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Magnetic structures of the two-dimensional Hubbard model on a uniform triangular lattice are investigated
from the viewpoint of quantum fluctuations. First, possible spin density wave (SDW) solutions in the unrestricted
Hartree-Fock approximation are group theoretically classified for the ordering vectors of Q1 = (Ga + Gb)/4,
Q2 = C+

3 Q1, and Q3 = C−
3 Q1. Then, to include the electron correlation effects efficiently, we apply the resonating

Hartree-Fock method. It is shown that the spin fluctuations in the metallic ground state at U/t ∼ 4.5 are reasonably
described as hybridization of two different SDW states obtained by the group theoretical classification and their
low-energy excited states. These fluctuations make the long-range magnetic order significantly reduced in the
correlated ground state.
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I. INTRODUCTION

Electron correlation effects in geometrically frustrated sys-
tems have been attracting much attention in condensed-matter
physics. In fact, a lot of experiments, especially for κ-type
BEDT-TTF compounds, have clarified that these systems show
a variety of interesting and nontrivial ground states, such
as superconductivity, noncolinear 120◦ antiferromagnetism
(AF), and a nonmagnetic Mott-type insulating state.1–4 This
variety of ground states indicates inherent multistability of
the system and the ground state can be easily changed
by small changes in material parameters such as a lattice
constant. Such multistability is an important factor in applying
these materials to technology. On the other hand, quantum
fluctuations inevitably become very large in such a system
with multistability, and they make it difficult to theoretically
investigate detailed electronic structures beyond the mean-
field and perturbative approaches.5–7 So far, some sophisti-
cated numerical methods, such as the matrix-product-states
variational approach (and its derivatives), the path-integral
renormalization group (PIRG) method, and variational and
quantum Monte Carlo calculations, have been applied for
a Heisenberg or Hubbard model on a triangular lattice,8–12

and they have concluded that the ground state has 120◦ AF
ordering in the Heisenberg limit or strong interaction regime
while it is nonmagnetic metal in the weak interaction regime.
PIRG also predicted the nonmagnetic insulating state called
spin liquid in the intermediate interaction regimes.9,10 In these
numerical researches, they calculated correlation functions to
determine the electronic structures of the ground states. In
general, however, it is quite difficult to visualize the detailed
spin structures and, therefore, to show how the long-range
order (LRO) is lost in the so-called nonmagnetic ground states.
In the strongly correlated and geometrically frustrated systems,
the nonmagnetic state would not be a simple paramagnetism
but large quantum fluctuations would eliminate the magnetic
LRO. Such detailed information on the magnetic structures
would be important not only for fundamental physics but also
for technological applications of these frustrated materials.

In this research, we visualize the magnetic quantum fluctu-
ations by superposition of nonorthogonal Slater determinants

and explicitly show how long-range spin correlation is lost in
the metallic ground state. For systematic understanding of the
quantum fluctuations, we first classify the possible spin density
wave (SDW) solutions in the unrestricted Hartree-Fock (UHF)
approximation from the group theoretical point of view. To
clarify quantum fluctuations which reduce or eliminate the
LRO, a resonating HF method is applied. It is shown that
the quantum fluctuations in the correlated ground state are
described mainly by hybridization of two different SDWs and
their low-energy excited states. We also show that the character
of quantum fluctuations changes when the strength of the
on-site Coulomb interaction is changed, though the system
stays metallic.

This paper is organized as follows. In Sec. II, we introduce
our model and methods. Then, results and discussion are given
in Sec. III. Finally, a brief summary is given in Sec. IV.

II. MODEL AND METHOD

In this paper, we consider a two-dimensional (2D) Hubbard
model on a uniform triangular lattice. Its Hamiltonian is
given by

H = −t
∑
〈i,j〉σ

(a†
i,σ aj,σ + a

†
j,σ ai,σ ) + U

N∑
i

ni,↑ni,↓, (1)

where t , U , and N represent a nearest-neighbor hopping,
an on-site Coulomb repulsion, and system size, respectively.
In the following, we consider a half-filled case and impose
a periodic boundary condition. To investigate the electronic
structures and quantum fluctuations, we apply a resonating HF
method,13 in which a many-body wave function is constructed
by superposition of nonorthogonal Slater determinants,
such as

|�〉 =
NS∑
n=1

Cn

∑
G

P G|φn〉. (2)

Here NS represents the number of generating Slater de-
terminants. P G denotes symmetry projections working on
the generating Slater determinants to recover the original
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symmetry of the system, as we superpose symmetry-broken
Slater determinants to incorporate the electron correlation
effects efficiently. Specifically, we employ the general spin
orbital (GSO) for the Slater determinants to describe an
axial-type SDW (ASDW), plane-type SDW (PSDW), and
3D cubic-type SDW (CSDW). The GSO is an extended
molecular orbital and is characterized by the following unitary
transformation of the field operators as

(c1, . . . ,cN ,cN+1, . . . ,c2N ) = (a1↑, . . . ,aN↑,a1↓, . . . ,aN↓)

×
(

U↑↑ U↑↓

U↓↑ U↓↓

)
. (3)

Restricted HF orbitals correspond to U↑↓ = U↓↑ = 0 and
U↑↑ = U↓↓, while different orbitals for different spins
(DODS) correspond to U↑↓ = U↓↑ = 0 and U↑↑ �= U↓↓. The
GSO allows nonzero off-diagonal terms, that is, (U↑↓)† =
U↓↑ �= 0. In this method, orbitals of all the Slater determinants,
as well as their superposition coefficients, are simultaneously
optimized. The orbital optimization corresponds to finding
NS unitary matrices of 2N dimensions, as in Eq. (3), which
give the lowest energy expectation value for the Hamiltonian.
There is no such restriction as a negative sign problem in
a quantum Monte Carlo method or a dimension problem in
a density matrix renormalization group method. So far, we
have demonstrated that the resonating HF method explains
the correlation energies comparable to the variational Monte
Carlo or quantum Monte Calro simulations.14 In addition, we
can directly obtain information on quantum fluctuations by
analyzing the structures of generating Slater determinants.15

For an efficient orbital optimization and analysis, it is impor-
tant to know the UHF ground and excited states. It would
be reasonable to employ such UHF ground and low-energy
excited states as initial Slater determinants of the resonating
Hartree-Fock wave function, though the orbital optimization
might make the final Slater determinants somewhat different
from these initial guesses. Practical applications are given
in Sec. III. We can also refer the UHF states to describe
the electronic structures and quantum fluctuations of the
system. Thus, it is important to classify such UHF solutions
systematically, before applying the resonating HF method.

A group theory is a powerful tool to classify symmetry-
broken solutions in the HF or HF-Bogoliubov equations.16–18

In general, Hamiltonian has a symmetry of

G0 = P × S × R, (4)

where P , S, and R denote space, spin rotation, and time-
reversal groups, respectively. We should note that a uniform
triangular lattice has a D6L(ta,tb) space group, where L(ta,tb)
denotes the translation symmetry group for the unit translation
vectors ta and tb of the lattice shown in Fig. 1(1). Classifi-
cation of UHF solutions corresponds to the classification of
representation spaces spanned by the order parameter vectors,
according to the equivalent branching lemma.19,20 After the
Fourier transformation, such as

a
†
i,σ = 1√

N

∑
k

a
†
kσ eik·ri , (5)

FIG. 1. (Color online) A uniform triangular lattice in real space
(1) and reciprocal vector space (2). In (1), the dotted lines represent
the symmetry lines about spatial and spin rotations.

and applying the HF approximation, the Hamiltonian takes the
form

HHF =
∑

k

ε(k)ã†
kãk +

∑
q

∑
i=0,x,y,z

Zi
q

∑
k

ã
†
k+q/2σiãk−q/2,

(6)

where ã
†
k is a spinor representation of the field operators, such

as

ã
†
k = (a†

k↑,a
†
k↓). (7)

Here σ0 is a 2 × 2 identity matrix and σi (i = x,y,z) are Pauli
matrices. In the following, for a systematic notation, we use
i = 1, 2, and 3 for x, y, and z components of spin, respectively.
Zi

q is a self-consistent field defined by

Z0
q = U

2
ρ0(q), Zi

q = −U

2
ρi(q), (i = 1,2,3), (8)

where

ρi(q) = 1

N

∑
k

〈ã†
k−q/2σiãk+q/2〉. (9)

Here we focus on the SDW solutions to understand the
magnetic structures of the system. In the present research,
we employ the GSO to describe the coplanar PSDW and 3D
CSDW states, as well as the collinear ASDW state. As a result,
ρi(q) can be finite even when i = 1 and 2. As seen from Eq. (6),
the order parameter space of HHF is spanned by

li,q ≡
∑

k

ã
†
k+q/2σiãk−q/2. (10)

We can construct Hermitian bases by

�i,q,1 = 1

2
(li,q + li,−q), �i,q,2 = i

2
(li,q − li,−q), (11)

where we use the relation l
†
i,q = li,−q. Now the problem is

reduced to classifying the order parameter spaces 	, which
are spanned by {�i,q,1,�i,q,2} and are also the representation
spaces of the symmetry group G0. So far, Ikawa and Ozaki have
classified the UHF solutions for K(q = (Ga + Gb)/3) and
M(q = Ga/2) points,21 where Ga = (2π,2π/

√
3) and Gb =

(0,4π/
√

3) are reciprocal lattice vectors shown in Fig. 1(2)
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(the lattice constant is set as unity). The famous 120◦ AF
state is classified as a PSDW in K point. In this research, we
focus on the UHF SDW solutions with the ordering vectors
Q1 = 1

4 (Ga + Gb) and its C±
3 -rotated vectors Q2 and Q3. As

shown below, some UHF solutions classified by these ordering
vectors play important roles in understanding complicated
magnetic structures of the system. By applying the elements
of D6 group, we can see that these Q1, Q2, and Q3 make up a
set of fundamental vectors,

Q1 = 1
4 (Ga + Gb),

C+
3 Q1 = 1

4 (−2Ga + Gb) ≡ Q2,

C−
3 Q1 = 1

4 (Ga − 2Gb) ≡ Q2,

C+
6 Q1 = −Q3, C−

6 Q1 = −Q2,
(12)

C2Q1 = −Q1, C21′Q1 = Q2,

C22′Q1 = Q1, C23′Q1 = Q3,

C21′′Q1 = −Q2, C22′′Q1 = −Q1,

C23′′Q1 = −Q3.

Here Cn represents 2π/n rotation around the z axis (perpen-
dicular to the plane), while C2p represents π rotation around
the p axis shown in Fig. 1(1). The indices + and − represent
the counterclockwise and clockwise directions of the rotation,
respectively. As a result, we should classify the order parameter
spaces 	 spanned by 18 bases, �i,m,1 and �i,m,2, where i is
an index for three components of spin and m is an index
for Qm(m = 1,2,3). For this purpose, we should note the
following relations for the symmetry operations,

(i) From Eqs. (5), (10), and (11), the translation operator
T (n) transforms the bases of the order parameter spaces, as

T (n)(�i,m,1,�i,m,2) = (�i,m,1,�i,m,2)

×
(

cos Qmn sin Qmn

− sin Qmn cos Qmn

)
. (13)

(ii) Spin rotation around the e axis is explicitly given by

u(e,θ )�i,m,1(2) =
∑

j

R(e,θ )ji�j,m,1(2), (14)

where e = (n1,n2,n3) and R(e,θ ) is a 3D matrix given by

⎛
⎝ cos θ + (1 − cos θ )n2

1 (1 − cos θ )n1n2 − n3 sin θ (1 − cos θ )n1n3 + n2 sin θ

1 − cos θ )n1n2 + n3 sin θ cos θ + (1 − cos θ )n2
2 (1 − cos θ )n2n3 − n1 sin θ

(1 − cos θ )n1n3 − n2 sin θ (1 − cos θ )n2n3 + n1 sin θ cos θ + (1 − cos θ )n2
3

⎞
⎠ . (15)

In the following, the spin rotation by 2π/n around the p

axis is represented by unp. p can be the x,y,z axes, the
1′,1′′,2′,2′′,3′,3′′ axes in Fig. 1(1). Spin rotations around
a(y = x) and b(y = −x) axes are also used and they are
represented by

u2a = u2xu
−
4z, u2b = u2xu

+
4z. (16)

(iii) By applying the time-reversal operator t , we obtain

t · a
†
k↑ = −a

†
−k↓, t · ak↑ = −a−k↓,

(17)
t · a

†
k↓ = a

†
−k↑, t · ak↓ = a−k↑,

which result in

t · �i,m,1(2) = −�i,m,1(2). (18)

(iv) From Eq. (12), we obtain

C+
6 �i,1,1 = �i,3,1, C+

6 �i,1,2 = −�i,3,2,

C+
6 �i,2,1 = �i,1,1, C+

6 �i,2,2 = −�i,1,2, (19)

C+
6 �i,3,1 = �i,2,1, C+

6 �i,3,2 = −�i,2,2,

where we should note that Q1, Q2, and Q3 go to −Q3, −Q1,
and −Q2 by C+

6 rotation, respectively. We should also note,
from Eq. (12) or geometrical relation shown in Fig. 1(2),

C21′�i,1,1(2) = �i,2,1(2), C21′�i,2,1(2) = �i,1,1(2),
(20)

C21′�i,3,1(2) = �i,3,1(2).

We obtain similar relations for π rotations around other axes
(1′′,2′,2′′,..), though we do not show them here.

III. RESULTS AND DISCUSSION

A. UHF solutions with SDW ordering

Possible UHF solutions are summarized in Tables I and II,
where the bases of the order parameter spaces and invariance
groups are shown, respectively. These solutions are obtained
according to the equivalent branching lemma, namely, finding
the 1D bases of the order parameter spaces.19,20 Here we show
some examples of how to find the UHF solutions and explain
the spin structures of the SDW solutions.

TABLE I. Bases of the order parameter spaces for the classified
SDW solutions.

SDW Basis of 	

ASDW1 �3,1,1

ASDW2 �3,1,1 − �3,1,2

ASDW3 �3,1,1 + �3,2,1

ASDW4 �3,1,1 − �3,1,2 + �3,2,1 − �3,2,2

ASDW5 �3,1,1 + �3,2,1 + �3,3,1

ASDW6 �3,1,2 + �3,2,2 + �3,3,2

PSDW1 �1,1,1 − �2,1,2

PSDW2 �1,1,1 − �2,2,2

PSDW3 �2,1,1 −
√

3
2 �1,2,1 − 1

2 �2,2,1 +
√

3
2 �1,3,1 − 1

2 �2,3,1

PSDW4 �2,1,2 −
√

3
2 �1,2,2 − 1

2 �2,2,2 +
√

3
2 �1,3,2 − 1

2 �2,3,2

CSDW1 �1,1,1 + �2,2,1 + �3,3,1

CSDW2 �1,1,2 + �2,2,2 + �3,3,2
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1. ASDW1 ∼ ASDW6

These SDW solutions have a spin rotation symmetry around
a certain axis. For convenience, we choose the z axis for this
symmetry axis. First, let us take �3,1,1 as a basis of the order
parameter space 	1. Obviously, this is one of the simplest 1D
bases. From Eq. (13), we obtain

T (2ta)�3,1,1 = −�3,1,1, T (2tb)�3,1,1 = −�3,1,1,
(21)

T (ta − tb)�3,1,1 = �3,1,1.

With Eqs. (12) and (21), we can see that this basis is invariant
for D2L(ta − tb,2ta + 2tb). Here the D2 symmetry group
comes from C2 and C22′ (or C22′′ ) rotation symmetries of �3,1,1.
In addition, from Eqs. (14) and (15), this basis is antisymmetric
for the spin rotations by π around the x and y axes, while it is
symmetric for the spin rotations around the z axis, such as

u2x�3,1,1 ≡ u(ex,π )�3,1,1 = −�3,1,1,

u2y�3,1,1 ≡ u(ey,π )�3,1,1 = −�3,1,1, (22)

u(ez,θ )�3,1,1 = �3,1,1.

With Eq. (18), we can see that the invariance group of 	1 is

G(	1) = D2L(ta − tb,2ta + 2tb)[E + T (2ta)u2x

+ T (2tb)u2y]A(ez)M(ey), (23)

where A(n) = {u(n,θ ),0 � θ � 2π} and M(n) = {E,tu

(n,π )}. We should note that we can express this invariance
group with different combinations of operators but, of course,
they are equivalent to each other. This subgroup represents
a collinear axial SDW (ASDW) solution and is denoted by
ASDW1 in Tables I and II. The spin structure of this state is
shown in Fig. 2(1). We also obtain the geometrically equivalent
ASDW solutions for �3,2,1 and �3,3,1.

Next, we take �3,1,1 − �3,1,2 as a basis of the order
parameter space 	2. Applying the translation and spin rotation
operators gives the same relations as Eqs. (21) and (22),
respectively. On the other hand, this basis does not have a
spatial rotation symmetry around the z axis. For example,
�3,1,2 is antisymmetric for C2 rotation, as seen from Eq. (12).
Instead, it satisfies

C22′(�3,1,1 − �3,1,2) = �3,1,1 − �3,1,2. (24)

Thus, we obtain the invariance group of 	2 as

G(	2) = C′
2L(ta − tb,2ta + 2tb)[E + T (2ta)u2x + T (2tb)u2y

+ T (ta)C2 + T (tb)C2]A(ez)M(ey), (25)

where C′
2 = {E,C22′ } and we used the following relations

obtained from Eqs. (12) and (13),

C2�3,1,1 = �3,1,1, C2�3,1,2 = −�3,1,2,

T (ta)�3,1,1 = T (tb)�3,1,1 = −�3,1,2, (26)

T (ta)�3,1,2 = T (tb)�3,1,2 = �3,1,1.

We also used Eq. (22) for the spin rotations in Eq. (25).
This solution is denoted by ASDW2, and its spin structure is
shown in Fig. 2(2). Other ASDW solutions are obtained quite
similarly and their structures are shown in Figs. 2(3)–2(6).

2. PSDW1 ∼ PSDW4

Now let us move to the SDW solutions whose spin
directions are not collinear but coplanar. These solutions are
called PSDW. For convenience, we take the xy plane for the
spin directions. First, we take �1,1,1 − �2,1,2 as a basis of the
order parameter space 	7. From Eqs. (12) and (14), we obtain

u2x�1,1,1 = �1,1,1, C2�1,1,1 = �1,1,1,
(27)

u2x�2,1,2 = −�2,1,2, C2�2,1,2 = −�2,1,2.

Thus, this basis is invariant to C2u2x . Furthermore, as the
spin direction of this basis is perpendicular to the z axis, it
is antisymmetric for the spin rotation by π around the z axis.
From Eq. (13), this basis is also antisymmetric for T (2ta)
and T (2tb) translations. Therefore, the basis is symmetric for
T (2ta)u2z and T (2tb)u2z. It also satisfies

u+
4z�1,1,1 ≡ u(ez,π/2)�1,1,1 = �2,1,1,

T (ta)�2,1,1 = −�2,1,2, (28)

u+
4z�2,1,2 = −�1,1,2, T (ta)�1,1,2 = �1,1,1,

which means the basis is invariant for T (ta)u+
4z. The basis

is also invariant for T (−ta)u−
4z. As a result, the invariance

group of 	7 is

G(	7) = C′
2L(ta − tb,2ta + 2tb)[E + C2u2x + T (ta)u+

4z

+ T (−ta)u−
4z + T (2ta)u2z + T (2tb)u2z]M(ez). (29)

TABLE II. Invariance group of the SDW solutions, where C′
2 and C′′

2 represent {E,C22′ } and {E,C21′ }, respectively.

SDW Invariance subgroup

ASDW1 D2L(ta − tb,2ta + 2tb)[E + T (2ta)u2x + T (2tb)u2y]A(ez)M(ey)
ASDW2 C′

2L(ta − tb,2ta + 2tb)[E + T (2ta)u2x + T (2tb)u2y + T (ta)C2 + T (tb)C2]A(ez)M(ey)
ASDW3 D2L(4ta,4tb)[E + T (2tb)u2y]A(ez)M(ey)
ASDW4 C′′

2L(4ta,4tb)[E + T (2tb)u2y + T (tb)C2]A(ez)M(ey)
ASDW5 D6L(4ta,4tb)A(ez)M(ey)
ASDW6 D3L(4ta,4tb)(E + C2u2x)A(ez)M(ey)
PSDW1 C′

2L(ta − tb,2ta + 2tb)(E + C2u2x)[E + T (ta + tb)u2z + T (2ta)u2z + T (2tb)u2z + T (ta)u−
4z + T (−tb)u+

4z]M(ez)
PSDW2 L(4ta,4tb)(E + C2u2x)[E + C21′ T (tb)u+

4z + C21′ T (−tb)u−
4z + T (ta + tb)u2x + T (2ta)u2y + T (2tb)u2z]M(ez)

PSDW3 C2L(4ta,4tb)(E + C22′u23′′ )(E + C+
3 u+

3z + C−
3 u−

3z)M(ez)
PSDW4 L(4ta,4tb)(E + C2u2z)(E + C22′u23′′ )(E + C+

3 u+
3z + C−

3 u−
3z)M(ez)

CSDW1 C2L(4ta,4tb)[T (ta + tb)u2x + T (2ta)u2y + T (2tb)u2z](E + C21′u2bt)(E + C+
3 u+

31 + C−
3 u−

31)
CSDW2 L(4ta,4tb)(E + C2t)[T (ta + tb)u2x + T (2ta)u2y + T (2tb)u2z](E + C21′ u2bt)(E + C+

3 u+
31 + C−

3 u−
31)
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FIG. 2. (Color online) Spin structures of collinear ASDW solu-
tions. Arrows show spin directions, and their length represents the
amplitude. Circles and squares denote the sites with net charges and
no spins. Different shapes and colors show different net charges.

This solution is called a PSDW1. Other PSDW solutions
are obtained similarly. The spin structures of all the PSDW
solutions are shown in Fig. 3.

3. CSDW1 and CSDW2

We introduce the SDW solutions whose spin directions are
3D. In this paper we call them cubic-type SDW (CSDW). First
let us take �1,1,1 + �2,2,1 + �3,3,1 as the basis of the order
parameter space 	11. This basis is symmetric for C2 rotation.
Furthermore, as this basis satisfies

T (2ta)�1,1,1 = −�1,1,1, T (2tb)�1,1,1 = −�1,1,1,

T (2ta)�2,2,1 = �2,2,1, T (2tb)�2,2,1 = −�2,2,1, (30)

T (2ta)�3,3,1 = −�3,3,1, T (2tb)�3,3,1 = �3,3,1,

it is invariant for T (2ta)u2y , T (2tb)u2z, and T (2ta + 2tb)u2x .
In addition, from Eqs. (12) and (14), we obtain

u2b�1,1,1 = −�2,1,1, C21′�2,1,1 = �2,2,1,

u2b�2,2,1 = −�1,2,1, C21′�1,2,1 = �1,1,1, (31)

u2b�3,3,1 = −�3,3,1, C21′�3,3,1 = �3,3,1.

FIG. 3. (Color online) Spin structures of coplanar PSDW solu-
tions. Notations are almost the same as in Fig. 3, but in (3) and (4),
different colors, as well as their lengths, show different amplitudes.

FIG. 4. (Color online) Spin structures of CSDW solutions. In
(1), the view is seen from (1,1,1) direction. Red, gray, and blue
arrows represent the positive directions of the x, y, and z axes,
respectively, while the corresponding light colors represent their
negative directions. Circles represent the spin perpendicular to the
paper [(1,1,1)-direction]. In (2), black, green, and blue arrows
represent the spin directions, upward, downward, and parallel to the
paper, respectively. Circles denote the sites with no net spins.

Thus, this basis is invariant for C21′u2bt . Finally, we point out
an interesting symmetry characteristic of 3D spin alignment.
We consider the spin rotation by 2π/3 around x = y = z,
which is denoted by u+

31. From Eqs. (12) and (14), we obtain

u+
31�1,1,1 = �2,1,1, C+

3 �2,1,1 = �2,2,1,

u+
31�2,2,1 = �3,2,1, C+

3 �3,2,1 = �3,3,1, (32)

u+
31�3,3,1 = �1,3,1, C+

3 �1,3,1 = �1,1,1,

which means this basis is invariant for C+
3 u+

31. Thus, the
invariant group of this order parameter space is

G(	11) = C2L(4ta,4tb)[E + T (2ta + 2tb)u2x + T (2ta)u2y

+ T (2tb)u2z](E+C21′ u2bt)(E+C+
3 u+

31+C−
3 u−

31).

(33)

Another CSDW solution is also classified in the similar way.
Spin structures of these CSDW solutions are shown in Fig. 4.

Among these UHF solutions, ASDW2 shown in Fig. 2(2)
becomes the HF ground state in the weak and intermediate
interaction regimes. We show in Fig. 5 the U dependence
of the UHF energies for ASDW2 and 120◦ AF states. In
the strong interaction regimes, the lowest UHF state is 120◦
AF state, which is qualitatively consistent with the previous
researches.8–10 In the following, we focus on the electronic
structures in the weak interaction regime (U/t = 4.5–5).

FIG. 5. (Color online) U/t dependence of the energies for
ASDW1 (black squares), ASDW2 (blue circles), and 120◦ AF (red
circles) states. Solid lines are guides for the eyes.
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FIG. 6. (Color online) Spin structures of NS = 10 Slater determinants generating the resonating HF wave functions for U/t = 4.5.

B. Resonating HF calculations

For further investigation to incorporate the electron cor-
relation effects, we apply the resonating HF method to this
frustrated system. In the following, the system size is N =
12 × 12, and we superpose NS = 10 Slater determinants [and
their symmetry adopted ones denoted by P G in Eq. (2)] to

construct a many-body wave function. The group theoretical
classification for the UHF solutions is useful for the resonating
HF study since it gives important information on trial Slater
determinants to be superposed. Specifically, the lowest UHF
solution in the weak interaction regime (U ∼ 4.5) is the
ASDW2 and, therefore, we employ this ASDW2 and its

245101-6



GROUP-THEORETICAL AND RESONATING HARTREE-FOCK . . . PHYSICAL REVIEW B 84, 245101 (2011)

FIG. 7. Spin correlation function S(k) for U/t = 4.5.

low-energy excited states as initial Slater determinants. On
the other hand, in Fig. 6, we show all the optimized Slater
determinants generating the resonating HF wave function for
U/t = 4.5. In this figure, the up and down spins are denoted by
the red and blue arrows, respectively, and the spin amplitude
is represented by length of the arrow. We can see the spin
flipping or modulation from the uniform ASDW2 ordering
in Figs. 6(1)–6(3), 6(5), and 6(8)–6(10). Areas where the
spin modulations are significant are marked by ovals. One
of the most important features is that we obtain the Slater
determinants whose spin structures are very close to the
ASDW1, as shown in Figs. 6(4), 6(6), and 6(7). In fact, we did
not take such configurations as the initial Slater determinants,
and the orbital optimization worked to incorporate the electron
correlation effects efficiently. From Fig. 6, we can say that
quantum fluctuations are described by quantum interference
among the ASDW1-like states and ASDW2-like states as well
as their symmetry adopted ones.

Now we can speculate that quantum fluctuations due to
such hybridization of Slater determinants having different spin
structures and spin modulations will reduce the LRO of the spin
correlation. In Fig. 7, we show the spin correlation functions
calculated from the resonating HF wave function. Here we
define S(k) as

S(k) = 1

N

∑
i,j

〈Si · Sj 〉e−ik·rij , (34)

FIG. 8. (Color online) Momentum distribution of electron density
N (k) for U/t = 4.5.

FIG. 9. S(k) for U/t = 5.

where rij denotes the relative coordinate between the sites
i and j . This and the following momentum dependences
are calculated by transforming the original triangular lattice
to the topologically equivalent square lattice with diagonal
transfers.9,10 We cannot see any significant structures except
small ones at k = (π/2,π/2) and (−π/2, − π/2), which
would reflect the ASDW2-like spin configuration. This struc-
ture is as small as 1.4 × 10−2, and therefore, the present
result is consistent with the previous ones, which conclude
that no LRO exists in this interaction regime.9,10 However, as
shown above, our results give more explicit spin structures
through the Slater determinants generating the resonating
HF wave function. We should emphasize that this spin
structure is not simply paramagnetic but the spin correlation is
eliminated by large quantum fluctuations due to hybridization
of Slater determinants having different spin structures and spin
modulations.

Here we define N (k) as

N (k) =
∑
i,j,σ

〈a†
iσ ajσ 〉e−ikrij . (35)

This represents the momentum distribution of electrons, and
therefore, it should have jumps at the Fermi wave numbers
when the system is metallic. In fact, as shown in Fig. 8,
N (k) for U/t = 4.5 has clear jumps, which indicates the
system is metallic. It is interesting that each Slater determinant
generating the resonating HF wave function is close to the

FIG. 10. (Color online) N (k) for U/t = 5.

245101-7



SATOH, OZAKI, MARUYAMA, AND TOMITA PHYSICAL REVIEW B 84, 245101 (2011)

FIG. 11. (Color online) Structures of NS = 10 Slater determinants generating the resonating HF wave functions for U/t = 5.

ASDW1 or ASDW2 configurations, but the total wave function
shows the metallic behavior. This would be also caused by the
quantum fluctuations.

Next, we show S(k) and N (k) for U/t = 5 in Figs. 9
and 10, respectively. We can see that the spin structure
is slightly increased (∼4.5 × 10−2) and the slope in N (k)
becomes gentle, though the system seems still nonmagnetic

and metallic, as in the case of U/t = 4.5. We can find the
reason for this change in the electronic structures into the
change in the character of quantum fluctuations. In Fig. 11, we
show the spin structures of the Slater determinants generating
the resonating HF wave function for U/t = 5. We cannot find
Slater determinants having the ASDW1-like spin structure.
The reason is as follows. The energy of the ASDW1 solution
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largely increases as the increase of U/t , compared to ASDW2

solution, as shown in Fig. 5. In the case of U/t = 4.5, the
energy of the ASDW1 is very close to that of the ASDW2,
and therefore, the resonance of these two states can effectively
work to lower the ground-state energy. However, when U/t

is increased, the energy of the ASDW1 becomes much higher
than that of the ASDW2, and the resonance with the ASDW1

does no work to lower the ground-state energy. Thus, the
change in electronic structures is reasonably described by the
quantum fluctuations.

Our purpose is not to lower the ground-state energy as
much as possible but to obtain physics for the complicated spin
structures in the frustrated systems. Therefore, as shown above,
NS = 10 Slater determinants are enough. Here, for the future
works, we just mark the ground-state energy of the resonating
HF wave function at U/t = 4.5, that is −132.7t for the N =
12 × 12 system. We are also interested in the metal-insulator
transition or competition between the nonmagnetic insulating
and 120◦ AF states in the intermediate and strong interaction
regimes. PIRG calculations for N = 6 × 6 predicted a very
complicated phase diagram there. Quantum fluctuations in
these interaction regimes will be investigated elsewhere in
the near future.

Finally, we briefly mention the finite-size effect. It is
difficult to exactly determine whether the system has a real
LRO or not in the thermodynamic limit, even though the spin
correlation is extremely small in our finite-size calculations.
In the thermodynamic limit, simple overlap between the UHF
solutions, for example, ASDW1 and ASDW2, would be 0.
However, the optimized Slater determinants generating the
resonating HF state have significant modulations from the

uniform UHF states, as shown in Figs. 6 and 11. Such modu-
lations are important to make resonance between ASDW1-like
and ASDW2-like states finite in the thermodynamic limit.
In addition, hybridization of the ASDW1 and ASDW2 can
contribute to physics, through the Slater determinants which
are nonorthogonal to both of these two states, even if their
direct overlap goes to zero. Thus, we think the resonating HF
picture, mentioned above, would hold in the thermodynamic
limit, though numerical research is restricted to finite size
systems. A scaling analysis will be done in the near future.

IV. SUMMARY

We have clarified the detailed electronic structures of
the Hubbard model on the uniform triangular lattice in the
weak interaction regime. First, we have classified the UHF
solutions according to the group theory. Then, by using
information obtained from the group theoretical classification,
the resonating HF calculations have been carried out. We have
shown that the system is metallic and nonmagnetic in the
weak interaction regimes. This is not a simple paramagnetism
but spin correlation is eliminated (or significantly reduced)
by large quantum fluctuations due to hybridization of Slater
determinants having different spin structures and spin modula-
tions. Thus, we have obtained the physics behind the electron
correlations in terms of the quantum fluctuations.
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