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BCS-BEC crossover in the extended Falicov-Kimball model: Variational cluster approach
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We study the spontaneous symmetry breaking of the excitonic insulator state induced by the Coulomb inter-
action U in the two-dimensional extended Falicov-Kimball model. Using the variational cluster approximation
(VCA) and Hartree-Fock approximation (HFA), we evaluate the order parameter, single-particle excitation gap,
momentum distribution functions, coherence length of excitons, and single-particle and anomalous excitation
spectra as functions of U at zero temperature. We find that in the weak-to-intermediate coupling regime, the
Fermi surface plays an essential role and calculated results can be understood in close correspondence with the
BCS theory, whereas in the strong-coupling regime, the Fermi surface plays no role and results are consistent
with the picture of a Bose-Einstein condensate (BEC). Moreover, we find that HFA works well in both the weak-
and strong-coupling regimes, and that the difference between the results of VCA and HFA mostly appears in the
intermediate-coupling regime. The reason for this is discussed from a viewpoint of the self-energy. We thereby
clarify the excitonic insulator state that typifies either a BCS condensate of electron-hole pairs (weak-coupling
regime) or a BEC of preformed excitons (strong-coupling regime).
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I. INTRODUCTION

The realization of excitonic insulators (EIs) on the proxim-
ity of the semimetal-semiconductor transition was suggested
about half a century ago.1–3 Because of the weak screening of
the Coulomb attraction between the electrons and holes due to
the small number of carriers, the electrons and holes may spon-
taneously form bound states (excitons), giving rise to the EI
state. As a candidate for EI, quasi-one-dimensional 1T -TiSe2

has been studied both theoretically and experimentally.4,5

TaNi2Se5 has also been studied by angle-resolved photoemis-
sion spectroscopy (ARPES) measurements. It was reported
that the valence-band top is extremely flat, and the material
can be a new candidate for an EI of bound pairs between
Ni 3d–Se 4p holes and Ta 5d electrons.6,7

From the theoretical point of view, the Falicov-Kimball
model8 extended by including a finite valence bandwidth,
i.e., the extended Falicov-Kimball model (EFKM), has been
extensively studied in the context of the EI or electric
ferroelectricity.9,10 The EFKM contains the large-bandwidth
c electrons (with a hopping integral tc and on-site energy εc),
small-bandwidth f electrons (with a hopping integral tf and
on-site energy εf ), and a Coulomb interaction (U ) between
the c and f electrons. The ground-state phase diagram of
the EFKM in the weak-to-intermediate-coupling regime was
obtained by the constrained path Monte Carlo (CPMC).9 In
the strong-coupling regime, the EFKM can be mapped onto
the spin-1/2 Ising-like XXZ model with a uniform magnetic
field. In that case, the spontaneous EI ordering corresponds
to the spontaneous magnetization in the XY plane and its
phase diagram was also determined.10 The phase diagram of
the EFKM is composed of three phases: the charge-density
wave (CDW) with staggered orbital order (SOO) phase, the EI
phase, and the band insulator (BI) phase. The CDW phase is
characterized by the periodic modulation of the total density
of c and f electrons, while the SOO phase is characterized by
the periodic modulation in the difference between the c- and
f -electron densities. The instability toward the CDW and SOO

phases was studied in detail by Zenker et al.11 The EI phase
is characterized by the spontaneous c-f hybridization. The BI
phase is characterized by the completely filled c or f band.
Interestingly, the ground-state phase diagram in the weak-
to-intermediate-coupling regime obtained by a Hartree-Fock
approximation (HFA)12 agrees quite well with that obtained
by CPMC. On the other hand, excitation properties of EFKM
are still of great interest. Finite-temperature phase diagram and
electron-hole bound state formation in EFKM were studied by
HFA.13 The projector-based renormalization method (PRM)
calculation on the one-dimensional EFKM14 reported that
incoherent parts of the single-particle excitation spectra, which
are related to the dissociation of the excitons, appear especially
in the Bose-Einstein condensation (BEC) regime. Detailed
studies on the dynamical excitonic susceptibility at finite
temperature calculated by means of the PRM15 and slave boson
(SB) technique11 confirmed that tightly bound excitons exist
even above the critical temperature for exciton condensation.
The results strongly support the so-called excitonic halo
suggested by Bronold and Fehske,16 where tightly bound
excitons exist without condensation, and the scenario of the
Bose-Einstein condensation of preformed excitons in the semi-
conductor side. Thus the effects of electron correlations on the
static and dynamic properties of this model are worth studying.

In this paper, we study the EI state of the EFKM defined
on the two-dimensional square lattice as a function of the
Coulomb interaction strength U . We employ the variational
cluster approximation (VCA)17 based on the self-energy
functional theory (SFT)18 at zero temperature. The cluster
perturbation theory (CPT)19 is used to calculate the single-
particle Green’s functions. We also employ the HFA to clarify
the effects of electron correlation that can be taken into account
in the VCA. As far as we know, VCA has not been applied
to the study of the EI state of EFKM. The advantage of VCA
compared to HFA is that VCA can fully take into account static
and dynamic effects of electron correlations within the range
of a finite-size cluster. So far, VCA and CPT have been applied
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to a variety of strongly correlated electron systems—such
as the half-filled Hubbard model with competing magnetic
orders in two-dimensional20 and three-dimensional systems,21

the periodic Anderson model with the competition between
magnetic ordering induced by the Ruderman-Kittel-Kasuya-
Yoshida interaction and nonmagnetic Kondo screening,22

a multiorbital system with spin-orbit coupling, XY-plane
magnetic ordering,23 etc.—and it turns out that the method
is useful to discussing correlation effects on the symmetry
breaking or single-particle excitation spectra, especially in
the insulating state. Thus it is worth studying the EI state
of the EFKM by applying VCA and CPT to investigate the
effects of short-range correlations on the symmetry breaking
or single-particle excitations.

We will first discuss the U dependence of the calculated
EI order parameter and single-particle gap. In the weak-
coupling regime, as expected from the BCS theory, the
single-particle gap is scaled well by the order parameter,
whereas in the strong-coupling regime, the order parameter
rapidly decreases with increasing U . Then we will show the
calculated momentum distribution functions as functions of
U . In the weak-coupling regime, the momentum distribution
functions behave like those in the BCS theory, whereas in
the strong-coupling regime, the momentum dependence of
the momentum distribution functions becomes weak, and the
behavior is quite different from BCS theory. The coherence
length of the exciton shows a shallow minimum at the
crossover regime as a function of U . We further calculate
the single-particle spectra, anomalous Green’s functions, and
density of states in order to investigate the electron correlation
effects on the quasiparticles. Thus our study will shed light on
the BCS-BEC crossover24 in the EI state.

This paper is organized as follows. In Sec. II, we introduce
our model and method of calculation. In Sec. III, we present
our results for the EI order parameter, single-particle gap,
single-particle Green’s function, anomalous Green’s function,
momentum distribution functions, and coherence length as
functions of the Coulomb interaction strength U . Discussion
on the efficiency of the HFA on this model and experimental
implications are given in Sec. IV. We summarize our work in
Sec. V.

II. MODEL AND METHOD

A. Extended Falicov-Kimball model

The Hamiltonian of the EFKM reads

H = −tc
∑
〈ij〉

(c†i cj + H.c.) + (εc − μ)
∑

i

nic

− tf
∑
〈ij〉

(f †
i fj + H.c.) + (εf − μ)

∑
i

nif

+U
∑

i

nicnif , (1)

where ci (c†i ) denotes the annihilation (creation) operator of an
electron on the c orbital at site i and nic = c

†
i ci . tc is the hopping

integral between neighboring sites of the two-dimensional
square lattice, and εc is the on-site energy level of the c orbitals.
These are the same for the f orbitals. U is the interorbital

FIG. 1. (Color online) (Top) Noninteracting tight-binding band
structure of the c orbital (dashed line) and f orbital (dash-dotted
line). Parameter values are tc = 1, εc = 0, εf = −1, and tf = −0.3.
The horizontal solid line represents the chemical potential at half-
filling. (Bottom) Noninteracting Fermi surface at half-filling. The
momentum path (0,0) → (π,π ) → (π,0) → (0,0) is also shown
(thick straight line).

Coulomb repulsion between electrons. The chemical potential
μ is determined so as to maintain the average particle density n

at half-filling n = 1. Throughout the paper, we set h̄ = kB = 1
and lattice constant a = 1. We use tc = 1 as the unit of
energy, and we focus on the band parameter values εc = 0,
εf = −1, and tf = −0.3.

The noninteracting tight-binding band structure and corre-
sponding Fermi surface at half-filling are shown in Fig. 1. At
this parameter set, the c and f bands overlap each other. The
level difference εf − εc = −1 causes an imbalance between
the c- and f -electron densities, i.e., nc = 0.34 and nf = 0.66,
where nc and nf are the average density of the c and f

electrons, respectively, and we can see that Q = (π,π ) is not
a nesting vector of the Fermi surface. Thus, in this paper, we
do not consider any periodic modulations characterized by Q,
such as the CDW phase, which is realized with small energy
difference |εc − εf | and nc = nf = 0.5.12

B. Variational cluster approximation

To analyze the EI state of the EFKM, we apply the VCA.17

Here we briefly review the formulation of the VCA in order
to make our paper self-contained. Following Potthoff,18 the
grand potential functional is given as

�[�] = F[�] − Tr ln
(−G−1

0 + �
)
, (2)
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where F[�] is the Legendre transform of the Luttinger-Ward
functional �[G],25 G0 is the noninteracting Green’s function,
and we call � the trial self-energy. Tr represents the sum
over fermionic Matsubara frequencies with temperature T and
trace over the single-particle basis; the explicit definition of
Tr will be given later [in Eq. (10)]. The stationarity condition
δ�[�]/δ� = 0 gives the Dyson equation, and the functional
gives the grand potential of the system at the stationary
point.18

SFT18 provides a way to compute � by using the fact
that the functional form of F[�] depends only on the
interaction terms of the Hamiltonian. Here we introduce a
so-called reference system, which consists of disconnected
finite-size clusters forming a superlattice. Note that be-
cause the interaction term of the Hamiltonian in Eq. (1) is
local, the original and reference systems have the same
interaction term. Therefore the functional form of F[�] is
unchanged. The exact grand potential of the reference system
is given as �′ = F[�′] − Tr ln(−G′−1

0 + �′), where �′ is the
exact self-energy of the reference system. Then, by restricting
the trial � to �′, we can omit the functional F[�′] and
obtain

�[�′] = �′ − Tr ln(I − V G′), (3)

where I is the unit matrix, V ≡ G′−1
0 − G−1

0 represents
the difference of the one-body terms between the original
and reference systems, and G′ = (G′−1

0 − �′)−1 is the exact
Green’s function of the reference system. The size of these
matrices are 2Lc × 2Lc, where Lc is the number of sites within
a disconnected finite-size cluster.

The trial self-energy for the variational method is generated
from the exact self-energy (or the exact Green’s function) of
the reference system. The Hamiltonian of the reference system
is defined as

H′ = H + Hpair + Hlocal, (4)

Hpair = �′ ∑
i

(c†i fi + H.c.), (5)

Hlocal = ε′ ∑
i

(nic + nif ), (6)

where the Weiss field for the on-site electron-hole pairing
�′ and the orbital-independent potential ε′ are variational
parameters, which are optimized based on the variational prin-
ciple, i.e., (∂�/∂�′,∂�/∂ε′) = (0,0). Note that the solution
with �′ �= 0 corresponds to the spontaneous EI state. ε′ is
introduced in order to calculate the average particle density
n correctly.26 Then we solve the ground-state eigenvalue
problem H′|ψ0〉 = E0|ψ0〉 of a finite-size cluster and calculate
the trial single-particle Green’s function by the Lanczos
exact-diagonalization method. The Green’s function matrix
in Eq. (3) is defined as

G′(ω) =
(

G′cc(ω) G′cf (ω)

G′f c(ω) G′ff (ω)

)
, (7)

where Gαβ are the Lc × Lc matrices. Each matrix element is
defined as

G′αβ

ij (ω) = 〈ψ0|αi

1

ω − H′ + E0
β
†
j |ψ0〉

+ 〈ψ0|β†
j

1

ω + H′ − E0
αi |ψ0〉, (8)

and these are calculated by the standard Lanczos technique.
The matrix V is given as

V (K) =
(

T c(K) − ε′ I −�′ I
−�′ I T f (K) − ε′ I

)
, (9)

where Tα(K) is the intercluster hopping matrix for α

electrons. The matrix elements are given as T α
ij (K) =

tα
∑

X,x eiK·X δi+x,j δR+X,R′ , where x denotes the neighboring
sites of the ith site and X denotes the neighboring clusters of
the Rth cluster.

Now all the physical quantities are diagonalized for Mat-
subara frequencies and superlattice wave vectors, but not for
orbitals and sites within a cluster. Thus the Tr for a quantity A
is written explicitly as

TrA = T
∑
ωn

eiωn0+ ∑
K

∑
α=c,f

Lc∑
i=1

Aαα
ii (K,iωn). (10)

The K summation is done in the reduced Brillouin zone of the
superlattice. For numerical calculations of �, the Matsubara-
frequency sum is transformed to a contour integral with the
complex Fermi function f (ω) = 1/(eω/T + 1) by the theorem
of residuum. Then the contour is deformed to a path enclosing
the real axis by use of the convergence factor. Finally we obtain
an expression for the functional,

� = �′ −
∮

dω

2πi

∑
K

ln det(I − V (K)G′(ω)). (11)

The single-particle Green’s functions are calculated by
CPT19 with the optimized variational parameters. The CPT
Green’s function is defined as

Gαβ(k,ω) = 1

Lc

Lc∑
i,j=1

G
αβ

CPT,ij (k,ω)e−ik·(ri−rj ), (12)

where ri is the position of the ith site within a dis-
connected finite-size cluster and GCPT(k,ω) = G′(ω)[I −
V (k)G′(ω)]−1. The wave vector k can take arbitrary values
in the first Brillouin zone. Here we define Gcc(k,ω), Gff (k,ω),
and Gcf (k,ω) as the single-particle c-electron, f -electron, and
anomalous Green’s functions, respectively.

A cluster of the size Lc = 8 (16 orbital) is used as a
reference system, thus the effects of statical and dynamical
electron correlations within the cluster size are taken into
account. Details of the VCA can be found in Refs. [ 27,28].

C. Hartree-Fock approximation

It was reported that the ground-state phase diagram of the
two-dimensional EFKM obtained by the HFA quantitatively
agrees with that by CPMC9 in the weak-to-intermediate
coupling regime.12 To compare VCA results with HFA results,
we briefly review the mean-field theory for the EI state of
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this model.13 Applying the HFA to the interaction term in
the original Hamiltonian (1), i.e., c

†
i cif

†
i fi → 〈c†i ci〉f †

i fi +
〈f †

i fi〉c†i ci − 〈f †
i ci〉c†i fi − 〈c†i fi〉f †

i ci , where 〈· · · 〉 denotes
the ground-state expectation value, and switching to momen-
tum space, we obtain the mean-field Hamiltonian

HHFA =
∑

k

(c†k f
†
k )

(
εkc −�

−� εkf

)(
ck

fk

)
,

εkα = 2tα(cos kx + cos ky) + εα − μ + Unᾱ,
(13)

nα = 1

L

∑
k

〈α†
kαk〉,

� = U

L

∑
k

〈f †
k ck〉,

where L is the number of lattice sites and ck (fk) is the
Fourier transform of ci (fi). α = c,f represents the orbital
index and ᾱ denotes the other orbital of α, i.e., c̄ = f and vice
versa. The order parameter � describes the coherent exciton
formation between c electrons and f holes. Here we assumed
� is real without loss of generality. Introducing the fermionic
quasiparticles defined as(

γ +
k

γ −
k

)
=

(
uk vk

vk −uk

) (
ck

fk

)
, (14)

with u2
k + v2

k = 1, and diagonalizing the matrix in Eq. (13) for
each k, we obtain the mean-field Hamiltonian

HHFA =
∑

k

(E+
k γ

+†
k γ +

k + E−
k γ

−†
k γ −

k ), (15)

with the quasiparticle dispersion

E±
k = 1

2 (εkc + εkf ) ±
√

ξ 2
k + �2, (16)

ξk = 1
2 (εkc − εkf ). (17)

Self-consistency equations for the particle density and the
order parameter are

nc = 1

L

∑
k

[
u2

kf (E+
k ) + v2

kf (E−
k )

]
, (18)

nf = 1

L

∑
k

[
v2

kf (E+
k ) + u2

kf (E−
k )

]
, (19)

� = U

L

∑
k

ukvk[f (E+
k ) − f (E−

k )], (20)

respectively, where the quasiparticle density 〈γ ±†
k γ ±

k 〉 is
replaced by the Fermi function f (E±

k ) = 1/(eE±
k /T + 1). The

coefficients are given as

u2
k = 1

2

⎛
⎝1 + ξk√

ξ 2
k + �2

⎞
⎠ , (21)

v2
k = 1

2

⎛
⎝1 − ξk√

ξ 2
k + �2

⎞
⎠ , (22)

ukvk = − �

2
√

ξ 2
k + �2

. (23)

The parameters nc, nf , and � are determined by solving the
above equations self-consistently.

Inverting the matrix (ω − Hk), whereHk is the 2 × 2 matrix
in the mean-field Hamiltonian (13), we obtain the c-orbital,
f -orbital, and anomalous Green’s functions

Gcc
HFA(k,ω) = 1

ω − εkc − �2

ω−εkf

, (24)

Gff

HFA(k,ω) = 1

ω − εkf − �2

ω−εkc

, (25)

Gcf

HFA(k,ω) = �

(ω − εkc)(ω − εkf ) − �2
, (26)

respectively. From the imaginary part of each of the Green’s
functions, we obtain the c-orbital, f -orbital, and anomalous
spectral functions

Ac
HFA(k,ω) = u2

kδ(ω − E+
k ) + v2

kδ(ω − E−
k ), (27)

A
f

HFA(k,ω) = v2
kδ(ω − E+

k ) + u2
kδ(ω − E−

k ), (28)

FHFA(k,ω) = ukvk[δ(ω − E+
k ) − δ(ω − E−

k )], (29)

respectively.

III. RESULTS OF CALCULATION

A. Order parameter and single-particle gap

We first calculate the U dependence of the order parameter
for exciton condensation

2� = U

L

∑
i

〈c†i fi + H.c.〉, (30)

and the single-particle excitation gap defined as

�gap = μ+ − μ−, (31)

where μ+(−) is the upper (lower) bound of the chemical
potential. Calculated results by VCA (HFA) are shown in
the upper (lower) panel of Fig. 2. The factor 2 for the
order parameter is introduced in order to compare with the
single-particle gap, by analogy with the BCS mean-field
theory.

We can see from the results that there is not only a lower
bound of the Coulomb interaction strength Uc1 but also an
upper bound Uc2 for the EI state. The obtained values are
(Uc1,Uc2) = (0.65, 6.6) for VCA and (Uc1,Uc2) = (0.66, 6.95)
for HFA. The existence of the upper bound Uc2 seems to
contradict the case of the attractive Hubbard model, which
has no Uc2.29,30 What happens at U = Uc2 is that the Hartree
potential makes the f band fully occupied and the c band
empty, so there is no Coulomb interaction between c electrons
and f holes. Thus the system is simply a band insulator
above Uc2.

Note that, which band becomes empty or full at large U is
determined by the particle density of each orbital at U = 0. In
our case, nc < nf at U = 0. Therefore the Hartree potential
for the c band is larger than that for the f band. Thus, with
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FIG. 2. (Color online) U dependence of the order parameter 2|�|
and the single-particle gap �gap calculated by the VCA (upper panel)
and by the HFA (lower panel). The dash-dotted straight line indicates
the single-particle gap in the normal (� = 0) state.

increasing U , the c band is pushed up rather than the f band,
and finally the c band becomes empty.

In the weak-to-intermediate coupling regime (U � 5), both
the order parameter and single-particle gap increase with
increasing U with the relation 2|�| � �gap (upper panel). This
result is consistent with the relation 2|�| = �gap from the HFA
(lower panel). In the strong-coupling regime (U � 5), the order
parameter rapidly decreases with increasing U but the single-
particle gap remains open. If we can assume that the energy
scale of the single-particle gap �gap and order parameter
2|�| may correspond to that of the characteristic temperature
for the exciton formation (Tex) and critical temperature for
the condensation of excitons (Tc), respectively, then the two
temperatures should be comparable (Tex � Tc) in the weak-
coupling (BCS) regime but may be well separated (Tex 	 Tc)
in the strong-coupling (BEC) regime. The BCS-BEC crossover
may then be expected in this model although our calculations
are done at zero temperature.

B. Momentum distribution function

We then consider the c-electron, f -electron, and anomalous
momentum distribution functions defined as

nα(k) =
∮

C<

dz

2πi
Gαα(k,z), (32)

F (k) =
∮

C<

dz

2πi
Gcf (k,z), (33)

FIG. 3. (Color online) Calculated momentum distribution func-
tions nc(k), nf (k), and F (k) at U = 2, U = 5, and U = 6.5.

respectively, where the contour integral path C< encloses the
poles of the integrand on the real axis below the chemical
potential. The results are shown in Fig. 3. Here we define, by
analogy with the BCS mean-field theory, the Fermi momentum
kF as

nc(kF) = nf (kF) = 0.5. (34)

Actually in the HFA, this definition means that the single-
particle gap is identical to 2|�| and 2|F (k)| = 1 at kF [see
Eqs. (16) and (23), respectively]. At U = 2, F (k) shows the
sharp peak at kF, indicating the existence of weakly bound
electron-hole pairs. At U = 6.5, k dependence of the peak
intensity of the anomalous Green’s function is weak and F (k)
is spread out in momentum space. Thus, in real space, small
electron-hole pairs exist in the strong-coupling regime.

To see the U dependence of the momentum distribution
functions in more detail, we show the results along the (0,0) →
(π,π ) line in Fig. 4. We can see that, in the weak-coupling
regime, nc(k) drops sharply across kF and F (k) is peaked at kF.
With increasing U , kF approaches (0,0) because the Hartree
potential for the c electron reduces the c-electron density,
and F (k) becomes broad in momentum space, indicating that
the radius of electron-hole pairs becomes small in real space.
When U reaches the crossover regime (U ∼ 5), we have no
kF and |F (k)| decreases for all momenta with increasing U .
This behavior is consistent with the rapid decrease of |�| in
the strong-coupling regime (see Fig. 2).

C. Coherence length

We also evaluated the coherence length defined as

rcoh =
√∑

k |∇kF (k)|2∑
k |F (k)|2 (35)

in order to directly see the spatial coherence of the excitons.
The k summations were done with 100 × 100 k points in
the first Brillouin zone. For VCA calculations, the derivative
with respect to kx,y was evaluated by the four-point finite
difference, while for HFA calculations, the analytical expres-
sion for ∇kF (k) was used. Calculated results are shown in
Fig. 5. In the weak-coupling regime, rcoh is spread widely,
about several lattice constants, and rapidly decreases with
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FIG. 4. (Color online) Momentum distribution functions nc(k)
and 2F (k) along (0,0) → (π,π ) for various U calculated by the VCA
(upper panel) and HFA (lower panel). The f -electron momentum
distribution functions nf (k) = 1 − nc(k) are not shown.

increasing U . Note that the calculated result of rcoh by VCA is
considerably smaller than that by HFA in the weak-coupling
regime, especially for rcoh > 1. At U = 2 ∼ 3, rcoh is already
the size of the lattice constant. A similar rapid decrease
of the coherence length of the Cooper pairs as a function of the
Coulomb interaction strength was also reported in a detailed
exact-diagonalization study on the attractive Hubbard model.31

Furthermore, we find that rcoh has a shallow minimum at U � 5
where the system is in crossover regime. This is because the
denominator

∑
k |F (k)|2 in Eq. (35) is largest in the crossover

regime (see Fig. 4). Then rcoh slightly increases again with
increasing U .

D. Single-particle spectra and density of state

We also calculated the single-particle and anomalous
excitation spectra

A(k,ω) = − 1

π
�

∑
α=c,f

Gαα(k,ω + iη), (36)

F (k,ω) = − 1

π
�Gcf (k,ω + iη), (37)

and the density of states (DOSs)

ρα(ω) = 1

L

∑
k

Aα(k,ω) (38)

FIG. 5. (Color online) U dependence of the coherence length
calculated by VCA (circles) and HFA (solid line).

at U = 2 (BCS regime), U = 5 (crossover regime), and
U = 6.5 (BEC regime). The results are shown in Figs. 6 and
7, respectively. The HFA quasiparticle dispersion E±

k is also
shown in the lower panel of Fig. 6. Note that because of the
artificial supercell structure introduced by the VCA, the spectra
show artificial gaps due to Brillouin zone folding. At U = 2,
A(k,ω) shows a small gap at the Fermi momentum kF defined
in Eq. (34). F (k,ω) shows a sharp peak near kF and its intensity
rapidly decreases as the momentum goes away from kF or the
frequency goes away from the Fermi level μ. At U = 5, the
incoherent continua appear in the spectral function. We can see
from the DOS and anomalous Green’s functions that both the
single-particle gap and hybridization are large. At U = 6.5,
A(k,ω) shows a semiconductor-like dispersion mainly due
to the Hartree potential. The momentum dependence of the
intensity of F (k,ω) is weaker than that at U = 2 and 5. Note
that, although U is large, the incoherent part of both A(k,ω)
and F (k,ω) is smaller than that at U = 5. The dispersion
relation is well described by the HFA quasiparticle dispersion
E±

k in both the weak- and strong-coupling regimes. The
reason will be discussed from the viewpoint of the self-energy
in Sec. IV.

IV. DISCUSSIONS

A. Why HFA works well

Here we consider, from the viewpoint of the self-energy,
why the HFA is successful not only in the weak-coupling
regime but also in the strong-coupling regime for the EFKM.
For simplicity, we neglect the order parameter � and Weiss
field for electron-hole pairs �′.

Using the spectral representation,32 the self-energy can be
written as

�(k,ω) = gk +
∑

ν

σk,ν

ω − ζk,ν

, (39)

where gk is the Hartree potential,33 ζk,ν is the νth pole of
the self-energy, and σk,ν is the corresponding spectral weight.
In HFA, the Hartree potential is taken into account, but the
second term (frequency dependence of the self-energy) is
neglected. Note that the EFKM defined in Eq. (1) is nothing
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FIG. 6. (Color online) Calculated anomalous spectra F (k,ω) (upper panel) and single-particle excitation spectra A(k,ω) (lower panel) at
U = 2 (left), U = 5 (center), and U = 6.5 (right). In the lower panel, the HFA quasiparticle dispersion E±

k is also shown (solid line). The
artificial Lorentzian broadening η = 0.1 is used.

but the asymmetric Hubbard model. Therefore we can apply
the sum rule for the self-energy of the Hubbard model (see
Ref. 34 and the Appendix). Then total weight of the self-energy
“neglected” in the HFA is

− 1

π
lim

η→0+

∫ ∞

−∞
dω Im �(k,ω + iη)

=
∑

ν

σk,ν = U 2ncnf . (40)

Here the half-filling condition nc + nf = 1 is used. The U

dependence of nc, nf , and U 2ncnf calculated by the HFA is
shown in Fig. 8. We can see from the result that with increasing
U , the Hartree potential causes particle-number imbalance of
the c and f orbitals, and makes ncnf smaller. Thus U 2ncnf

has a maximum and decreases again with increasing U .
Moreover, we can see from the HFA Green’s functions of

Eqs. (24)–(26) that, if the order parameter � is finite, the
single-particle gap can be generated from the hybridization
gap in the weak-coupling regime. Thus HFA works well on
the EFKM both in the weak- and strong-coupling regime.

The crucial differences between VCA and HFA will appear
in one- and two-dimensional systems at finite temperature,
where the spontaneous symmetry breaking is absent.35,36

Actually, it was reported that the critical temperature for
exciton condensation of the EFKM evaluated by the SB
technique is lower than that by the mean field due to
the effects of electron correlations.37 Moreover, the effects of
the spatial fluctuations, which are also completely neglected
in the mean-field theory, will also tend to destroy the ordering.

B. Experimental implications

Since the EI order parameter is not necessarily identical
with the single-particle gap, especially in the BEC regime,
experimental evidence for the realization of EI should be
signaled as the spontaneous hybridization between the valence
and conduction bands. Generally, ARPES experiments observe
the imaginary part of the single-particle Green’s function
filtered by the dipole matrix element and the Fermi function.38

The matrix element effects are determined by the selection
rule from symmetries, photon energy dependence of the
cross section, etc. Consideration of the matrix element effects
becomes important for observation of Zhang-Rice singlet
states in cuprate by ARPES.39 If one can resolve dominant
orbitals for the valence and conduction bands by the use
of matrix element effects, the spontaneous hybridization
between the valence and conduction bands can be observed
by ARPES as the difference in the spectral intensity between
that above and below the critical temperature. That is, the
spectral intensity from the dominant conduction-band orbitals
will be transferred to the valence-band top below the critical
temperature. Therefore, experimental analyses of temperature
dependence of the hybridization between the valence and
conduction bands are desired.

The recent ARPES measurements on quasi-one-
dimensional Ta2NiSe5 were done with the photon energies
hν = 10 eV and hν = 23 eV.6 The experimental results of
the energy distribution curve (EDC) at T = 40 K showed
that the EDC intensity is large near � with hν = 23 eV,
but small with hν = 10 eV. From the cross-section table of
atoms,40 the Ta 5d weight should be large for hν = 23 eV,
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FIG. 7. (Color online) Calculated density of states at U = 2 (top),
U = 5 (middle), and U = 6.5 (bottom). The vertical line represents
the Fermi energy. The artificial Lorentzian broadening η = 0.1 is
used.

while the Se 4p weight should be large for hν = 10 eV. The
result implies that the spectral weight of the conduction-band
Ta 5d orbitals is transferred to the valence top due to the
hybridization. The similar spectral-weight transfer can be
seen in our calculated result for the orbital-resolved excitation
spectra shown in Fig. 9. We can see from the results that near
k = (0,0), the spectral weight of the dominant conduction-
band orbital (c orbital) is transferred below the Fermi energy.
This spectral-weight transfer also can be seen in the calculated
DOS at U = 5 (middle panel of Fig. 7). Thus, temperature-
dependent photoemission spectroscopy measurements with

FIG. 8. (Color online) U dependence of nc (dashed line), nf

(dash-dotted line), and U 2ncnf (solid line) calculated by HFA.

various photon energies are desired to identify the orbital
character of the band structure and estimate the hybridization
between the valence and conduction bands in Ta2NiSe5.

V. SUMMARY

In this paper we analyzed the excitonic insulator (EI) state
of the extended Falicov-Kimball model (EFKM) by using the
variational cluster approximation (VCA) and Hartree-Fock
approximation (HFA) at zero temperature. We calculated the
EI order parameter, single-particle gap, momentum distribu-
tion functions, coherence length, and single-particle Green’s
functions as functions of the Coulomb interaction strength U .

In the weak-coupling regime, we found that the magnitude
of the single-particle gap �gap is almost comparable to that
of the order parameter 2|�|. This indicates that electron-hole
pair formation and condensation may occur simultaneously,
like Cooper pair formation and condensation in BCS theory.
The quasiparticle dispersion obtained by the single-particle
excitation spectra A(k,ω) is well described by mean-field
theory. The Fermi momentum kF is defined from the momen-
tum distribution function. The anomalous excitation spectra
F (k,ω) showed that their spectral weights are distributed

FIG. 9. (Color online) Calculated single-particle excitation spec-
tra A(k,ω),Ac(k,ω), and Af (k,ω) (from left to right) at U = 5. The
horizontal line represents the Fermi energy. The artificial Lorentzian
broadening η = 0.1 is used.
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mainly near the Fermi energy μ. The anomalous momentum
distribution function F (k) is peaked at kF. Reflecting this, the
coherence length of the exciton is widely spread for a several
hundred lattice spacing. This indicates that the system is in
the BCS-like weakly bound exciton condensation state. With
increasing U , the momentum dependence of the condensation
amplitude F (k) becomes weak, and the coherence length
decreases rapidly. The A(k,ω) show incoherent continua
in their high-frequency parts in the intermediate-coupling
regime. In the strong-coupling regime, the energy scale of
the order parameter and single-particle gap become separated.
This result indicates that the binding energy of the electron-
hole pairs (excitons) is larger than the energy scale of the
critical temperature where excitons may obtain coherence.
The Fermi momentum kF became ill defined. Accordingly,
the Fermi surface plays no role and F (k) is widely spread
in momentum space, and the coherence length is smaller
than the lattice constant, indicating that the system is in the
BEC-like condensation state of strongly bound electron-hole
pairs. Moreover, we found that HFA works well not only in
the weak-coupling (small U ) regime, but also in the strong-
coupling (large U ) regime. The reason was clarified from the
viewpoint of the self-energy. Finally, we discussed the spectral
feature of the EI state of the EFKM and gave experimental
implications for photoemission spectroscopy measurements.
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APPENDIX

Here we derive the sum rule for the self-energy used in
Eq. (40). The EFKM or the asymmetric Hubbard model in
momentum space is give as

H =
∑
kσ

εkσ c
†
kσ ckσ + U

L

∑
kk′q

c
†
k+q↑ck↑c

†
k′−q↓ck′↓. (A1)

Here we consider the second moment of Green’s function of
the electron with spin σ and momentum k, which is defined
as41

M2
kσ =

∮
dω

2πi
ω2Gσ (k,ω), (A2)

where Gσ (k,ω) is the single-particle Green’s function of
the electron with spin σ , and the integral path encloses
all singularities of the integrand. The Dyson equation gives
Green’s function with the form

Gσ (k,ω) = [ω − εkσ − �σ (k,ω)]−1 . (A3)

Then we substitute the spectral representation of the self-
energy32

�σ (k,ω) = gkσ +
∑

ν

σkσ,ν

ω − ζkσ,ν

(A4)

into Eq. (A3) and take the high-frequency expansion,

Gσ (k,ω) = 1

ω
+ εkσ + gkσ

ω2
+

∑
ν σkσ,ν + (εkσ + gkσ )2

ω3

+O(ω−4). (A5)

Substituting this expression into Eq. (A2) and using the
theorem of residuum, we obtain

M2
kσ =

∑
ν

σkσ,ν + (εkσ + gkσ )2 . (A6)

The other expression for the second moment is given as41

M2
kσ = 〈{[ckσ ,H],[H,c

†
kσ ]}+〉, (A7)

where {· · · }+ denotes the anticommutator. Calculating the
(anti)commutators on the right-hand side, we obtain

M2
kσ = ε2

kσ + 2εkσUnσ̄ + U 2nσ̄ , (A8)

where σ̄ denotes the opposite spin direction of σ . Now we use
the fact that gkσ is the Hartree potential,33 i.e., gkσ = Unσ̄ .
Then comparing Eq. (A8) with Eq. (A6), we obtain∑

ν

σkσ,ν = U 2nσ̄ (1 − nσ̄ ). (A9)

The right-hand side does not depend on the momentum k or
dispersion εkσ . By replacing σ =↑ , ↓ to c,f and using the
half-filling condition nc + nf = 1, we obtain Eq. (40).

*seki-kazuhiro@graduate.chiba-u.jp
1N. F. Mott, Philos. Mag. 6, 287 (1961).
2B. I. Halperin and T. M. Rice, Rev. Mod. Phys. 40, 755 (1968).
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