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Anisotropy of the electron momentum distribution in α-quartz investigated by Compton scattering
and ab initio simulations
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The Compton profiles of α-quartz have been measured along 30 crystallographically independent directions
with an experimental resolution of 0.11 atomic units in full width at half maximum. They are critically compared to
those obtained from periodic quantum-chemical simulations based on the use of density-functional, Hartree-Fock,
and post-Hartree-Fock approximations. The anisotropy of the electron momentum distribution, which clearly
emerges from both the experiment and the theory, is analyzed and explained in terms of contributions from the
localized Wannier functions associated with the Si–O bonds and with the lone pairs on the oxygen atoms.
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I. INTRODUCTION

Based on the early work of Coulson,1,2 much attention has
been given in past years to the electron momentum distribution
(EMD) of chemical systems (molecules, crystals). Although
not uniquely,3 the EMD [π (p)] can be reconstructed from
the outcome of Compton scattering experiments and can
provide valuable information on the electronic structure of
the system, complementary to that embodied in the electron
charge distribution (ECD) ρ(r) as obtainable from diffraction
measurements. Many studies have been performed, mainly
theoretical in character, aimed at finding correlations between
the EMD features and the chemical characteristics of the
system: see, for example, Refs. 4–10. Parallel work went
on concerning the analysis of the results from binary (e,2e)
spectroscopy, which provides more subtle information on the
momentum density of individual molecular orbitals,11,12 but
we are not concerned with this topic here.

The analysis performed in those studies was generally based
on a partition of the EMD among contributions from substruc-
tures of the system, starting from knowledge of the ground-
state wave function. Cooper and Allan,8 for instance, used
a valence-bond approach to individualize the spin-coupled
orbital responsible for the bond formation of three simple
diatomic molecules (BH+, LiH, and LiH+) and analyzed its
evolution in momentum space as a function of the internuclear
distance. Only rarely is the Schrödinger equation solved
directly in momentum space (where it becomes an integral
equation); most commonly, it is solved in position space and
then the wave function is Fourier transformed. Localization
techniques in position space13 have been used for partitioning
the total EMD into chemically significant contributions from
bonds, lone pairs, etc.4 It turned out that simple guidelines
for the analysis of the EMD were not generally applicable. For
instance, the bond-directional principle tentatively formulated
by Epstein and Tanner,5 according to which “the momentum
of an electron in a chemical bond is more likely to be directed
perpendicular to than along the bond axis,” was disproved
in many cases.9 As a matter of fact, the contribution of a
pair of electrons in a chemical bond to the EMD was found
to depend not only on the quality of the wave function and

on the scheme of localization adopted, but also, and even
primarily, on the kind of atomic orbitals involved in the bond,
which may result in quite complex structures.7 The possibility
of identifying such chemically significant components of the
total EMD is tantalizing, but it is generally frustrated by a
sort of compensation principle that seems to be generally
valid: “the total EMD of a many-electron system is much
closer to its spherical average than the individual contributions
from chemically significant substructures”; in other words,
anisotropies in momentum space coming from a substructure
are likely to be largely compensated by those from the other
substructures.

The question can then be asked whether it is sensible and
worthwhile to analyze the total EMD in terms of separate con-
tributions. Our answer is (cautiously) in the affirmative for two
main reasons. First, some trace of the individual anisotropies
must be left that is hopefully transferable, approximately at
least, to systems containing the same chemical ingredient.
Second, it is easier and more informative to recognize the effect
of the level of theory employed (basis set, Hamiltonian, etc.) on
the description in momentum space of specific substructures.
A special but important issue in this respect is the influence of
instantaneous Coulomb correlation on the EMD. It has been
recently argued that this effect, not explicitly embodied in
mean-field Hamiltonians like those of Hartree-Fock (HF) or
density-functional theory (DFT), can play a non-negligible
role; in the cases of urea14 and silicon,15,16 its consideration has
been shown to bring the calculated EMD into closer agreement
with the experiment.

Testing the feasibility and usefulness of such an analysis
through a comparison between experiment and theory requires
the fulfillment of some conditions: (i) a set of crystalline
systems should be considered which share similar chemical
substructures that are differently arranged; (ii) for a few
of them, very good experimental determinations of the
EMD should be available, revealing appreciable anisotropies;
(iii) an accurate theoretical evaluation of their density matrices
(DMs) should be feasible; (iv) a “universal” and “transferable”
partition of the theoretical EMD into local contributions should
be used.
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This work is a first step in this direction. It concerns the
EMD properties of α-quartz, the prototype of silica poly-
morphs [(SiO2)n], a class of systems comprising an astounding
variety of crystalline structures, all characterized by silicon
surrounded by oxygen atoms in a tetrahedral coordination. Its
crystalline structure is simple yet nontrivial. It belongs to the
trigonal system (space group P3221) and comprises just three
SiO2 units in the primitive cell, equivalent by symmetry but
differently oriented. In principle, comparison of its EMD with
that of a few simple compounds of the same family could meet
the first of the requirements just listed.

The situation is less encouraging as concerns the second
condition. To our knowledge, only two previous determina-
tions are available of the EMD properties of α-quartz through
Compton profile (CP) experiments. Rosenberg et al.17 used
159-keV γ rays to compare the inelastic scattering properties
of amorphous and single-crystal quartz. They found that
the anisotropy in the latter case was only slightly above
the detectability threshold (their resolution in momentum
space was 0.202 a.u.), about an order of magnitude smaller
than observed in typical covalent systems like silicon. By
means of theoretical simulations, they were able to reproduce
the experimental data to within 1% using a purely ionic
(Si4+ + O2−) model. The lack of appreciable bond charges
combined with the different orientations of the various ion-
ion pairs was suggested as a possible explanation for the
absence of measurable EMD anisotropy. A few years later
Mahapatra and Padhi18 confirmed those findings. They also
provided a different proof of the ionic character of α-quartz,
using a naive scaling principle to compare its average CP
with that of other typical ionic crystals. The advances in
CP techniques in the last 30 years allow us presently to
collect data of unprecedented accuracy. At the High Energy
Inelastic (BL08W) beamline of SPring-8, a rich set of
directional CPs of α-quartz have been measured, as described
in detail in Sec. II, which carry definite evidence of EMD
anisotropy.

Similar progress has taken place in the ab initio simulation
of crystalline systems. We are using here two well-documented
computer programs. CRYSTAL (Refs. 19 and 20) solves the
periodic Schrödinger equation in a one-electron (HF, DFT, or
hybrid-exchange) approximation and determines from there a
variety of crystalline properties, related either to the energy
or to the DM. CRYSCOR (Refs. 21–25) starts from the HF
solution provided by CRYSTAL and corrects it using many-body
perturbation theory truncated at second order (the so-called
Møller-Plesset-2 or MP2 approximation); we are here mainly
interested in the effect of such a post-HF correction on the
EMD. Both programs adopt a basis set of local, atomiclike
functions, the Gaussian-type orbitals (GTOs), which needs
careful calibration. Details of the computational setup are
provided in Sec. III.

Consider now the last requirement in the list above. Among
the possibilities previously mentioned for the partition of the
DM into local contributions, the use of Wannier functions26,27

(WFs) appears particularly suitable for periodic, nonconduct-
ing systems described by one-electron Hamiltonians, and it
is the one here adopted. WFs are real-valued, well-localized
functions of r which span altogether the same functional space
as the occupied crystalline orbitals and are translationally

equivalent to each other and mutually orthonormal. Symmetry-
adapted WFs (Ref. 28) are generated by CRYSTAL after solution
of the one-electron problem and are an essential ingredient for
the post-HF technique adopted in CRYSCOR, which is based
on a local-correlation scheme first proposed by Pulay.29 This
kind of partition, although not unique, presents some attractive
features. First, WFs are generated following a nonarbitrary
prescription;28 it has recently been shown that the scheme
adopted for the symmetrization maximizes in most cases the
equivalences among the WFs.30 Second, they usually can be
identified with definite chemical substructures of the system.
Third, and precisely for the above reason, their essential
features are retained in chemically similar crystals. It is shown
below that the partition of the DM into WF contributions still
makes sense when post-HF corrections are taken into account,
but requires some care.

The present experimental EMD data are compared to the
simulated ones in Sec. IV. The measured CPs reveal an
anisotropy of the EMD which, though small, is clearly larger
than the experimental error. They are closely reproduced by
the calculated profiles, the agreement being better with the
HF and (especially) the post-HF data. The analysis of the
contribution to the EMD from the various WFs allows us to
relate the observed anisotropy to the bonding structure of the
crystal.

II. THE EXPERIMENT

We have collected two sets of directional CPs of α-quartz
at the BL08W beamline of SPring-8 in Japan: 19 CPs J (p; θ )
in the vertical plane and 11 CPs J (p; φ) in the horizontal
plane; the crystallographic direction is here represented by
the two angles θ and φ instead of Miller’s indices [hkl].
θ spans the vertical plane from the [001] (θ = 0◦) to the [210]
(θ = 90◦) direction; φ spans the horizontal plane from the
[100] (φ = 0◦) to the [210] (φ = 30◦) direction. See Sec. IV B
for a graphical definition of such angles. Single crystals of
α-quartz with a cylindrical shape of 5 mm in diameter and
5 mm in height were used. The direction normal to the circular
plane is [010] or [001] so that a set of J (p; θ ) or J (p; φ)
profiles has been measured by keeping the same geometrical
shape of the samples for all directions. This leads to almost
perfect cancellation of multiple-scattering contributions in the
CP anisotropies. The experiment was carried out at room
temperature. The incident x-ray energy was 115.56 keV and
the photon flux at the sample is 1 × 1013 photons/s. The energy
profiles of Compton-scattered x rays were measured at the scat-
tering angle of 163.8◦ using the Cauchois-type high-resolution
Compton-scattering spectrometer.31,32 The overall instrumen-
tal resolution was 0.11 a.u. in full width at half maximum.
The measured profiles were corrected for absorption, detection
efficiency, scattering cross section, and multiple-scattering
contributions. Areas under the corrected profiles were nor-
malized to the total number of electrons, and the normalized
profiles were used as total CPs. For the multiple-scattering
correction, we used the profile of silicon determined by a
separate experiment and evaluated the intensity of multiple
scattering by a Monte Carlo simulation.33 The valence CPs
were obtained by subtracting from the total the core-electron
contribution.34
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III. THE THEORETICAL PROCEDURE

A. Partitioning the EMD into WF contributions

As mentioned in the Introduction, WFs are translationally
equivalent and mutually orthonormal functions of r:

Wi,0(r) = Wi,g(r + g), (1)∫
Wi,g(r)Wi ′,g′ (r)dr = δii ′δgg′ . (2)

Here, g and g′ are lattice vectors of the L-cyclic crystal with
Born von Kármán periodic boundary conditions. WFs span
altogether the same functional space as the occupied canonical
crystalline orbitals (COs) ψj,κ (r), the label κ identifying one
of the L-allowed k points in the first Brillouin zone of the
reciprocal space, while j is the band index which runs from 1
to N0/2 for closed-shell crystals, N0 being the number of
electrons per cell. We are interested here only in valence
WFs, which provide the anisotropic part of the EMD, and
span the space defined by the Nv/2 occupied COs highest
in energy, Nv being the number of valence electrons per cell
(24 in the present case). In CRYSTAL, COs are expressed as a
linear combination of atomic orbitals (AOs), with coefficients
depending on the Hamiltonian adopted [X indicates the HF,
local-density approximation (LDA), Perdew-Burke-Ernzerhof
(PBE), or Becke three-parameter Lee-Yang-Parr (B3LYP)
Hamiltonian; in the following, the superscript X is omitted
when not needed]:

ĥXψX
j,κ (r) = εX

j,κ ψX
j,κ (r), (3)

ψX
j,κ (r) =

∑
μ

aX
j,κ;μ

[∑
g

eıκ·gχg
μ(r − rμ)

]
. (4)

As is standard practice in molecular quantum chemistry,
the AOs are contractions of GTOs of angular momentum
components (
,m), generally centered in an atomic nucleus:

χg
μ(r − rμ) =

Mμ∑
h=1

cμ,hG

,m(r − rμ − g; αμ,h),

(5)

G
,m(r; α) = N
,m(α)

(
(
)∑
t

D

,m
t

3∏
i=1

x
ti
i

)
exp[−αr2].

Each “shell” of 2
 + 1 AOs is then characterized by its center
rμ in the reference zero cell, its “type” (
 = s,p,d,f, . . .), the
number Mμ of GTOs, their “exponent” αμ,h, and their coeffi-
cient in the combination cμ,h (h = 1,Mμ). The general GTO
[G
,m(r; α)] is a real normalized solid harmonics [N
,m(α) is
the normalization factor] and is the product of a homogeneous
polynomial of degree 
 in the Cartesian components of r with
a Gaussian function with α exponent centered at the origin.35

The WFs are obtained from the occupied COs by virtue
of an appropriate unitary transformation that imposes spatial
localization and can be expressed as a linear combination of
AOs:

Wi,0(r) =
∑

μ

∑
g

wi,μgχ
g
μ(r − rμ). (6)

The valence position [γ v(r; r′)] and momentum [γ v(p; p′)]
one-electron DMs of a crystalline, nonconducting, closed-shell

system obtained with a one-electron Hamiltonian can be
expressed in terms of WFs as follows:

γ v(r; r′) = 2

L

Nv/2∑
i

L∑
g

Wi,g(r)Wi,g(r′) (7)

� 6D FT
(8)

γ v(p; p′) = 2

L

Nv/2∑
i

L∑
g

Wi,g(p)W ∗
i,g(p′),

where Wi,g(p) is the Fourier transform (FT) of Wi,g(r):

Wi,g(p) ≡ F[Wi,g(r)]

= e−ıp·g ∑
μ

∑
g′

wi;μg′e−ıp·(rμ+g′)χμ(p),

χμ(p) = F
[
χ0

μ(r)
] =

Mμ∑
h=1

cμ,hF[G
,m(r; αμ,h)]. (9)

The FT of GTOs that appears in the last line can be given a
closed analytical expression.36

The diagonal parts of the one-electron DMs of Eqs. (7) and
(8) are the ECD ρ(r) ≡ γ (r; r) and the EMD π (p) ≡ γ (p; p).
It is worth noting that a direct transformation between ECD
and EMD is not possible. Precisely due to this missing link,
DFT, which is explicitly calibrated on the ECD, is not expected
to provide a satisfactory description of the EMD and related
quantities.14–16,37–40

A convenient expression of the valence EMD is then
obtained:

πv(p) = 2

L

Nv/2∑
i

L∑
g

Wi,g(p)W ∗
i,g(p)

= 2
Nv/2∑
i=1

|Wi,0(p)|2 =
Nv/2∑
i=1

πi(p). (10)

In the second passage we have exploited the translational
equivalence of the WFs property (1) and in the last one we
have partitioned the total EMD π (p) into contributions πi(p)
from the different WFs:

πi(p) = 2
∑
μν

∑
gg′

wi;μgwi;νg′e−ıp·(rμ−rν+g−g′)χμ(p)χ∗
ν (p).

(11)

The above analysis refers to a single-determinantal solution.
It can be interesting, however, to partition in a similar way
the correlation correction to the EMD. With reference to
an AO basis set, the DM either in position (t,t′ = r,r′) or
in momentum (t,t′ = p,p′) space can always be written as
follows:

γ (t; t′) =
∑
μν

(
P 0

μν + P ′
μν

)
χμ(t)χ∗

ν (t′). (12)

Here the two P matrices correspond to a “zero” determi-
nation of the DM and to its correction at a higher level of
approximation, respectively; the labels specifying the center
of the AO have been omitted for simplicity. With reference to
the HF P 0 matrix, CRYSCOR provides a correcting P ′ matrix
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evaluated in the MP2 approximation following a Lagrangian
approach, but without accounting for orbital relaxation.14,41

On the other hand, the AOs can be expressed in terms of the
WFs (defined at the HF level), and of the complementary set of
“local orthonormalized orbitals” (LONs) ξa which span locally
the virtual HF space:23

χμ(t) =
∑

i

cμ,i Wi(t) +
∑

a

dμ,aξa(t), (13)

where cμ,i = 〈μ|i〉, dμ,a = 〈μ|a〉. (14)

After substitution in Eq. (12), we can obtain in particular the
expression for the correction to the EMD in terms of WFs and
LONs:

π ′(p) =
∑
ij

AijWi(p) W ∗
j (p) +

∑
ab

Cabξa(p)ξ ∗
b (p)

+
∑
ia

Bia[Wi(p)ξ ∗
a (p) + W ∗

i (p)ξa(p)],

Aij =
∑
μν

P ′
μνcμ,icν,j , Cab =

∑
μν

P ′
μνdμ,a dν,b,

(15)
Bia =

∑
μν

P ′
μνcμ,idν,a.

By use of this expression, the correction to the EMD can
be partitioned into WF contributions owing, for instance, to a
Mulliken-like procedure, after subdivision of the LONs among
the WFs to whose domains they belong.

B. EMD anisotropy and its partition

At variance with the ECD ρ(r), a multicenter periodic
function ofR3 which exhibits the whole symmetry of the space
group of the system, the EMD π (p) is a single-center function
of P 3 invariant under the symmetry operations of the point
group of the crystal, augmented with the inversion arising from
the equality π (p) = π (−p). Precisely due to its “collapsed”
character about the origin p = 0, it is generally difficult to
extract the information content of the EMD which is usually
revealed in its very subtle features. The partition scheme
described above can represent a useful tool for its analysis.
A much simpler way of extracting information from the total
EMD of a system is by analysis of its anisotropy �π (p) with
respect to the spherical average (SA) function πSA(p) which
is a “radial” function of a single variable (p = |p|):

�π (p) = π (p) − πSA(|p|). (16)

According to the proposal of Neutsch,42 the average value of
a function over the surface of a sphere in P 3 can be computed
as the average of the function values at the 60 points lying on
that surface which form an orbit under the icosahedral group.
It can be shown that this definition is exact for all spherical
harmonics of degree �9. Since the EMD is an even function
with respect to the inversion of the coordinates, it is sufficient
to consider 30 points on the sphere surface. In the present
study, we take advantage of the smooth character of πSA(p)
by explicitly evaluating it on a coarse set of p values and then
by interpolating with a cubic spline.

�π (p) can be partitioned into contributions from the
different valence WFs, since the contribution of core electrons
to the anisotropy is negligible:

�π (p) =
Nv/2∑

i

�πi(p) with �πi(p) = πi(p) − πSA(p)

Nv/2
.

(17)

C. Computational settings

Out of the many ab initio calculations on α-quartz in the
literature, reference is here made to a study recently performed
with CRYSTAL,43 because of the similarity of the techniques
with those used here; information on previous work on the
subject can be found there. That study was primarily concerned
with the effect of the Hamiltonian and basis set on the
calculated vibrational spectrum, but also on other properties,
in particular the equilibrium geometry. Four one-electron
Hamiltonians were there considered which are also used here,
namely, HF, a local44 (LDA) and a generalized-gradient45

(PBE) formulation of DFT, and a hybrid-exchange scheme
(B3LYP).46 It was shown that, in order to obtain convergence in
the calculated properties, a rather sophisticated double-ζ GTO
basis set was needed which included two shells of polarization
d orbitals per atom. With this basis set excellent agreement
between the calculated and the experimental geometry47

was verified with all Hamiltonians except that in the LDA.
This justifies our use of the experimental geometry in all
calculations to be described in the following; this choice
allows all calculated DMs to be compared to each other and
to the experiment. As concerns the vibrational frequencies,
B3LYP proved to be the best choice of Hamiltonian, while HF
performed definitely worse.

The present basis set corresponds to the best one used in
the previous work and includes an f -type shell on both silicon
and oxygen. These high-angular-momentum GTOs can play a
non-negligible role, especially as concerns the estimate of the
correlation corrections.

In CRYSTAL, the truncation of infinite lattice sums is con-
trolled by five thresholds, T1 to T5, which are here set to 15, 15,
15, 25, and 50. The role of T1, here set to the tight value of 15
(instead of 6 which is the default), is of particular relevance for
a reliable description of momentum-space properties. The DFT
exchange-correlation contribution is evaluated by numerical
integration over the cell volume: radial and angular points of
the atomic grid are generated through Gauss-Legendre and
Lebedev quadrature schemes, using a (75,974)-point grid;
grid pruning is adopted. Reciprocal space is sampled with
a shrinking factor equal to 15, corresponding to 349 k points
in the irreducible Brillouin zone.

In CRYSCOR, WFs play an essential role together with the
complementary set of projected atomic orbitals (PAOs); the
latter are local functions which span the virtual HF manifold.29

The functions in the two sets will be concisely indicated as
i,j, . . . and a,b, . . ., respectively. As shown in more detail in
Sec. IV B, each O in α-quartz has four WFs centered close
to it (two lone-pair and two bond WFs), all others being
symmetry equivalent. The MP2 energy E(2) can be written
as a sum of all contributions Eab

ij , each corresponding to
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a two-electron excitation from a pair of WFs to a pair of
PAOs [(ij ) ↑↑ (ab)]; the related amplitudes are calculated via
a self-consistent procedure. The input parameters of CRYSCOR

serve essentially to fix three kinds of tolerance, all concerning
the treatment of WFs and PAOs. The first parameter simply
determines the truncation of their tails and is here set to the
default value of 10−4. The other two parameters are used to
exploit the local-correlation ansatz29,48 according to which all
excitations can be ignored except those involving close-by
WF and PAO pairs. With the general WF (i) a domain Di is
associated consisting of a certain number of atoms close to
it; here Di is taken to correspond to three atoms (Si–O(i)–Si)
for lone-pair WFs of O(i) or to six atoms (O3Si(i)–O(i)–Si)
for WFs along the Si(i)–O(i) bond. Only those [(ij ) ↑↑ (ab)]
biexcitations are retained for which both PAOs a and b belong
to atoms in D(i) or D(j ) and the distance dij between the
centers of the two WFs is within a certain value D, here
set to 12 Å. Once the relevant WF-PAO pairs are selected,
the two-electron repulsion integrals (ia | jb) between the
respective product distributions are evaluated using a periodic
variant of molecular density-fitting techniques,22,23,25,49 if the
two WFs are within a certain distance D′, here set to 8 Å;
otherwise, a multipolar technique is adopted.

IV. RESULTS AND DISCUSSION

A. Compton profiles: Experiment vs theory

The directional CP Jhkl(p) can be obtained through a 2D
integration of π (p) over a plane perpendicular to ehkl through
p ehkl :

Jhkl(p) =
∫

π (p) δ(p · ehkl − p) dp. (18)

Due to the linear relation between CPs and EMD, any partition
of the latter function results in a partition of the former. The
effect of limited experimental resolution characterized by a
given standard deviation σCP (0.047 a.u. in the present case)
can be expressed as a convolution of the previous formula with
a normalized Gaussian function g(p; σCP):

J σ
hkl(p) =

∫ +∞

−∞
Jhkl(p

′)g(p − p′; σCP) dp′. (19)

Within the sudden-impulse approximation, this function is
directly comparable to the outcome of Compton-scattering ex-
periments, after the latter are corrected for multiple-scattering
effects as described in Sec. II.

Figure 1 compares the experimental to the simulated CPs
along a specific direction, [001]. Since similar results are
obtained for the other directions, the considerations that follow
are generally valid.

From the upper panel it is seen that the agreement between
the experimental and all simulated CPs is very good in
the whole range of momentum p here considered, except
in the vicinity of the origin (p < 0.5 a.u.); at p = 0, the
theoretical value overestimates the experimental one by about
0.2%. Such disagreement is generally observed.15 Even if
inadequacy of the theoretical simulations cannot be excluded,
this discrepancy is more often attributed to an insufficient
correction of the experimental data for multiple-scattering
effects, and/or to the neglect of nuclear motion effects in the

FIG. 1. (Color online) Upper panel: Experimental and simulated
total directional CPs along the [001] crystallographic direction. The
core contribution to the computed CPs is reported as a dotted line.
Lower panel: Difference of the CPs along [001] with respect to the
HF one. In both panels, the theoretical CPs are corrected for limited
resolution as in Eq. (19).

simulations. As concerns the latter aspect, we recall that all
the present calculations refer to static nuclei with the lattice
constants set at their experimental value at room temperature.
The inclusion of zero-point and thermal motion of the nuclei
in the simulation is not an easy task; a detailed study in this
direction, including the comparison of experimental versus
theoretical CPs of silicon and lithium fluoride at different
temperatures, is currently being performed by the present two
groups.

More precise information about the influence of the
approximation adopted is provided in the lower panel
of the same figure, where the HF CP is taken as a reference
(note the different vertical scale in the two plots). The
following can be noted:

(1) The experimental distribution of electron momenta is
displaced to higher values with respect to the HF values,
corresponding to a larger expectation value of the kinetic
energy T . This is expected: the HF ground-state total energy
is known to lie higher than the true one (EHF > E0); due
to the virial theorem, which is valid in both cases (T HF =
−EHF; T 0 = −E0), we must have T HF < T 0.

(2) The difference between experiment and theory is
reduced after performing the MP2 correction, consistently with
the fact that EHF+MP2 < EHF, but it remains important.

(3) This residual discrepancy can have different expla-
nations: insufficient extent of the correlation correction;
experimental errors, especially at low momenta; the fact that
the MP2 treatment has been applied only to valence electrons.

(4) For all DFT determinations, the discrepancy with re-
spect to the experiment is in the opposite direction as compared
to HF, more so with the LDA than the PBE functional, and
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FIG. 2. (Color online) Compton profile anisotropies between
different crystallographic directions: (a) [001]-[210] and (b) [100]-
[210]. Experimental data (red circles) are compared to the computed
data with three different one-electron Hamiltonians: HF (thick black
line), LDA (dotted line), and PBE (thin solid line). Some experimental
error bars are also reported. The anisotropies are reported in a.u. per
SiO2 formula unit.

less of course with the hybrid B3LYP technique. This fact
has been noted also by Thakkar with reference to molecular
calculations,38 and is related to the failure of Kohn-Sham
(KS) DFT methods to satisfy the virial theorem, which results
generally in their underestimation of the kinetic energy. In
the present case, the −T/E0 ratio is 1.0000, 0.9974, 0.9973,
and 0.9982, for the HF, LDA, PBE, and B3LYP calculations,
respectively.

We report in Fig. 2 the two main CP anisotropies of
α-quartz: [001]-[210] and [100]-[210] for the vertical and
horizontal planes, respectively. The experimental data with
their associated error bars are compared to those simulated

using three one-electron Hamiltonians: HF, LDA, and PBE.
We do not report post-HF and B3LYP results at this stage
because, from the one hand, MP2 anisotropies are very close
to the HF ones and B3LYP data simply lie in between HF and
PBE ones. It is seen that (i) the experiment gives clear evidence
of the EMD anisotropy in α-quartz, which is however very
small as compared, for instance, to that of a fully covalent
solid like crystalline silicon,15 as already noted in previous
investigations;17,18 (ii) the anisotropy is larger (by about a
factor of 2) in the vertical than in the horizontal plane;
(iii) the noise affecting experimental data does not allow a
detailed discussion of the merits and limitations of the different
Hamiltonians in reproducing fine features of the EMD;
(iv) on the whole, the HF provides closer agreement with the
experiment than DFT functionals.

From the data just reported, the known inadequacy of KS
DFT as concerns the description of EMD is confirmed. This
technique is in fact conceived and calibrated in such a way
as to describe a set of independent pseudoparticles which
constitute a fictitious noninteracting system and reproduce in
principle the exact ECD of the ground state of the real system:
one cannot expect the same set of occupied KS orbitals to
provide its EMD satisfactorily as well.37,50 From now on,
except when indicated, we shall use as a reference the HF
determination of the EMD and related quantities.

A more detailed description of the anisotropy of α-quartz
in momentum space is provided in Figs. 3 and 4, where we
report the whole set of measured CP anisotropies with respect
to the average CP 〈J (p)〉 = (1/30)

∑30
c=1 Jc(p) as a function

of θ and φ for the vertical and horizontal planes, respectively.
We also report the analogous anisotropies obtained at the HF
level for the sake of comparison.

From these data, the larger anisotropy in the vertical
with respect to the horizontal plane is confirmed. Inspection
of Fig. 3 shows that the experiment definitely reveals the
modulation of the anisotropy as a function of θ . For directions
close to [001] (θ � 15◦) the anisotropy is large and positive for
p ≈ 0.7 a.u. When 30◦ � θ � 50◦, the anisotropy is large and
positive for p ≈ 1.2 a.u. and negative for p ≈ 0.7 a.u.; in the
other regions of the vertical plane the anisotropy is smaller and
the agreement less satisfactory (see, for instance, the region
with 70◦ � θ � 80◦). The agreement with the simulated data
is generally good as concerns both amplitude and position of
the oscillations in p space.

The same representation is reported in Fig. 4 for the
horizontal plane. Here the anisotropies, both measured and
calculated, are considerably smaller but still there is good
agreement between the two. For directions close to [100] or
[210] (φ � 9◦ or φ � 24◦) the anisotropy is slightly more
pronounced than in the middle region (12◦ � φ � 21◦), where
it is almost null.

B. Analysis of the calculated EMD

The statistical noise affecting the present experimen-
tal CPs and the fact that they have been sampled only
in directions lying in two orthogonal planes does not
allow a sufficiently reliable reconstruction of the EMD
by well-assessed techniques.51 The analysis of the EMD
and its partition according to the procedures outlined in
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FIG. 3. Anisotropies of the CPs J (p; θ ) with respect to the
average CP 〈J (p)〉 as a function of the angle θ which regularly
spans the vertical plane from the [001] direction (θ = 0◦) to the [210]
direction (θ = 90◦). Experimental data are reported as full circles;
the theoretical anisotropies (thick continuous lines) are obtained at
the HF level. The different anisotropies are upshifted by 0.03 a.u.

Secs. III A and III B will be performed therefore with reference
to the HF results.

Figure 5 confirms the picture provided by the CPs, namely,
the EMD anisotropy is much larger in the vertical than in the
horizontal plane. The region of maximum anisotropy lies at
|p| values between 1.0 and 1.3 a.u.

Figure 6 provides information about the correlation correc-
tion to the EMD along two orthogonal directions, [001] and
[210]. As was already apparent from the CPs, its main effect
is to increase the velocity of electrons in all directions. At a
finer scale, it is seen that the EMD anisotropy estimated at the

FIG. 4. Anisotropies of the CPs J (p; φ) with respect to the
average CP 〈J (p)〉 as a function of the angle φ which regularly
spans the horizontal plane from the [100] direction (φ = 0◦) to the
[210] direction (φ = 30◦). The different anisotropies are upshifted by
0.03 a.u. Symbols as in Fig. 3.

HF level of approximation is reduced when the instantaneous
electron correlation is taken into account, but only to a minor
extent (see inset). A similar effect, but more important, has
been shown to occur in urea14 and silicon.15,16

In order to attempt an explanation of the EMD anisotropy
features, let us now take into consideration the characteristics
of the WFs and their participation in the EMD.

Table I reports some characteristic parameters of the four
symmetry-independent WFs of the reference cell, as obtained
from the use of the four one-electron Hamiltonians X here
considered. They are centered close to one of the six equivalent
oxygen atoms (O1) in the primitive cell. W1 and W2 lie along
the bonds between O1 and its two Si neighbors, which are
at a distance from O1 of 1.613 and 1.605 Å, respectively;
W3 and W4 can be identified with the two lone pairs of O1.
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FIG. 5. (Color online) Anisotropy map of the EMD of α-quartz
as computed at HF level: (a) in a vertical plane; the vertical (θ = 0◦)
and horizontal (θ = 90◦) axes coincide with the [001] and [100]
crystallographic directions, respectively; (b) in the horizontal plane;
the directions represented by φ = 0◦ and φ = 30◦ coincide with the
[100] and [210], respectively. The step between isolines is 0.01 a.u.
and the maximum and minimum values reported are 0.1 and −0.1
a.u. in both panels. The red thick and the black thin lines mark the
region of the map where |p| = 1.0 and 1.3 a.u., respectively.

Ri = [
∫

drWi(r)2(r − Ci)2]1/2 is a measure of the spread of
the ith WF about its centroid Ci . The localized nature of the
WFs can be appreciated from these results. It is seen that
the HF WFs are more localized than the DFT ones; as usual,
the B3LYP result is intermediate between the two. It is also
seen that the lone-pair WFs are more diffuse than the bond
ones. δi is the distance of Ci from the reference O1 atom;
for all WFs and Hamiltonians these values are very small,

FIG. 6. (Color online) The HF EMD [πHF(p)] and the MP2
correction to it [πMP2(p)] plotted along two orthogonal directions,
[001] and [210]. The inset reports the difference between the two
directions [�πHF(p), �πMP2(p)] in an expanded scale. Note that the
MP2 data are multiplied by factors of 100 and 10 in the main plot
and in the inset, respectively.

more so for HF than for DFT. This is an indication of the
ionic character of α-quartz; as expected, the two WFs along
the O–Si bonds are somewhat farther apart with respect to
the two lone-pair WFs. The ionic character is confirmed by
Qi , the value of the contribution of O1 to Wi obtained from
a Mulliken-type population analysis: a value Qi = 1 would
mean that only GTOs centered in O1 contribute to Wi . Again,
the ionic character is higher for the lone-pair than for the
bond-type WFs and, in each category, more so for the HF
than for the DFT values. The latter result can explain why
HF anisotropies of CPs are less pronounced than DFT ones.

Finally, f
X

i = 〈WX
i |f̂ X|WX

i 〉 is the expectation value of the
Hamiltonian with reference to the top of the valence bands. It
is seen that the two bond WFs (W1 and W2) are considerably
lower in energy, as expected, than the two lone-pair ones (W3

and W4). The HF values are lower than the DFT ones, while
the B3LYP results are intermediate. The four Hamiltonians
provide f

X

i values rather similar to each other (within ≈30%),
while the corresponding main gaps may differ by almost a
factor of 3 (624, 220, 227, and 305 mhartrees for HF, LDA,
PBE, and B3LYP, respectively).
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TABLE I. Characteristic parameters of the four symmetry-
independent Wannier functions Wi of α-quartz associated with the
reference oxygen (O1), as obtained from the use of the various
one-electron Hamiltonians (see text for details).

i (type) X RX
i (Å) δX

i (Å) QX
i (|e|) f

X

i (mhartrees)

1 (long bond)

HF
LDA
PBE
B3LYP

1.369
1.423
1.416
1.399

0.404
0.415
0.412
0.410

0.853
0.806
0.813
0.825

−402
−329
−331
−346

2 (short bond)

HF
LDA
PBE
B3LYP

1.368
1.467
1.438
1.413

0.402
0.390
0.391
0.394

0.843
0.817
0.822
0.830

−410
−304
−307
−330

3 (lone pair 1)

HF
LDA
PBE
B3LYP

1.445
1.531
1.515
1.493

0.283
0.270
0.269
0.273

0.949
0.912
0.920
0.927

−230
−167
−171
−181

4 (lone pair 2)

HF
LDA
PBE
B3LYP

1.467
1.556
1.543
1.524

0.286
0.315
0.311
0.303

0.928
0.857
0.865
0.880

−224
−188
−187
−231

Information about the EMD partition among WFs is
provided by the 3 × 3 “i-projected kinetic energy matrix” T(i),
with elements T (i)

mn = (1/2)
∫

dp πi(p)pmpn. Its trace gives the
contribution of the ith WF to the kinetic energy, while its
eigenvalues, reported in Table II, describe the asymmetry of
that WF in momentum space. The present data confirm the
similarity of the two bond WFs and of the two lone-pair ones;
the kinetic energy of the former is considerably larger than that
of the latter. For all WFs it is seen that one of the eigenvalues,
marked as τa in Table II, is larger than the other two (τb and
τb′ ) by about 20%–30%. The analysis of the corresponding
eigenvectors shows that the long axis is oriented almost exactly
along the direction which joins the centroid of the WF to the
respective oxygen atom: e(i)

a ≈ (Ci − RO1 )/|Ci − RO1 |.
This result is still another example of the nonvalidity of

the bond-directional principle,5 which predicts that the second
momentum of a bond function in p space is smallest in the bond
direction (see Introduction). In order to explain why the reverse
is true here, we have plotted in Fig. 7 a map of π1(p) in the Si–
O1–Si plane in two orientations. It is seen that π1(p) exhibits
two peaks along the direction of the (long) O1–Si bond with

TABLE II. Directionality in momentum space of the four refer-
ence WF EMDs πHF

i (p) and of their sum πHF
(O)(p), as defined by the

eigenvalues of the matrix T(i). The expectation value of the kinetic
energy is reported in the last column. All values in a.u. See text for
details.

i (type) τa τb τb′ 〈i|T̂ |i〉
1 (long bond) 2.302 1.911 1.890 6.103
2 (short bond) 2.371 1.919 1.903 6.193
3 (lone pair 1) 1.613 1.182 1.159 3.955
4 (lone pair 2) 1.509 1.162 1.154 3.826
O (all four WFs) 6.613 6.743 6.742 20.069

FIG. 7. (Color online) Plots of the contribution to the total EMD
by a bond WF [π1(p)] in atomic units. The plots are referred to
p values in the Si–O1–Si plane, and are drawn in two different
perspectives, parallel or perpendicular to the long Si–O1 bond along
which W1 is centered: the corresponding direction and that of the short
bond are indicated by a continuous and a dotted arrow, respectively.
The distance between isolines is 0.05 a.u.

maxima at |p| ≈ 1.1 a.u.; it is therefore clear that the second
momentum of the distribution in that direction (τa) is larger
than that in the two orthogonal directions (τb ≈ τb′ ): π1(p)
has in fact quasicylindrical symmetry about the bond. This
two-peak structure is typical of bonds with large participation
of p AOs, as is here the case.7 The new bond-directional
principle9 (a reformulation of the previous one, proposed by
Tanner some years later) appears, however, to be satisfied in
the present case (compare the steepness of the peaks in the
two directions in Fig. 7). We quote from Ref. 9: “In a chemical
bond · · · there are values pm · · · which correspond to local
maxima of π (p) · · · determined by both the geometric and
electronic symmetries of the molecule. For momenta pm + δp
near a maximum it is more likely that δp is perpendicular
rather than parallel to the bond axis.”

A similar structure is present in all four WFs, as it is also
apparent in Table II from the respective anisotropies.
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FIG. 8. (Color online) Plots of the contribution to the total EMD
by the set of the four WFs at the reference oxygen O1 [πO1(p)] in
atomic units. The distance between isolines is 0.1 a.u. Other settings
as in Fig. 7.

The sum of the four WF EMDs associated with the reference
O1 oxygen, πO1(p) = ∑4

i=1 πi(p), provides a partition of the
EMD among six symmetry-equivalent substructures in the unit
cell. Diagonalization of the corresponding O-projected kinetic
energy T(O) results in the data reported in the last line in
Table II. It is seen that the anisotropy is considerably reduced
with respect to that of the individual WFs. We still have a
quasicylindrical structure, which, however, is now rather flat
than oblong; furthermore, the difference between the small and
the two larger eigenvalues is here only 2%, namely, an order of
magnitude lower. The same type of structure is apparent from
the plot of πO1(p), reported in Fig. 8.

This is an example of the compensation principle formu-
lated in the Introduction, according to which anisotropies in
p space associated with individual substructures are strongly
reduced when the respective contributions are summed
together. Its explanation is clear in the present case. Each
of the four WFs centered about an oxygen atom describes a
pair of electrons in a spatially oriented orbital. On the whole,

FIG. 9. (Color online) Upper panels: EMD anisotropy �π (p) on
the vertical (left) and horizontal (right) planes of Fig. 5 for |p| =
1.0 a.u. (red thick continuous line) and |p| = 1.3 a.u. (black thin
continuous line). Lower panels: Dimensionless orientation index BO

(see text for the definition) in the two planes. All the quantities of
left and right panels are reported as functions of the angles θ and φ,
respectively.

however, they must reproduce the EMD of an oxygen ion
(which is spherical by necessity), only slightly distorted by
the crystalline environment. A similar effect, although to a
lesser extent, can be expected in the case of covalently bonded
atoms.

Yet some trace of EMD anisotropy about each oxygen atom
is seen to be left, and the partition into WF contributions has
allowed us to describe it qualitatively: as is seen from Fig. 8,
πO1(p) is approximately cylindrical, with the cylinder axis
oriented along ebi

1 , the bisector of the Si–O1–Si angle. We want
to show how this feature is reflected in the EMD anisotropy
of α-quartz. Consider a set of (quasi)cylindrical objects ωm

(m = 1,n) each characterized by a unit vector em directed
parallel to the cylinder axis and by an asphericity factor αm,
which is positive or negative according to whether the object
is oblong or flat. For each given direction identified by the unit
vector e(θ,φ) we can then introduce an orientation index of
the set: B(θ,φ) = ∑

m αm|em · e(θ,φ)|/n.
If all objects have the same asphericity factor α, the

orientation index may vary from 0 to α, the two extremes
occurring when all objects are directed perpendicular or
parallel to e(θ,φ). We apply here the above definition to the
set of the six equivalent oxygen atoms in the unit cell, with
a direction specified by their special axis in p space, ebi

m, all
characterized by the same α factor, arbitrarily set to 1. Figure 9
reports this orientation index BO(θ,φ) in the vertical plane
(φ = 0◦, left panel) and in the horizontal plane (θ = 90◦, right
panel), and compares it with the EMD anisotropy for the two
values of |p| which encompass the region of maximum EMD
anisotropy. The correspondence is impressive.

V. CONCLUSIONS

A rich set of directional CPs of α-quartz has been
collected along 30 inequivalent crystallographic directions
using synchrotron radiation, high-energy x rays at SPring-
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8 in Japan. The comparison between the outcomes of
the experiment and of ab initio simulations has allowed
us to discuss the deficiencies of the DFT in describing
momentum-space properties and to trace them back to its
systematic underestimation of the kinetic energy (i.e., to its
failure in satisfying the virial theorem). The agreement is much
nicer with HF and post-HF results.

Even if very small, the anisotropy of the EMD has
been definitely confirmed by the present experiments; in
particular, the vertical plane (containing the [001] direction)
has been found to be more anisotropic than the horizontal one
(perpendicular to [001]) by about a factor of 2.

A partitioning technique of the EMD of crystalline non-
conducting systems, based on the localization of the occupied
manifold into Wannier functions, has been presented for the
analysis of the contributions to the total EMD coming from
different chemical substructures of the crystal; its application
to the present case has allowed us to clarify the relationship
between the observed EMD anisotropy and the bonding
structure of α-quartz.

On the grounds of such a partition scheme, a compensation
principle has been enunciated which states that the total EMD
anisotropy of a many-electron system is much less than that of
the individual chemical substructures (bonds, lone pairs, etc.).

Comparison with other members of the silica family
(β-quartz, zeolites, etc.) could provide insight into the
transferability of EMD features associated with well-defined
substructures.

There is room for improvement both experimentally (count-
ing statistics and set of directions explored) and theoretically
(approximate account of nuclear motion effects, inclusion of
orbital relaxation in the MP2 correction of the HF density
matrix,41 treatment of the correlation of core electrons).
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