracting case, it remains pinned even for
the interacting case due to the momentum-independent nature
of the self-energy. In addition, a van Hove singularity initially
away from the Fermi level will tend to move toward the Fermi
level due to the narrowing of the coherent component of the
band resulting from electronic correlations. In the simplest
Fermi liquid picture, the coherent part of the single-particle
Green function G(k,ω) = Z(k)/[ω + i0+ − Z(k)ε(k)]. So,
if Z(k) becomes small for some values of k, then we
would expect to see a flattening of the observed quasiparticle
dispersion, Z(k)ε(k), accompanied by a shift of the peak
toward the Fermi level with a vanishing weight. The new
result of our work is that the nonlocal correlations included
in the DCA, but absent in the DMFA, are able to move the
van Hove singularity, with finite weight, to and even across
the Fermi level. This cannot be due solely to the narrowing of
the coherent part of the band, since the van Hove singularity
crosses the Fermi level where the quasiparticle fraction Z is
already zero.

In addition, a noninteracting picture of the van Hove
singularity cannot completely describe the superconducting
transition in the vicinity of the critical filling. In a BCS
superconductor, the transition is driven by a logarithmic
divergence of the bare pairing bubble as the temperature falls.
In a recent work,59 the bare d-wave pairing susceptibility χ ′

0d

of the 2D Hubbard model was found to diverge algebraically as
1√
T

at the quantum critical filling, instead of logarithmically,
giving rise to a higher Tc. In the simulation, we traced the
origin of this algebraic behavior to a component of the dynamic
bare bubble, which scaled as χ ′′

0d (ω)/ω = T −3/2H (ω/T ) (see
Fig. 1). A van Hove singularity is known to enhance the
divergence of the bare pairing bubble. Since the bare d-wave
pairing susceptibility is dressed only by the self-energy, with
no vertex corrections, a van Hove singularity seems to be the
most likely explanation of its enhanced divergence. However,
we found that a simple noninteracting picture with a van Hove
singularity at the Fermi level does not completely explain the
observed phenomena. The standard quadratic dispersion gives
a logarithmic divergence of χ ′

0d for the half-filled model. A
hypothetical quartic dispersion yields the observed algebraic
divergence for χ ′

0d , but does not give the correct scaling for the
imaginary part of the bare susceptibility found in Yang et al.59

The latter is a consequence of the proximity to a quantum
critical point, but not necessarily part of the van Hove scenario.

Our results also shed additional light on the quantum
critical phase diagram. We found previously79,80 that when
t ′ > 0, there is a first-order phase separation transition with
a first-order line of coexistence in the μ-T phase diagram,
as shown in Fig. 17. In analogy with liquid-gas mixtures, we
identify the two phases as a Mott liquid, which is insulating and
incompressible with well-formed local moments and short-
ranged order, and a Mott gas, which is a weakly compressible
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FIG. 17. (Color online) Schematic chemical potential-
temperature (μ-T ) phase diagram for three values of t ′: (from left
to right) t ′ > 0, t ′ = 0, t ′ < 0 scenario presented in this paper and
a t ′ < 0 scenario based on a Lifshitz transition. CC (QC) indicates
the classical (quantum) critical region. ML (MG) indicates the Mott
liquid (gas) region. T ∗ is the crossover temperature between the
Mott liquid and the critical region, TFL separates the Mott gas from
the critical region. Note that here we have ignored other phases to
focus attention on the quantum critical region.

metallic Fermi liquid. The two phases have the same symmetry,
so the first-order line of coexistence terminates at a second-
order point where the charge susceptibility diverges. In analogy
to other liquid-gas mixtures, there is a fan-shaped region
dominated by fluctuations for temperatures above the critical
point with neither liquid nor gas character. When t ′ → 0,
the critical point goes continuously to zero temperature and
thus becomes a quantum critical point.80 Above the quantum
critical point, the marginal Fermi liquid region is found to exist
in the V-shaped quantum critical region. Inside this region, the
only scale is the temperature [like Eqs. (8) and (9)]. T ∗ is
the temperature separating the marginal Fermi liquid from the
pseudogap region. T ∗ does not separate the quantum critical
region from a region of hidden order. Rather, in our scenario,
it is only the boundary of the quantum critical region. As we
cross from the quantum critical region to the Mott liquid, the
character of the Mott liquid becomes apparent, including a
pseudogap.

Here we consider the effect of a negative next-near-
neighbor hopping t ′ on the single-particle dispersion. We find
that for t ′/t = −0.1, the flat part of the dispersion orthogonal
to the antinode remains in close proximity to the Fermi level for
a larger range of fillings (0.83 � n � 0.87) when compared
with the t ′ = 0 result. We find that the resistivity displays
a linear-T dependence, and the self-energy displays MFL
characteristics in the same range of doping. We also note that
the single-particle spectrum is less coherent in the center of
this doping region than it is at the quantum critical filling when
t ′ = 0. These observations are consistent with an increase in
the doping region of marginal Fermi liquid character when
t ′/t < 0.

There are several different scenarios that may explain
this behavior. Since the doping region where the van Hove
singularity is near the Fermi level increases with decreasing
t ′/t , perhaps the simplest understanding of this behavior is that
the van Hove singularity pinning gives rise to the marginal
Fermi liquid behavior.12–14 Another possibility is that both
T and negative t ′ are relevant variables, or variables that,
when finite, move the system away from a critical point.
In addition, they are roughly similar in their effect, in that
when t ′ = T = 0, the doping region of marginal Fermi liquid
character shrinks to a point, but the region increases with
either increasing T or decreasing t ′. Thus when t ′ < 0, the
quantum critical point may be viewed as moving to negative

temperatures so that the quantum critical region broadens to
allow the linear-T resistivity and the pinning of the flat ky

dispersion to the Fermi level to exist for a wider range of
fillings (compare, e.g., the third panel of Fig. 17 and the inset
of Fig. 1). However, this interpretation is not consistent with
scaling theory, where we expect a finite low-temperature scale
like TF or T ∗ to emerge for any set of parameters that take us
away from the quantum critical point. Another possibility is
that the change in Fermi surface topology associated with the
van Hove singularity crossing the Fermi level can introduce
Lifshitz singularities in the free energy.81–87 This scenario will
mean a line of zero-temperature critical points in the t ′-μ plane
beyond the quantum critical point as the control parameter t ′
is decreased from zero to negative values in the t ′-μ plane. For
positive t ′, the Lifshitz transition may yield a line of first-order
critical points in t ′-μ plane that terminates at the quantum
critical point for t ′ = 0. To understand our results, the line of
Lifshitz transitions for negative values of t ′/t must yield an
associated V-shaped region of quantum criticality that becomes
flatter as t ′ decreases, as shown on the right in Fig. 17. Finally,
another mechanism enhanced by the van Hove singularity is
the Pomeranchuk instability88,89 of the Fermi surface, where
the Fermi surface is distorted to break the C4 symmetry of the
square lattice. The possibility of Lifshitz and Pomeranchuk
transitions is being studied currently and will be published
elsewhere.

There is some experimental evidence74 in the cuprates that
there is a change in Fermi surface topology and an associated
Fermi level crossing of the van Hove singularity at a doping
that is larger than the doping at which Tc is maximum, while
still being within the dome. On the other hand, we find that
the van Hove singularity crosses the Fermi level at a slightly
smaller doping than the optimal doping. This disagreement
can be due to the other effects present in the real systems, e.g.,
phonons that are not incorporated in this model calculation,
or the strong doping dependence of the strength of the pairing
interaction59 seen in the simulations.

The transport provides some additional evidence for the van
Hove singularity. In our calculations, the low-energy particle-
hole symmetry and the change in sign of the thermopower with
doping near the critical value are both due to the crossing of the
van Hove singularity. However, the doping associated with the
van Hove crossing differs from that where the thermopower is
zero due to the anisotropy of the group velocity on the Fermi
surface.

V. CONCLUSION

We explore the role of the van Hove singularity in the
quantum criticality observed at finite doping in the Hubbard
model.58 Near the quantum critical filling, we find a van
Hove singularity due to a flattening of the dispersion near
the Fermi level. The motion of the flat part of the dispersion
along the antinodal direction is anisotropic. The part along
the antinode moves continuously through the Fermi level.
The part orthogonal to this direction is pinned near the
Fermi level at a filling where the self-energy, transport,
and energies73 also display marginal Fermi liquid behavior,
and the quasiparticle fraction vanishes.58 Many authors have
proposed that the van Hove singularity near the Fermi level
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will enhance superconductivity by enhancing the divergence
of the bare pairing bubble. Indeed, we found previously that
the superconducting dome surrounds the critical doping where
the real part of the pairing bubble diverges algebraically,
replacing the Fermi liquid log divergence.59 However, a simple
noninteracting picture with the van Hove singularity at the
Fermi level does not explain the quantum critical scaling
of the bare dynamic pairing susceptibility. We also found
previously that a positive t ′ is the control parameter for a
first-order phase separation transition which is terminated
by a second-order critical point. As t ′ → 0, this second-
order terminus is driven to zero temperature, yielding the
quantum critical point.80 Here we explore the effect of a
negative t ′, and we find that it is a relevant variable that
increases the extent in doping (and chemical potential) of the
quantum critical region characterized by marginal Fermi liquid
behavior.
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