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This paper reports on our study of the edge of the 2
5 fractional quantum Hall state, which is more complicated

than the edge of the 1
3 state because of the presence of edge sectors corresponding to different partitions of

composite fermions in the lowest two � levels. The addition of an electron at the edge is a nonperturbative
process and it is not a priori obvious in what manner the added electron distributes itself over these sectors.
We show, from a microscopic calculation, that when an electron is added at the edge of the ground state in
the [N1,N2] sector, where N1 and N2 are the numbers of composite fermions in the lowest two � levels, the
resulting state lies in either [N1 + 1,N2] or [N1,N2 + 1] sectors; adding an electron at the edge is thus equivalent
to adding a composite fermion at the edge. The coupling to other sectors of the form [N1 + 1 + k,N2 − k], k

integer, is negligible in the asymptotically low-energy limit. This study also allows a detailed comparison with
the two-boson model of the 2

5 edge. We compute the spectral weights and find that while the individual spectral
weights are complicated and nonuniversal, their sum is consistent with an effective two-boson description of the
2
5 edge.
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I. INTRODUCTION

An understanding of the physics of the edge has been
one of the long-standing challenges in the field of fractional
quantum Hall (FQHE) systems.1 In ideal FQHE systems the
excitations in the bulk are suppressed at low temperatures
because of a gap, and low-energy excitations exist only at
the edge. Furthermore, the electrons at the edge move only
in one direction defined by the E × B drift. The edge thus
behaves like a chiral one-dimensional system. Given the
success of bosonization methods (see Ref. 2 for a review) in
dealing with one-dimensional electron liquids, it is attractive
to attempt a description of the physics of the FQHE edge by
reformulating the theory in terms of the bosonic density-wave
excitations following the usual method of bosonization. Such
a theory requires n species of bosons3–6 for the FQHE states
at n

(2n+1) . Of its many predictions, the one that has been
subjected to the most reliable experimental tests relates to the
non-Ohmic behavior of the tunnel conductance for transport
from an ordinary Fermi liquid into the FQHE edge.7–12 The
bosonic approach predicts a power-law behavior I ∝ V 3 for
all FQHE states of the form n

(2n+1) . Experiments do find a
non-Fermi-liquid behavior, but with an exponent of ∼2.8, 2.3,
and 2.0 for 1

3 , 2
5 , and 3

7 , respectively, and also do not find a
plateau in the exponent as a function of the filling factor. A
number of theoretical studies have explored the origin of the
discrepancy.13–32

An independent approach for describing the FQHE edge
uses the idea of composite fermions (CFs),33 without making
any reference to bosonization. The microscopic foundations
of the CF theory have been confirmed for the bulk physics
(by comparison with experiment, or with exact results in the
compact spherical geometry that contains no edges), and also
for Hall droplets with an edge.34–38 The FQHE state at n

(2n+1) is
described as a state with n filled � levels, where the � levels
of composite fermions are analogous to the Landau levels

of electrons, but reside within the lowest electronic Landau
level. The edge excitations of this state then have a one-to-
one correspondence with the edge excitations of the integer
quantum Hall state with n filled Landau levels. The natural
questions that occur here are whether the CF theory and the
bosonization approach are consistent, and what the precise
correspondence is between the two approaches.

The most studied edge is that of the 1
3 state.15,31,32 This

state consists of all the CFs occupying the lowest � level,
and its edge excitations mainly have all the CFs staying in the
lowest � level. Much less investigated, from a microscopic
view point, are the edges of other fractions, although some
work has been done in that direction.25,28,39 In this study, we
focus on the simplest nontrivial edge, namely the edge of the
2
5 state, and seek to understand its physics from a microscopic
starting point. The physics of the edges of other FQHE states
of the form n

(2n+1) is expected to be similar.

A fundamental aspect in which the edge of the 2
5 system

differs from the simpler 1
3 edge is the presence of several

sectors in the edge spectrum at 2
5 . Different sectors in

the spectrum correspond to different numbers of composite
fermions in each of the two � levels. Each sector has its own
edge excitations, thus resulting in a fanlike structure for edge
excitations, as shown in Fig. 3 below. For a realistic geometry
and confinement, several of these sectors are separated by an
energy gap that is much smaller than the bulk gap. Their energy
differences are expected to vanish in the thermodynamic limit,
given that the same is true of the integer quantum Hall state at
ν = 2 as well. As far as labeling and counting of edge modes
are concerned, ν = 2

5 is analogous to ν = 2.
However, a potential subtlety arises while extending the

analogy between the FQHE and the integer quantum Hall effect
(IQHE) to the process of adding an electron to the edge, which
is relevant for the experiments quoted above. Suppose we begin
with the ground state in the [N1,N2] sector at ν = 2, which
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contains N1 electrons in the lowest Landau level and N2 in the
second, and add an electron to this system. For a noninteracting
system of electrons, we will end up with an excited state in
either of the two sectors [N1 + 1,N2] or [N1,N2 + 1]. Now
consider ν = 2

5 , and add an electron at the edge of the ground
state in the [N1,N2] sector, in which N1 composite fermions
compactly occupy the lowest � level and N2 the second. The
crucial point to remember is that we are adding an electron,
not a composite fermion. As this electron gets converted into
a composite fermion, which is a nonperturbative process, it
is not clear, a priori, how it will spread over the states of
all possible sectors of the form [N1 + 1 + k,N2 − k], where
k is an arbitrary integer. One of the pleasing outcomes of
our study is that, even in this case, the resulting state lies
in either the [N1 + 1,N2] or the [N1,N2 + 1] sector. At low
energies, adding an electron at the edge of a ν = 2

5 system is
thus equivalent to adding a composite fermion into one of the
two � levels.

An important simplifying assumption made in our work is
that we neglect � level mixing; the question of how � level
mixing modifies our conclusions is beyond the scope of the
present work. There are reasons to believe that � level mixing
may be relevant. In a previous work the tunneling exponent
of the edge liquid computed25 by a direct evaluation of the
equal-time Green’s function was found to be in agreement with
the prediction of the bosonic approach when � level mixing
was neglected. However, this was found to change when
� level mixing (caused by the residual interaction between
composite fermions) was allowed. These studies indicate that
the bosonized description is appropriate for noninteracting
composite fermions, but intercomposite fermion interactions
produce corrections. It is not known what such corrections
correspond to in the bosonic description. In this study we do
not allow mixing with higher � levels, and all our conclusions
are subject to this assumption.

One of our aims in the present study is to establish a
“dictionary” between the operators and states in the effective
two-boson description. A possible direct connection between
them identifies the “fermion” creation operator of the bosonic
theory as the operator that actually creates a “composite
fermion” at the edge, with the bosonic degree of freedom
representing particle-hole pairs of composite fermions at the
edge. Such an identification can be verified by comparing
the appropriately normalized matrix elements of the creation
operators (which are called spectral weights, and which are
precisely the elements that enter into the expression of the
standard spectral function) in the two frameworks, following
Palacios and MacDonald.15 Such tests have been performed15

for ν = 1
3 , and show that while the individual spectral weights

are nonuniversal and do not necessarily conform to the bosonic
model,31 their sum at a given momentum does.32 The reason
for considering the sum of the spectral weights at a given
momentum is that the power-law exponent characterizing the
tunnel conductance is determined in the asymptotic regime
by the sum of the spectral weights for edges for which the
dispersion is linear.32

We calculate the sum of such spectral weights at var-
ious momenta (which correspond to angular momenta in
our geometry) and compare our results to the effective
two-boson description (E2BD). The two “bosons” represent

particle-hole excitations of composite fermions at the edges
of the two � levels. The following facts support this
conclusion:

(i) The E2BD of the 2
5 edge contains two bosons. This is

naturally expected within the CF theory where the 2
5 state has

two filled � levels, and thus two bosonic excitations associated
with their edges.

(ii) The counting of edge excitations of CF � levels matches
with the counting from the E2BD.

(iii) Addition of an electron at the 2
5 edge is equivalent to

the addition of a composite fermion at the edge, which can go
into either of the two � levels or some linear combination of
them.

(iv) An explicit evaluation of the spectral weights (for
transitions into the two relevant sectors) from the microscopic
CF theory demonstrates that they satisfy the sum rule predicted
by the E2BD.

The plan of our paper is as follows. Section II contains a
discussion of the CF description of the 2

5 , and its ground states
and excitations in different sectors. In Sec. III, we summarize
the effective boson description of the edge of a ν = 2

5 system.
Section IV defines the spectral weights both in the E2BD and
the microscopic theories, and also the value of the sum spectral
weight predicted by the bosonic picture. Numerical results for
the edge spectrum and spectral weights are presented in Sec. V.
Section VI presents the results and discussions. The paper is
concluded in Sec. VII.

II. COMPOSITE FERMION THEORY OF ν = 2
5 EDGE

FQHE in the lowest Landau level results from formation
of composite fermions (CFs).33 A composite fermion is a
bound state of an electron and even number of quantized
vortices. Strongly interacting electrons in a FQHE system are
mapped to a system of weakly interacting CFs in an integer
quantum Hall (IQH) state.38 A large class of the observed
fractions ν = n

(2np±1) (n,p are integers), called Jain series,
can be described in terms of IQHE states at ν∗ = n of CFs
with 2p vortices attached to them. The CFs in these states
sense a lower magnetic field (B∗) than that of their electronic
counterpart (B) given by, B∗ = B − 2pρφ0. Here ρ is the
density of electrons and φ0 = hc

e
is the magnetic flux quantum.

The mapping between an electron FQHE state at ν = 2
5 and

CFs at ν∗ = 2 is illustrated in Fig. 1. A number of numerical
studies have confirmed the validity of CF theory for the bulk
physics of FQHE systems.38,40–42

In contrast to the case of the ν = 1
3 state, which has all

particles in the lowest � level, the physics at the edge of the

FIG. 1. (Color online) Schematic of ν = 2
5 state in the composite

fermion theory. Only the bulk structure is shown.
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2
5 system is complicated by the fact that it supports many
“sectors.” A sector [N1,N2] (with N = N1 + N2) corresponds
to states in which the first and second � levels contain N1

and N2 CFs, respectively (see Fig. 2). Within any given sector,
the “sector-ground state” is formed by composite fermions
compactly occupying each � level with N1 and N2 CFs,
respectively:

∣∣�0
[N1,N2]

〉 = |[0,1, . . . ,N1 − 1][−1,0, . . . ,N2 − 2]〉, (1)

where the numbers in the expression on the right-hand side
give the angular momentum quantum numbers of the CFs in
the first and second � levels. The total CF angular momentum
of this state is given by

M∗
0 = N1(N1 − 1)

2
+ (N2 − 2)(N2 − 1)

2
− 1, (2)

and the corresponding electron angular momentum is M0 =
M∗

0 + N (N − 1). The lowest energy compact state occurring
in an actual experiment is determined by the confinement
potential, the interaction energy, and the total number of
particles.

The excited states within one sector consist of angular
momentum excitations at the edge within each � level. Such
a state can be labeled by {n1,n2} where ni = (ni1,ni2 . . .)
describes the number of particles nim that are excited by an
angular momentum m, and i = 1,2 is the � level index. For
the excited states

M = M0 +
∑
m

(n1m + n2m)m. (3)

As can be seen from Fig. 2, inter-� level excitations from
the ground state of one sector to another are accompanied by
a large change of the total angular momentum, whereas the
intra-� level excitations can occur with very small change in
angular momentum.

Within each sector, there are edge excitations of composite
fermions that do not change the sector, as shown in Fig. 2(b).
This results in a number of “fans” of edge excitations belonging
to different sectors, as shown in Fig. 3. (The spectra in this
figure are obtained by the method of CF diagonalization,
described below, in the presence of a uniform positively
charged background that provides a confinement potential).
The inter-� level excitations correspond to transitions between
different sectors. Such inter-� level excitations are suppressed
in the bulk because of the gap, but such a gap does not exist at
the edge, as seen explicitly in Fig. 4, which shows the energies
of the compact CF states as a function of N . It is clear that
there is a set of almost degenerate sectors close to the actual
ground state. As a result, excitations across different sectors
can occur at energies much smaller than bulk gap and must
therefore be considered.

In order to assess the reliability of the subsequent results
it is important to test how accurate the CF theory is for the
edge excitations. In Fig. 5, we compare the Coulomb edge
spectra of ν = 2

5 for N = 6 particles obtained through CF
diagonalization. In obtaining the CF results, we do not include
any � level mixing (i.e., neglect CF transitions to higher �

levels), and also we do not include electron-background or

FIG. 2. (Color online) A schematic diagram of ν = 2
5 edge. Panel

(a) shows a compact ground state for the sector with N1 and N2 CFs in
the lowest and second � levels, respectively. Excitations at the edge
can be intra-� level or inter-� level. In an intra-� level excitation,
(b), the number of electrons in the individual � levels do not change.
In an inter-� level excitation, (c), the electron makes a transition from
one � level to another, connecting the state to a neighboring sector
as shown in the accompanying spectrum.

background-background interactions. This figure also displays
the exact spectra obtained from an exact diagonalization of
the Coulomb interaction in the full lowest Landau level. A
close agreement between the two spectra is evident at low
energies.

Finally, we note that in Fig. 5 the spectrum of the edge
excitations emanating from [4,2] contain the edge excitations
of [5,1]. This, however, is relevant only for excitations with
angular momenta (relative to the angular momentum of
the ground state in a given sector) larger than the angular
momentum difference between the ground states of the two
sectors. Because the latter grows with N , such large angular
momenta are not relevant to the edge physics in the thermo-
dynamic limit. We always work with system sizes and angular
momenta where such overlaps between sectors are not an
issue.
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FIG. 3. (Color online) Energy spectrum of different sectors,
[N1,N2] = [(N + δN )/2,(N − δN )/2], of 2

5 th state obtained through
CF diagonalization. The spectrum is evaluated for the Coulomb
interaction in the presence of a neutralizing positively charged disk
that also provides a confinement potential. The energy is quoted
in units of e2/(ε	), where 	 is the magnetic length and ε is the
background dielectric constant; the zero of energy is set at the ground
state of the δN = 0 sector. The following parameters are chosen: N =
24, δN = 0,2,4, setback distance d = 0.0. The different symbols are
slightly offset horizontally to avoid clutter. Angular momentum is
measured relative to the sector-ground state of [N/2,N/2].

III. EFFECTIVE TWO-BOSON DESCRIPTION OF 2
5 EDGE

In this section, we will develop a two-boson theory for the
edge of a quantum Hall system with filling fraction ν = 2

5 .
The motivation for introducing two bosons comes from the CF
description of such a system.38 If two flux quanta are attached
to each electron to form a CF, the electronic system with ν = 2

5
effectively turns into a CF system with ν = 2, i.e., an integer
quantum Hall system with two filled � levels, and therefore
two sets of chiral edge modes moving in the same direction.

FIG. 4. (Color online) Energies of the compact “ground” states in
various sectors as a function of the total number of particles N . These
occur at different total angular momenta in different sectors. The
energies are evaluated for the Coulomb interaction in the presence
of a neutralizing positively charged disk that provides a confinement
potential. This figure demonstrates that the curve flattens near the
minimum, indicating that there are several almost degenerate ground
states around the actual ground state. Mgrd is the angular momentum
of the actual ground state among all the sectors.

FIG. 5. (Color online) Comparison of CF diagonalization (CFD)
and exact diagonalization (Exact) for edge spectra for N = 6
particles. The spectra are obtained in the absence of any neutralizing
background. (The quality of the agreement persists even in the
presence of the neutralizing background.) Energies are measured in
units of e2/εl. CFD energies are slightly offset from the exact energies
along horizontal axis for clarity. The CFD spectra are obtained for two
situations, with four and two composite fermions in the lowest two �

levels, and with five and one composite fermions in the lowest two �

levels; these spectra are shown with different symbols, as indicated
on the plot.

The bosonized version of this system would therefore have
two chiral bosons; these would describe particle-hole exci-
tations in the two edge channels, but they are not capable
of describing particle-hole excitations across the two edge
channels.

Let us call the two bosonic fields φ1 and φ2 and assume
that they are both right moving, going from x = −∞ to ∞.
We will not assume a priori that φ1 and φ2 separately describe
the particle-hole excitations at the edges of the first and the
second CF Landau levels; it is possible that both edge modes
will involve some linear combinations of φ1 and φ2. The
Lagrangian for the bosonic fields has the form

L = 1

4π

∫ ∞

−∞
dx

[
− ∂tφ1∂xφ1 − ∂tφ2∂xφ2

−
2∑

i,j=1

∂xφiVij ∂xφj

]
, (4)

where Vij is a symmetric matrix, and we have absorbed the
velocities vi in the definitions of the diagonal parameters Vii .
For repulsive density-density interactions, all the elements
Vij will be positive. The momentum conjugate to φi is
−(1/4π )∂xφi . The charge operator of this theory takes the
form43

Q = 1

4π

∫
dx

[
1√
3
∂xφ1 + 1√

15
∂xφ2

]
. (5)

The numerical factors in the above equation are justified by
the observation that 1

3 + 1
15 = 2

5 , leading to the correct value
of the Hall conductance.

Now we can see what form an electron annihilation operator
must take. While it is not obvious from the effective boson
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approach, this operator will actually annihilate a composite
fermion (i.e., an electron and two vortices). Therefore we will
use that language, although it will be justified only later. Let
us assume a form like

ψ = ηe−ı(a1φ1+a2φ2), (6)

where η denotes a Klein factor that satisfies η†η = ηη† = 1,
and we have suppressed an overall normalization factor. For ψ

to anticommute with itself at different spatial points, we require
a2

1 + a2
2 = odd integer. (Note that the two-point correlation

function of ψ falls off as 1

|x−y|(a2
1 +a2

2 )
). Next, in order for this

to describe a CF with unit charge, we require [Q,ψ] = −ψ ,
i.e., a1/

√
3 + a2/

√
15 = 1. At first sight, it seems that many

different choices of a1,a2 are possible. However, if we want
to have two operators with two pairs of values a1,a2 such
that they mutually anticommute, and both satisfy a2

1 + a2
2 = 3

(the latter condition ensures that the correlation function falls
off with the power 3 just as for a quantum Hall system with
ν = 1

3 ), then there are only two choices possible.43,44 Let us
define the operators

ψ1 = η1e
−ı

√
3φ1 ,

(7)
ψ2 = η2e

−ı(2/
√

3)φ1−ı(
√

5/3)φ2 ,

where the Klein factors satisfy {η1,η2} = 0. One can show
that ψ1 and ψ2 are both valid CF annihilation operators (i.e.,
each of them carries unit charge and anticommutes with itself),
and they also anticommute with each other due to the Klein
factors. Further, each of them has a two-point correlation
falling off as 1

|x−y|3 ; the correlation between the two is zero

since 〈η†
1η2〉 = 0 in any eigenstate of the fermion number

operator.
Let us now assume that the electron annihilation operator

is given by a linear superposition of the form

ψe = c1ψ1 + c2ψ2, (8)

where c1, c2 are some complex numbers. We will also assume
that the bosonic field on edge j has the expansion

φj+(θ ) = −
∑
m>0

1√
m

b
†
jmeımθ ,

φj−(θ ) = −
∑
m>0

1√
m

bjme−ımθ , (9)

where m denotes the angular momentum of a bosonic mode;
here we have assumed the edge to be the circumference of a
circle and we have parametrized points on the edge by an angle
θ going from 0 to 2π .

IV. SPECTRAL WEIGHTS

The theoretical quantity relevant to tunneling of an electron
into the fractional quantum Hall edge is the spectral function
of the edge. We concentrate below on the quantities called
spectral weights, which are the matrix elements that enter
the expression of the spectral function (see Appendix A).15

Furthermore, the density of states at a given energy is
proportional to the sum of spectral weights for all states at

that energy, which, for bosons with linear dispersion, amounts
to the sum over all states at the corresponding momentum. The
latter is easier to calculate theoretically (because the energy is
a complicated function of various parameters), and therefore
we will focus on the sum of spectral weights over all states at
a fixed (angular) momentum.

A. Bosons

The spectral weights are defined as |C{n1,n2}|2, with

C{n1,n2} = 〈n1,n2|ψ†
e |0〉

〈0|ψ†
e |0〉

. (10)

Here, |0〉 denotes the bosonic ground state and |n1,n2〉 =
|{n11,n12, . . .}; {n21,n22, . . .}〉 an excited Fock state, where nim

is the boson occupation number for the angular momentum m

state of the bosonic field i. The only role of the denominator
is to cancel the (unknown) normalization factor in the defini-
tion of the electron field operator. The angular momentum
(relative to the ground state) and energy of this state are
given by

q =
∑
m>0

(n1m + n2m)m,

�E =
∑
m>0

(v1n1m + v2n2m)m, (11)

where vi denotes the velocity of mode i; we are assuming a
linear dispersion for each edge as is appropriate for a massless
bosonic theory, but the velocities of the two modes can, in
general, be unequal.

Using Eqs. (7)–(9) in the definition of the spectral weight,
we find the following expression for the spectral weight:

C{n1,n2} = 〈0| ∏i,m b
nim

im ψ
†
e |0〉√

〈0|ψeψ
†
e |0〉〈0| ∏i,m b

nim

im b
†nim

im |0〉
. (12)

This can be evaluated to get

|C{n1,n2}|2 = |c1|2
∏
j

3n1j

n1j !jn1j

∏
k

δ0,n2k

+ |c2|2
∏
j

(4/3)n1j

n1j !jn1j

∏
k

(5/3)n2k

n2k!kn2k
. (13)

Table I lists the spectral weights for various states with q =
0–3.

Certain sum rules can be gleaned from Table I. If we add
up all the spectral weights for a given value of q, we obtain
[(q + 1)(q + 2)/2](|c1|2 + |c2|2); this is just as in the case of
ν = 1

3 given in Palacios and MacDonald.15 This makes sense
since both our CF operators ψ1 and ψ2 are analogous to the
CF operator for ν = 1

3 in every way, i.e., they have the same
scaling dimension (=3) and the same kind of expansion in
terms of bosons. We also observe some finer partial sum rules
within each value of q. For instance, within q = 2, the first
three states add up to (9/2)(|c1|2 + |c2|2), while the last two
states add up to (3/2)(|c1|2 + |c2|2). These are exactly what
we find in Table II of Ref. 15 where we see the numbers 9/2
and 3/2 for the states {2000} and {0100} for ν = 1

3 . A similar
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TABLE I. The last column shows .the sum of spectral weights for
excitations with angular momenta q = 0, 1, 2, and 3, while setting
|c1|2 + |c2|2 = 1. The various states at each q are shown in the second
column, in the notation explained in the text. The third column shows
the individual spectral weights, and the fourth column gives the partial
sums, where each sum comes from states in which a given number of
bosons are excited.

q {n} Spectral weight Partial sums Sum

0 {00,00} |c1|2 + |c2|2 1 1

{10,00} 3|c1|2 + 4
3 |c2|2

1 3 3
{00,10} 5

3 |c2|2

{20,00} 9
2 |c1|2 + 8

9 |c2|2
{00,20} 25

18 |c2|2 9
2

2 {10,10} 20
9 |c2|2 6

{01,00} 3
2 |c1|2 + 2

3 |c2|2 3
2{00,01} 5

6 |c2|2
{30,00} 9

2 |c1|2 + 32
81 |c2|2

{00,30} 125
162 |c2|2 9

2{20,10} 40
27 |c2|2

{10,20} 50
27 |c2|2

{11,00} 9
2 |c1|2 + 8

9 |c2|2
3 10

{00,11} 25
18 |c2|2 9

2{10,01} 10
9 |c2|2

{01,10} 10
9 |c2|2

{001,000} |c1|2 + 4
9 |c2|2

1
{000,001} 5

9 |c2|2

statement holds for the states with q = 3. In general, there is
a partial sum rule for all the states with same total angular
momentum and with same total number of bosons.

B. Composite fermions

An electron added at the edge of the ground state �0
[N1,N2] of

sector [N1,N2] can distribute itself into the available CF states
of the form �

{n1,n2}
[N ′

1,N+1−N ′
1] in different sectors of the N + 1

system. Within each sector, the counting of edge states agrees
with the E2BD, and it is natural to ask which sectors are
relevant, and whether the sum rule is satisfied in these sectors.
Motivated by previous studies on ν = 1

3 ,15,31,32 we define the
spectral weights for such a process as |C{n1,n2}|2, where

C{n1,n2} =
〈
�

{n1,n2}
[N ′

1,N
′
2]

∣∣a†
m0+q

∣∣�0
[N1,N2]

〉
〈
�0

[N ′
1,N

′
2]

∣∣a†
m0

∣∣�0
[N1,N2]

〉 . (14)

Here a
†
m adds an electron in the lowest Landau level at

an angular momentum m. The quantity m0 is the angular
momentum difference between the sector-ground states of
[N1,N2] and [N ′

1,N
′
2]. We note that because of the difference in

the ground-state angular momenta in the different sectors, the
spectral weights at angular momentum q in E2BD correspond
to the addition of an electron at angular momentum m0 + q in
the electronic language. However, we continue to call this

the “spectral weight at angular momentum q” for ease of
comparison with the E2BD. The states a

†
m|�0

[N1,N2]〉, |�{n1,n2}
[N ′

1,N
′
2]〉,

and |�{n1,n2}
[N1,N2]〉 are normalized. Although not explicitly shown

in the notation, the spectral weights depend on the sectors
[N1,N2] and [N ′

1,N
′
2] of the initial and final states.

For a choice of the orthonormal basis �
{n1,n2}
[N ′

1,N
′
2], the sum of

the spectral weights at a given angular momentum m within a
given sector is

Sq =
∑

|C{n1,n2}|2 =
∑ ∣∣∣∣∣∣

〈
�

{n1,n2}
[N ′

1,N
′
2]

∣∣a†
m0+q

∣∣�0
[N1,N2]

〉
〈
�0

[N ′
1,N

′
2]

∣∣a†
m0

∣∣�0
[N1,N2]

〉
∣∣∣∣∣∣
2

=
〈
�0

[N1,N2]

∣∣am0+q

[∑ ∣∣�{n1,n2}
[N ′

1,N
′
2]

〉〈
�

{n1,n2}
[N ′

1,N
′
2]

∣∣] a
†
m0+q

∣∣�0
[N1,N2]

〉
∣∣〈�0

[N ′
1,N

′
2]

∣∣a†
m0

∣∣�0
[N1,N2]

〉∣∣2 .

The sum inside the square brackets is the projection Pq

[N ′
1,N

′
2]

into the space of all states within the given sector and of
angular momentum m0 + q. So the sum of spectral weights
can be conveniently written as

Sq =
∣∣Pq

[N ′
1,N

′
2]a

†
m0+q

∣∣�0
[N1,N2]

〉∣∣2

∣∣〈�0
[N ′

1,N
′
2]

∣∣a†
m0

∣∣�0
[N1,N2]

〉∣∣2 . (15)

The sum of the spectral weights is therefore related to the part
of the new state a

†
m0+q |�0

[N1,N2]〉 that lies in the sector of the
CF states under consideration.

The physics that we wish to verify is that the above
annihilation operator in fact describes the annihilation of a
CF at the edge of the quantum Hall system, and that two
bosons span the space of CF particle-hole excitations at the
edge of the two � levels. A microscopic verification of this
physics is achieved by comparing the sum of the spectral
weights predicted from the bosonization approach with that
of the numerically calculated sum. Note that the bosonic
operators b1m and b2m do not correspond exactly to excitations
at the two edges. Subsets of excitations of the two bosons and
excitations at the two edges may be related to each other by
linear transformations, which are unknown and which may
be different for different subsets. Hence the partial sum rules
cannot be explicitly verified in the CF theory.

In what follows, we neglect � level mixing, and only
consider edge excitations within a given sector. Furthermore,
we do not include any confinement potential or any electron-
electron interaction. These are not relevant for the total spectral
sum rule which is invariant under an unitary rotation of the
basis; with our neglect of � level mixing, the only role of the
confinement potential or the Coulomb interaction is to produce
a different basis.

V. NUMERICAL METHODS

A. Model for energy calculations

The system is modeled as a quantum Hall droplet in a
disk geometry, described previously in Refs. 31 and 32. For
completeness, we give a brief outline here. Electrons are
confined to a disk of radius

√
2N/ν magnetic lengths by a
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uniformly distributed neutralizing background positive charge
located at a setback distance of d = 0 from the disk. The
Hamiltonian for this system is

HI ≡ Vee + Veb + Vbb

=
∑
j<k

e2

ε|rj − rk| − ρ0

∑
j

∫
�N

d2r
e2

ε
√|rj − r|2

+ρ2
0

∫
�N

∫
�N

d2rd2r ′ e2

ε|r ′ − r| , (16)

where the terms on the right-hand side represent the electron-
electron, electron-background, and background-background
energies, respectively. Here rj is the position of the j th
electron, ρ0 = ν/2πl2 is the positive charge density spread
over the disk, and ε is the dielectric constant of the background
semiconductor material. The kinetic-energy term is not con-
sidered explicitly as only the lowest Landau level states are
occupied at high magnetic field.

In order to obtain the exact spectrum, the above Hamiltonian
must be diagonalized in the Hilbert space of all the N -electron
states in the lowest Landau level. Due to the exponentially
growing dimension of this space, it becomes impractical
to compute the spectra for systems containing more than
∼10 electrons. However, since we are interested only in the
low-energy features of the spectra, a very accurate description
is obtained by diagonalizing the above Hamiltonian in the
basis of CF states, described in the following paragraph. The
dimension of space is much smaller than that of the full electron
basis, thus enabling us to study much larger systems. Access
to larger systems is crucial for obtaining the thermodynamic
limits shown below. It is expected that the universal properties
of the edge will not depend sensitively on the precise form
of the wave function, so our CF states ought to be adequate.
(We note that even the exact electron states will depend on the
shape of the confining potential, finite thickness corrections to
the interaction, LL mixing, etc.)

For the fraction ν = n
(2np+1) , the CF theory maps interacting

electrons at total angular momentum M to noninteracting com-
posite fermions at M∗ = M − pN (N − 1),36,37 by attaching
2p vortices to each electron. The ansatz wave functions �M for
interacting electrons with angular momentum M are expressed
in terms of the known wave functions �M∗

of noninteracting
electrons at filling fraction n at total angular momentum M∗
as follows:

�M = PLLL

∏
j<k

(zj − zk)2p�M∗
α , (17)

where PLLL denotes projection into the lowest Landau level.
In general, there are many different ways of partitioning the
total angular momentum M∗ to the N noninteracting fermions
thus producing several states at the same angular momentum
(labeled by α in the preceding equation). These states span
the low-energy basis in which the Hamiltonian in Eq. (16) is
diagonalized. Figure 5 shows a comparison of the spectrum
obtained by diagonalizing the Coulomb interaction in the full
Hilbert space as well as in the CF basis.

B. Numerical evaluation of sum of spectral weights

The individual spectral weights |C{n1,n2}|2 depend on the
states �

{n1;n2}
[N ′

1,N
′
2] that are chosen. However, the sum of the

spectral weights [Eq. (15)] is independent of this choice of
basis. The projection operator can therefore be expanded
using any convenient basis for the space of a given angular
momentum. For the numerical calculations we choose a
basis {ψj

[N1,N2]} where the CFs occupy fixed orbitals. Here
j represents a composite index representing the angular
momentum orbitals occupied by the CFs in the two � levels.
These states are not orthogonal to each other, and therefore
the projection operator expanded using these states has to be
written as

Pm
[N ′

1,N
′
2] =

∑
i,j

∣∣ψi
[N1,N2]

〉
[O−1]ij

〈
ψ

j

[N1,N2]

∣∣, (18)

where the overlap matrix O is defined as

Oij = 〈
�i

[N ′
1,N

′
2]

∣∣�j

[N ′
1,N

′
2]

〉
. (19)

Plugging this into Eq. (15) gives

S = C†O−1C, (20)

where C is the column vector of “unsquared” spectral weights
of these basis states,

Ci =
〈
�i

[N ′
1,N

′
2]

∣∣a†
m0+q

∣∣�0
[N1,N2]

〉
〈
�0

[N ′
1,N

′
2]

∣∣a†
m0

∣∣�0
[N1,N2]

〉 . (21)

The quantities Ci as well as O were evaluated numerically
using Metropolis-Hastings Monte Carlo45–47 integration al-
gorithms. Several different values of [N1,N2], with N2 < N1

were chosen for this calculation. Systems with the different
δN = N1 − N2 appeared to follow slightly different paths to
the thermodynamic limit when the sum was plotted against
1/N . So extrapolations to the thermodynamic limit were
done for systems with specific values of δN as shown
in Fig. 6.

VI. RESULTS AND DISCUSSION

Ideally, we would like to test the two-edge nature of
the spectrum through the sum rule for A(m1,m2) given in
Eq. (A5), which depends separately on the angular momenta
m1 and m2 of the excitations in the two edge channels.
However, we have found that it is not possible, perhaps
because of finite-size effects, to identify in our calculated
spectra the eigenstates arising from the different edge channels.
As a result, we concentrate below on the total sum rule for
A(m) = (m + 2)(m + 1)/3 given by Eq. (A3).

Column 1 of Fig. 6 shows the sum of the spectral
weights at constant total angular momenta assuming that
the newly added electron goes entirely as a CF into the
second � level, corresponding to the transition from sector
[N1,N2] to [N1,N2 + 1]. The individual spectral weights are
all nonzero and do not match the numbers given in Table I.
It is expected that the individual spectral weights are not the
same as the prediction since the bosonic operators bim do not
directly correspond to the angular momentum excitations in the
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FIG. 6. (Color online) Spectral weight sums as a function of N

for q = 1, 2, and 3. The columns on the right are for a composite
fermion added to the lowest � level, whereas those on the left are
for a composite fermion added to the second � level. The values
predicted by the E2BD are shown in the figures. The thermodynamic
limits of the sums are consistent with these values in all cases. Here
δN = N1 − N2.

� levels (though they must be related to each other by unitary
transformations). The sum of the spectral weights, however,
matches the sum predicted by the E2BD, in the thermodynamic
limit.

Column 2 of Fig. 6 shows the sum of the spectral weights
for the case where the newly added electron enters as a
composite fermion in the lowest � level producing a final
state in the sector [N1 + 1,N2]. In this case, the numerical
evaluation of the spectral sum rule can be simplified by
noting that only one of the spectral weights is nonzero for
the CF basis (as shown analytically in Appendix VII). The
sum of the spectral weights is again in agreement with the
E2BD predictions. The fact that the sum of the spectral
weights at each angular momentum matches the same from
the bosonization approach shows that there is a one-to-one
correspondence between the vector space of states with
constant total angular momentum in the two approaches.

In addition to these two situations, one can consider the
case where the added electron appears as a CF in one of the
other sectors, such as [N1,N2] → [N1 − 1,N2 + 2]. Figure 7
shows the overlap matrix element for several sector-ground
states. The overlap with sector-ground state of [N1 − 1,N2 +
2] rapidly approaches 0 as N increases. Using simple angular
momentum accounting, similar to the one in Appendix VII,
one can show that the overlap of the new state with the sector
[N1 + 2,N2 − 1] is identically zero. These results indicate that
the coupling to sectors other than [N1 + 1,N2] and [N1,N2 +
1] is vanishingly small; the other sectors can therefore be

FIG. 7. (Color online) Overlap of the state obtained by adding
a single electron to the ground state in the [N1,N2] sector, namely
a†

m0
|�0

[N1,N2]〉, with various sector-ground states. Here N1 − N2 =
6, and the states a†

m0
|�0

[N1,N2]〉 and |�0
[N1+j,N2−j+1]〉 are taken to be

normalized. The coupling with the sector [N1 − 1,N2 + 2] grows
vanishingly small as the size of the system increases. As shown in the
text, the coupling with the sector [N1 + 2,N2 − 1] is identically zero
by symmetry. We expect therefore that the coupling vanishes for all
sectors other than [N1 + 1,N2] and [N1,N2 + 1], indicating that only
these two sectors dominate tunneling of an electron into the edge of
the 2

5 state.

neglected insofar as the process of tunneling of an electron is
concerned.

VII. CONCLUSIONS

We have undertaken an investigation of the 2
5 edge within

the framework of the microscopic CF theory. Our motivations
are twofold. The 2

5 edge has interesting additional structure,
due to the presence of multiple edge sectors, that is not found
at the 1

3 edge, and tunnel conductivity experiments exhibit a
larger discrepancy from the predictions of the effective bosonic
theory.

We have found several interesting results. First of all,
even though there are several almost degenerate fans of edge
excitations, belonging to different [N1,N2] sectors near the
actual ground state, the tunneling is dominated by two sectors,
which are the sectors in which a composite fermion is added
at the edge of the lowest or the second � level. The addition of
an electron to the edge of a FQHE system is thus equivalent to
the addition of a composite fermion—a result that is pleasing
but far from obvious. Second, we find that the values of the
sum of spectral weight at constant total angular momentum
is, in the thermodynamic limit, consistent with the values
predicted by the effective two-boson theory. These sum rules
govern the exponent relevant for the tunnel conductance at
low biases; thus our results provide a nontrivial microscopic
confirmation of the predictions of the two-boson theory (within
our approximations). Strictly speaking, our analysis holds
for a situation in which the two edge channels have the
same velocity, so the sum over spectral weights at a fixed
momentum is identical to the sum over spectral weights at a
fixed energy, but arguments can be given (see Appendix A) that
the same exponent is obtained even when the edge channels
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have different velocities. A numerical verification of the sum of
spectral weights for constant momenta in the individual modes
is yet to be accomplished. Finally, we confirm the operators
constructed in Refs. 43 and 44 for adding composite fermions
to various � levels.

We conclude by speculating on the origin of the discrepancy
between the E2BD predictions and the experimental results.
One possibility is that of edge reconstruction,23 which renders
the exponents nonuniversal. However, intrinsic sources for the
discrepancy have not been ruled out. As indicated in Ref. 25,
� level mixing, which is always present (because although
the inter-CF interaction is small compared to the CF cyclotron
energy, the two have the same energy scale) but neglected in
the present work, can possibly be relevant and can produce
corrections to the edge exponents. Further investigations will
be required to sort out these effects.

ACKNOWLEDGMENTS

We acknowledge Paul Lammert, Chuntai Shi, and Vikas
Argod for insightful discussions and support with numerical
codes and cluster computing. The work at Penn State was
supported by the DOE under Grant No. DE-SC0005042. S. J.
acknowledges the partial support from National Science Foun-
dation under Grant Nos. NSF-DMR-0705152 and 1005417.
D. S. thanks DST, India for financial support under Grant
No. SR/S2/JCB-44/2010. The authors acknowledge Research
Computing and Cyberinfrastructure, a unit of Information
Technology Services at The Pennsylvania State University, for
providing high-performance computing resources and services
used for the computations in this work.

APPENDIX A: GREEN’S FUNCTIONS FOR ν = 2
5

Here we derive the Green’s function based on bosonic fields
described in Sec. III,

G(x,t) = 〈0|T {ψ(x,t)ψ†(0,0)}|0〉
∝

∑
{n1,n2}

eıεnt e−ıknx |C{n1,n2}|2. (A1)

Here we have assumed t > 0, and the momentum is taken
as the total angular momentum kn = m1 + m2 ≡ m, where
m1 = ∑

l ln1l and m2 = ∑
l′ l

′n2l′ are the angular momenta of
electrons in the first and second � levels, respectively.

If we assume a linear dispersion for both edge channels
with the same velocity, then the energy of the state |n1,n2〉 is
given by ε = vm, which allows us to write an expression for
the spectral function A(m), defined by

G(x,t) =
∞∑

m=0

A(m)eım(vt−x), (A2)

as

A(m) =
∑

{n1,n2}
|C{n1,n2}|2 δ

(
m,

∑
l(n1l + n2l)l

)
,

where δ(a,b) is the Kronecker δ.

In other words, the spectral function at a given momentum
(or energy) is the sum over the spectral weights of all states at
that momentum. E2BD predicts this sum to be

A(m) = (m + 2)(m + 1)

2
. (A3)

This is directly related to the edge Luttinger liquid exponent.
Inserting this in Eq. (A2), the Green’s function is seen to be

G(x,t) =
∞∑

m=0

(m + 2)(m + 1)

2
eım(vt−x) ≈ 1

|x − vt |3 .

For situations where the two modes in the E2BD model have
different velocities, as, in general, is expected for a realistic
situation, the energy of a state is given by ε = v1m1 + v2m2.
The Green’s function Eq. (A1) can be written as

G(x,t) =
∞∑

m1=0

∞∑
m2=0

A(m1,m2)eı(m1+m2)(vt−x), (A4)

where A(m1,m2) is the sum of spectral weights of states in
which angular momenta in the two modes are m1 and m2,
respectively:

A(m1,m2) =
∑

{n1,n2}
|C{n1,n2}|2 δ

(
m1,

∑
ln1l l

)
δ
(
m2,

∑
ln2l l

)
.

The E2BD prediction for spectral weights [Eq. (13)] can be
used to evaluate this sum. The primed summations below
correspond to the sum over ni such that

∑
l lnil = mi .

A(m1,m2) = |c1|2
′∑

n1

∏
l

3n1l

n1l!jn1l

′∑
n2

∏
lδ(n2l ,0)

+ |c1|2
′∑

n1

∏
l

( 4
3 )n1l

n1l!jn1l

′∑
n2

∏
l

( 5
3 )n2l

n2l!jn2l

A(m1,m2) = |c1|2
(

m1 + 2
m1

)
δ(m2,0)

+ |c1|2
(

m1 + 1/3
m1

) (
m2 + 2/3

m2

)
, (A5)

where we have used the identity

′∑
n

∏
l

αnl

nl!jnl
=

(
m + α − 1

m

)
, (A6)

Using Eq. (A5), the leading terms of the Green’s function can
be evaluated to be

G(x,t) ≈ |c1|2
|x − v1t |3 + |c2|2

|x − v1t |4/3|x − v2t |5/3
. (A7)

While the corresponding spectral function at a fixed energy is
more complicated, one can argue that in the low-energy limit,
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which corresponds to the t → ∞ limit, the above Green’s
function scales as 1

|t |3 , thus again producing the exponent of 3.

APPENDIX B: SPECTRAL WEIGHTS FOR PARTICLE
ADDED TO LOWEST � LEVEL

When an electron is added to the lowest � level edge, the
spectral weight at angular momentum q,

Ci =
〈
�i

[N1+1,N2]

∣∣a†
m0+q

∣∣�0
[N1,N2]

〉
〈
�0

[N1+1,N2]

∣∣a†
m0

∣∣�0
[N1,N2]

〉 ,

where m0 = 3N1 + N2 is the difference in angular momentum
between the sector ground states at [N1,N2] and [N1 + 1,N2],

can be shown to vanish for most cases. In fact, it is nonzero
only for∣∣ � i

[N1+1,N2]

〉
= |[0,1,2 . . . ,N1 − 1,N1 + q][−1,0,1 . . . ,N2 − 2]〉.

(B1)

The result follows because the state a
†
m0+q |�0

[N1,N2]〉 has
the single-particle orbital at angular momentum (m0 + q)
occupied with probability 1. It is an easy exercise to check
that the basis state shown in Eq. (B1) is the only CF state that
has a nonzero occupation of that angular momentum orbital;
all other CF basis states have that orbital unoccupied, thus
producing a zero overlap.
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