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Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation
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In the framework of the discrete dipole approximation we develop a theoretical approach that allows the analysis
of the role of multipole modes in the extinction and scattering spectra of arbitrary shaped nanoparticles. The main
attention is given to the first multipoles including magnetic dipole and electric quadrupole moments. The role
of magnetic quadrupole and electric octupole modes is also discussed. The method is applied to nonspherical Si
nanoparticles with resonant multipole responses in the visible optical range, allowing a decomposition of single
extinction (scattering) peaks into their constituent multipole contributions. It is shown by numerical simulations
that it is possible to design silicon particles for which the electric dipole and magnetic dipole resonances are
located at the same wavelength under certain propagation directions of incident light, providing new possibilities
in metamaterial developments.
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I. INTRODUCTION

The main optical feature of nanoparticles is their reso-
nant response as a reaction on external optical fields. This
makes them very attractive for different practical applications,
such as real-time sensor technologies,1–5 surface enhanced
Raman spectroscopy (SERS) with sensitivity down to a
single molecule,6,7 light energy guiding along nanoparticle
chains,8,9 efficient micro-optical devices for surface plasmon-
polaritons,10 nanolensing,11,12 creation of metamaterials with
unique optical properties including negative refraction,13–15

and electromagnetically induced transparency.16–18 So the op-
tical properties of nanoparticles attract considerable attention
at the present time.

The Mie theory provides the unique analytical solution
of Maxwell’s equations for scattering of electromagnetic
waves by single particles.19 In this theory, the extinction
σext and scattering σsct cross sections are presented as a
series of corresponding partial multipole cross sections,20

which contain information about the resonant excitation of
different multipole modes inside the particle.21–23 Resonantly
excited modes determine the distribution of electric and
magnetic fields inside the particle as well as in the near-
and far-field zones and as a consequence, the features of the
particle behavior in electromagnetic fields.24,25 However, the
critical restriction of the Mie theory is that it can only be
applied to spherical particles! In the general case of arbitrary
shaped particles, numerical methods have to be used. Several
approaches to solving this problem have been developed which
give information about multipole scattering and are known
as generalized multipole techniques.26 These techniques are
based on the presentations of the fields as a linear superposition
of known basic functions with coefficients that are found
numerically applying the field boundary conditions. Using the
multipolar functions as the basic functions, one can get infor-
mation about multipole structure of the fields in the considered
systems. The most popular methods in this context are the
T-matrix method27–29 and the multiple multipole method.30–32

In this paper, we address our attention to another powerful
numerical technique that is widely used for the computation of
light scattering by arbitrary shaped particles and is called the
discrete dipole approximation (DDA).33–35 A comprehensive

overview of this method can by found in Ref. 36. In contrast to
the generalized multipole techniques, there are no multipole
presentations of the fields in different domains of considered
systems and ordinary calculated results include only total
extinction (ECS), absorption (ACS), and scattering (SCS)
cross sections. Up to now, there are no direct methods in the
DDA which are capable of describing the role of different
multipole modes to the ECSs, ACSs, and SCSs for arbitrary
shaped particles.28,37,38 Here, we develop such a direct method
and demonstrate its applicability for analysis of multipole light
scattering by nonspherical Si nanoparticles. Our approach
is based on a simple straightforward idea. Because within
DDA, nanoparticles are represented as an array of point
dipoles in a local domain with dimensions smaller than
the scattered wavelength, one can represent the scattered
fields (radiated fields by the dipoles) approximately as a
series of multipole contributions, just as it is demonstrated
in classical textbooks39,40 for localized systems of electric
charges or electric currents. Moreover, using the connection
between electric charge (electric current) density and matter
polarization, we can adopt the expressions of the multipole
moments of electric charge systems to obtain the multipole
moments of electric dipole systems, as described in Sec. II and
in the Appendix. In this paper, the main attention is given to the
first multipoles including the electric dipole, magnetic dipole,
and electric quadrupole. The role of magnetic quadrupole and
electric octupole modes is also discussed.

The paper is organized as follows. In Sec. II, we show how
the multipole presentations of the extinction cross sections and
the scattering cross sections can be obtained in the framework
of DDA. Section III demonstrates the capabilities of the
developed approach, considering different examples of the
light scattering by nonspherical Si nanoparticles. Concluding
remarks concerning applicable perspectives of the developed
method and the Si nanoparticles are presented in Sec. IV.
Important details of the calculational procedure are presented
in the Appendix.

II. MULTIPOLES AND DDA

The main idea of DDA is the replacement of a scattering
object by a cubic lattice of electric point dipoles (Fig. 1)
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FIG. 1. (Color online) Several objects with different shapes are
represented as a cubic lattice of spherical elements, each of which is
characterized by an electric dipole polarizability.

with polarizability αp.36 Without loss of generality, αp can be
considered the same for all point dipoles. The dipole moment
pj induced in each lattice point j is determined by the local
electric field, being the sum of the external electric field E0(rj )
at the position rj of the dipole pj , and the electric fields at rj

generated by the point dipoles located at the positions l �= j .
For monochromatic fields the electric dipole moment of each
point dipole is determined by the coupled-dipole equations

pj = αpE0(rj ) + αp

k2
0

ε0

N∑
l �=j

Ĝ(rj ,rl)pl , (1)

where k0 is the vacuum wave number, ε0 is the vacuum permit-
tivity, Ĝ(rj ,rl) is Green’s tensor of the medium surrounding
the scatterer,41 and N is the total number of point dipoles in
the system [time dependence exp(−iωt) is omitted, ω is the
circular frequency].

A. Extinction

After solving the system of equations (1), the total ECSs
can be found using the optical theorem:33,37

σext = kd

ε0εd |E0|2 Im
N∑

j=1

E∗
0(rj ) · pj . (2)

Here, εd is the permittivity of the environment, kd is the wave
number in the environment, and ∗ denotes complex conjuga-
tion. For arbitrary shaped particles, the extinction or scattering
spectra can have multiple resonances attributed to excitation of
certain electromagnetic modes inside the scattering object. For
multipole classification and interpretation of these resonances,
knowledge of the field distributions inside and outside the
object is usually needed.38 Here, we show that information
about the excited multipoles can be obtained directly from
expression (2). Expanding the field in a Taylor series around a
point r0, one obtains42

E∗
0(rj ) · pj = E∗

0(r0) · pj

+ [∇E∗
0(r0)] : [(rj − r0) ⊗ pj ] + · · · , (3)

where ∇E∗
0(r0) denotes the gradient of the electric field, the

sign ⊗ denotes the dyadic product of vectors, the sign : denotes
the double scalar product of dyads. In this article, we use the
double scalar product of two dyads Â and B̂ in the form43 Â :
B̂ = ∑

nm AnmBnm . Note, that if the particle size satisfies the
condition kd |rj − r0| < 1 (j = 1 . . . N ), the series converges
fast and only the first terms need to be taken into account in
Eq. (3), with the first two corresponding to the electric dipole
(ED), the magnetic dipole (MD), and the electric quadrupole
(EQ).

To evaluate Eq. (3), we split the gradient of the electric field
∇E∗

0(r0) into its symmetric and antisymmetric parts:

∇E∗
0(r0) ≡ ∇E∗

0 + E∗
0∇

2
+ ∇E∗

0 − E∗
0∇

2
, (4)

where we use the symbolic notation44

(∇E∗ ± E∗∇)βγ = ∂E∗
γ

∂β
± ∂E∗

β

∂γ
, (5)

and β = x,y,z and γ = x,y,z.
By using the connection between electric and magnetic

fields ∇ × E∗
0(r0) = −iωμ0H∗

0(r0), the double scalar product
between the antisymmetric part of Eq. (4) and the dyadic
[(rj − r0) ⊗ pj ] can be written as

∇E∗
0 − E∗

0∇
2

: [(rj − r0) ⊗ pj ]

= ωμ0

2i
H∗

0(r0) · [(rj − r0) × pj ] , (6)

where × indicates the vector product and μ0 is the vacuum
permeability (we consider only nonmagnetic materials). Using
the definition of the magnetic moment (see Appendix)

mj (r0) = ω

2i
[(rj − r0) × pj ] (7)

located at r0 and associated with the electric dipole pj located
at rj , one can write

∇E∗
0 − E∗

0∇
2

: [(rj − r0) ⊗ pj ] = μ0H∗
0(r0) · mj (r0) . (8)

Similarly, the double scalar product between the symmetric
part of Eq. (4) and the dyadic [(rj − r0) ⊗ pj ] can be written
in the form

∇E∗
0 + E∗

0∇
2

: [(rj − r0) ⊗ pj ] = ∇E∗
0 + E∗

0∇
12

: Q̂j (r0) ,

(9)

where Q̂j (r0) is the traceless tensor of the EQ moment at
point r0 associated with the ED pj . To obtain expression (9),
we used the definition of the EQ tensor and took into account
that the divergence of the external electric field is equal to
zero. Note that in contrast to traditional considerations, one
should use the EQ tensor expression for a system of electric
dipoles instead of a system of charges. This expression can be
obtained starting from the definition of the common EQ tensor
of electric charges39

Qβγ =
∫

ρ(r)(3βγ − r2δβγ ) dr, (10)

where β = x,y,z and γ = x,y,z, ρ(r) is the electric charge
density at a point r = (x,y,z), and δβγ is the Kronecker
delta. Using the relation between the polarization P and the
associated bound charge density ρb = −∇ · P with P(r) ≡
pδ(r − rj ) for a single dipole located at rj , and inserting the
density ρb into Eq. (10), one obtains the EQ tensor Q̂ located
at the origin of a Cartesian coordinate system and associated
with the ED p at rp = (xp,yp,zp)

Qβγ =
∫

(r2δβγ − 3βγ )[∇ · pδ(r − rp)] dr , (11)
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where δ(r − rp) is the Dirac delta function. After integration of
Eq. (11) and shifting the coordinate system origin by the vector
−r0, the elements of the EQ tensor Q̂ located at the point r0 =
(x0,y0,z0), associated with the ED p located at rj = (xj ,yj ,zj )
in the new coordinate system, can be expressed by

Qββ = 2[2(βj − β0)pβ − (γj − γ0)pγ − (τj − τ0)pτ ]
(12)

Qβγ = 3[(βj − β0)pγ + (γj − γ0)pβ] ,

where β = x,y,z, and γ = x,y,z, and τ = x,y,z; moreover,
β �= γ , τ �= γ , and τ �= β.

Taking into account only the first two terms in Eq. (3), the
ECS can be written as

σext ≈ kd

ε0εd |E0|2 Im

(
E∗

0(r0) · p + μ0H∗
0(r0) · m

+ ∇E∗
0 + E∗

0∇
12

: Q̂

)
, (13)

with

p =
N∑

j=1

pj , m =
N∑

j=1

mj (r0), Q̂ =
N∑

j=1

Q̂j (r0) .

Note that in general, the total magnetic m and the electric
quadrupole Q̂ moments depend on the choice of the origin
of the coordinate system r0.39 Only if the total electric dipole
moment of the system is zero is the uncertainty removed and m
and Q̂ are independent of the origin of the coordinate system.
In resonance, when only one multipole mode determines light
scattering and absorption, the value of this multipole moment is
still weakly dependent on the choice of origin of the coordinate
system. For homogeneous particles, however, there exists a
special point rc = ∑N

j=1 rj /N , coinciding with the center of
mass, with respect to which the number of multipole terms in
the expansion (3) is minimum. For arbitrary shaped particles,
it is therefore convenient to choose this point rc as the origin
of the coordinate system.

To estimate the contribution of higher-order multipoles
to the ECS, the next higher terms of the expansion (3)
have to be taken into account. For example, the third
term, including magnetic quadrupole (MQ) and electric
octupole (EOC) multipoles, can be written as {(rj − r0) ⊗
(rj − r0) : ∇ ⊗ ∇}[E∗

0(r0) · pj ]/2. For an incident plane wave
propagating in z and polarized along the x direction
[E0(r) = E0x exp(ikdz)], the third term reduces to (−k2

d )(zj −
z0)2pjxE

∗
0x exp(−ikdz0)/2. To estimate the separate contribu-

tions of the EOC or MQ modes one should use the definition
of the octupole or magnetic quadrupole moments. There
are several definitions of these moments depending on their
symmetrical and trace properties.25,45 But our procedure is
independent of the multipole definitions and can be apply in
any case. However, interpretation of the obtained multipole
expansions can be different. For example, if the octupole and
magnetic quadrupole moments are both totally traceless and
symmetric, the multipole expansion can include an additional
contribution from the so-called toroid dipole moment.25 For
other definitions (see Appendix), the toroid dipole moment
contribution disappears.25,46 Note that for small particles,
contributions of higher-order multipole modes give only small
corrections. Therefore, in the numerical calculations presented

here, we consider the MQ-EOC term without subdivision of
the corresponding electric and magnetic contributions.

B. Scattering

To obtain information about the contributions of different
multipole modes into the spatial distribution of the scattered
fields, one can use the following equation

E(r) = k2
0

ε0

N∑
j=1

Ĝ(r,rj )pj (14)

describing the superposition of the electric fields generated by
all dipoles of the system. If the observation point is far away
from the scattering object, i.e., r � rj for all j , Green’s tensor
Ĝ(r,rj ) can be expanded into Taylor series around the point rc

with respect to rj , taking into account only several first terms.
To do this, it is convenient to present Green’s tensor as a sum
of three parts: a near-field part ĜN (r,rj ), an intermediate-field
part ĜI (r,rj ), and a far-field part ĜF (r,rj )47

ĜN (r,rj ) = (−Û + 3nj ⊗ nj )
eikdRj

4πk2
dR

3
j

, (15)

ĜI (r,rj ) = (Û − 3nj ⊗ nj )
ieikdRj

4πkdR
2
j

, (16)

ĜF (r,rj ) = (Û − nj ⊗ nj )
eikdRj

4πRj

, (17)

where Û is the 3 × 3 unit tensor and Rj = |r − rj |, nj =
Rj /Rj is the unit vector directed from the point rj to the point
r. The dyadic nj ⊗ nj can be expanded with respect to rj

around the central point rc of the scattering object

nj ⊗ nj = nc ⊗ nc + 2
(nc · Rjc)

Rc

nc ⊗ nc

− 1

Rc

(nc ⊗ Rjc + Rjc ⊗ nc) + · · · , (18)

where nc = Rc/Rc, Rc = (r − rc), and Rjc = (rj − rc). The
factors exp(ikdRj ), 1/R3

j , 1/R2
j , and 1/Rj outside the brackets

of Eqs. (15)–(17) also have to be expanded:

eikdRj = eikd |Rc−Rjc | ≈ eikdRc−ikd nc ·Rjc ,

R−l
j ≈ 1

Rc

(1 + lnc · Rjc/Rc),

where l = 1,2,3. Together with the condition kdRjc < 1 for
any j and using the definitions of the MD and EQ moments, the
scattered electric field can be represented as a superposition of
the individual ED, MD, and EQ contributions (see Appendix)

E(r) = Ep(r) + EQ(r) + Em(r) + · · · (19)

Here, Ep(r) and Em(r) are the electric fields generated by the
total ED p = ∑

j pj and MD m(rc) = ∑
j mj (rc) located at

rc, respectively. Corresponding expressions for these fields in
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all wave zones are

Ep(r) = k2
0e

ikdRc

4πε0Rc

{(
1 + i

kdRc

− 1

k2
dR

2
c

)
Û

+
(

−1 − i3

kdRc

+ 3

k2
dR

2
c

)
nc ⊗ nc

}
p , (20)

Em(r) =
√

μ0

ε0

k0kde
ikdRc

4πRc

(
1 + i

kdRc

)
[m × nc] . (21)

The electric field created by the total EQ tensor located at
rc is given by

EQ(r) = k2
0

ε0
ĜQ(r,rc)(Q̂(rc)nc) , (22)

where Q̂(rc) = ∑
j Q̂j (rc) and nc is a unit vector directing

from rc to r. The tensor ĜQ(r,rc) describing the EQ generated
electric field at the point r can be written as (see Appendix)

ĜQ(r,rc) =
{(

−1 − i3

kdRc

+ 6

k2
dR

2
c

+ i6

k3
dR

3
c

)
Û

+
(

1 + i6

kdRc

− 15

k2
dR

2
c

− i15

k3
dR

3
c

)
nc ⊗ nc

}

× ikde
ikdRc

24πRc

. (23)

Using the far-field approximation of the scattered electric fields
allows calculating the distribution of radiated power in the
far-field zone and the total radiated power.39,42

Choosing the Cartesian coordinate system with the origin
at the central point, so that Rc becomes simply r, and using the
spherical coordinate presentation, the scattered electric field in
the far-field zone from the scatterer is given by the expressions

(i) for the electric dipole p = (px,py,pz)

Ep
ϕ (r,ϕ,θ ) = k2

de
ikd r

4πε0εdr
(py cos ϕ − px sin ϕ) ,

(24)

E
p

θ (r,ϕ,θ ) = k2
de

ikd r

4πε0εdr
(px cos ϕ cos θ

+py sin ϕ cos θ − pz sin θ ) ;

(ii) for the electric quadrupole moment tensor Q̂

EQ
ϕ (r,ϕ,θ ) = ik3

de
ikd r

24πε0εdr
{(Q̂n)x sin ϕ − (Q̂n)y cos ϕ} ,

(25)

E
Q
θ (r,ϕ,θ ) = ik3

de
ikd r

24πε0εdr
{−(Q̂n)x cos ϕ cos θ

− (Q̂n)y sin ϕ cos θ + (Q̂n)z sin θ} ,

where one should take n = (sin θ cos ϕ, sin θ sin ϕ, cos θ );
(iii) for the magnetic dipole m = (mx,my,mz)

Em
ϕ (r,ϕ,θ ) =

√
μ0

ε0εd

k2
de

ikd r

4πr
(−mx cos ϕ cos θ

−my sin ϕ cos θ + mz sin θ ) ,
(26)

Em
θ (r,ϕ,θ ) =

√
μ0

ε0εd

k2
de

ikd r

4πr
(my cos ϕ − mx sin ϕ) .

Here ϕ and θ are the azimuthal and polar angle of the spherical
coordinate system, respectively, n = r/r.

The far-field scattered (radiated) power dP into the solid
angle d� = sin θ dϕ dθ is determined by the time-averaged
Poynting vector so that

dP = 1

2

√
ε0εd

μ0

(∣∣EF
ϕ

∣∣2 + ∣∣EF
θ

∣∣2)
r2d� , (27)

where EF
ϕ = E

p
ϕ + EQ

ϕ + Em
ϕ + · · · and EF

θ = E
p

θ + E
Q
θ +

Em
θ + · · ·. The differential scattering cross section σ (ϕ,θ )

is determined by the expression σ (ϕ,θ )d� = dP/I , where
I = √

(ε0εd/μ0)|E0|2/2 is the radiation flux of the incident
(external) plane wave. The total scattered power P to the
far-field zone is obtained from Eq. (27) by integrating over
the total solid angle. Contributions of higher multipole modes
to the scattered far fields can be estimated in a similar manner
(see Appendix).

III. NUMERICAL DEMONSTRATION

We now demonstrate the capabilities of the developed
approach, considering different examples of scattering objects.
Recently, it has been shown that spherical silicon particles with
radii between 50 and 100 nm have two Mie resonances (electric

FIG. 2. (Color online) Extinction cross-section spectra of silicon
spherical nanoparticles in air. (a) Mie theory; (b) DDA. The particle
radius is Rp = 63 nm. The plane wave is linearly polarized. The plot
shows different multipole contributions to the total ECS.
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dipole and magnetic dipole) in the visible spectral range.47

A test simulation of the total ECSs using the decomposed
DDA method (DDDA) for spherical silicon particles shows
very good agreement with results obtained by Mie theory,
with respect to the contributions of electric and magnetic
dipole modes, as shown in Fig. 2. The numerical calculations

FIG. 3. (Color online) Extinction cross-section spectra of cubic
(a), conical (b), and cylindrical(c) silicon nanoparticles in air.
Cubic particle: side dimension 160 nm. Conical particle: height
100 nm, diameter 130 nm. Cylindrical particle: height 200 nm,
diameter 130 nm. Incident plane wave is linearly polarized and
propagates along the symmetrical axis of the particles. The graphs
present contributions of different multipole modes excited in the
particles.

are carried out with a discretization step of 6.5 nm. The
small deviations between Mie theory and DDDA in the
short-wavelength range result from the discrete approximation
of the spherical shape. ECSs of nonspherical silicon particles
are presented in Fig. 3. The particles have several resonances
depending on their sizes and shapes. Decomposition of the
ECS into different multipole contributions allows classifying
the resonances and evaluating their relative efficiencies. With
this new method it becomes obvious that the cubic particle
[Fig. 3(a)] has an isolated resonance at 	560 nm, which can
basically be attributed to the MQ-EOC term of the multipole
expansion, whereas for the cylindrical particle, the ED and
MQ-EOC resonances overlap [Fig. 3(c)]. For the conical
particle, the ED and MD resonances are very close [Fig. 3(b)],
resulting in a single peak in the total ECS. Taking into account
that for spherical Si particles the resonance of the MQ-EOC
term [see the black solid curve in Fig. 2(a)] corresponds to
the MQ mode, which follows from Mie theory, we assume
that the MQ-EOC resonances in Fig. 3 are also determined
by the excitation of the magnetic type mode. Small deviations
between the total cross sections and the multipole sums in
Fig. 3 can be attributed to the fact that these sums include
only three first terms of the Taylor series (3). Indeed, the
maximum deviations are observed for the cylindrical particle

FIG. 4. (Color online) Extinction cross-section spectra of silicon
cylindrical nanoparticles in air. Cylindrical particles: (a) height
60 nm, diameter 130 nm; (b) height 60 nm, diameter 170 nm. The
incident plane wave has linear polarization and propagates along the
symmetrical axis of the particles.
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[Fig. 3(c)] elongated parallel to the incident wave. In this
case, the expansion parameter, particle size divided by optical
wavelength, is relatively large which requires high-order
multipole corrections. If the height of the cylindrical particles
decreases, the influence of the high-order multipole terms also
decreases, as can be seen in Fig. 4, where the total cross
sections and the multiple sums coincide.

IV. CONCLUDING REMARKS

The proposed DDDA method obtains insight into the
multipole composition of resonant peaks. It can be used to
control the positions of different multipole resonances as
a function of particle size and shape. For example, Fig. 4
demonstrates that by changing parameters of cylindrical Si
nanoparticles, one can obtain nanoparticle dimensions for
which the ED and MD resonances are located at the same
wavelength or at different wavelengths with well-controlled
spectral separation. This unique property of Si nanoparticles
opens new ways for the construction of novel nano-optical
elements and can be particularly important for solving the
problem of low-loss negative index metamaterials. The re-
ported results demonstrate high potential of the developed
DDDA method for studies of scattering properties of arbitrary
shaped nanoparticles. This method can easily be generalized
to many nanoparticle systems and clusters located in different
environments.
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APPENDIX: QUADRUPOLE PROPAGATOR
AND SCATTERED FIELDS

Let us consider the electric field E at a point r in
homogeneous medium with the dielectric constant εd created
by an electric dipole located at a point r′ (Fig. 5). This field is
determined by the expression41

E(r) = k2
0

ε0
Ĝ(r,r′)p, (A1)

where Green’s tensor Ĝ(r,r′) = ĜN (r,r′) + ĜI (r,r′) +
ĜF (r,r′) is determined by Eqs. (15)–(17). We consider that

FIG. 5. (Color online) Position of the dipole p in the chosen
coordinate system.

r ′ � r and r ′ � λ′ (where λ′ is the wavelength, in the medium
with εd , of the radiated waves by the dipole) and expand
Green’s tensor in a Taylor series around the point r ′ = 0 up to
the linear terms with respect to the small parameters r ′/r and
r ′/λ′ (the ratio r/λ′ can be arbitrary).

For the near-field part of Green’s tensor, one can write

ĜN (r,r′)p ≈
(

−Û + 3n ⊗ n + 6
(n · r′)

r
n ⊗ n

− 3

r
(n ⊗ r′ + r′ ⊗ n)

)
eikd r

4πk2
dr

3

×
(

1 − ikdn · r′ + 3
n · r′

r

)
p

≈ (−Û + 3n ⊗ n)
eikd r

4πk2
dr

3

×
(

p − ikd (n · r′)p + 3
(n · r′)p

r

)

+ eikd r

4πk2
dr

3

(
6

(n · r′)
r

(n ⊗ n)p

− 3

r
[(n ⊗ r′)p + (r′ ⊗ n)p]

)
, (A2)

where n = r/r . In the following calculations, we use the
identity

(a ⊗ b)c ≡ a(b · c) , (A3)

where a, b, and c are arbitrary vectors, and the definitions of
the electric quadrupole tensor and magnetic dipole vector (see
below). Using the vector identity [a × [b × c]] = b(a · c) −
c(a · b) one can write

(n · r′)p = 1

2
[r′(n · p) + (n · r′)p] + 1

ikdvd

[n × m] , (A4)

where vd = 1/
√

ε0εdμ0 is the light speed in homogeneous
medium with εd , and

m = − iω

2
[r′ × p] (A5)

is the magnetic moment associated with the dipole p [this
expression is obtained using the expression39 for the magnetic
moment of a current density J(r) = −iωpδ(r − r′)]. By direct
verification one can prove the equality

3[r′(n · p) + (n · r′)p] = Q̂n + 2n(r′ · p) , (A6)

where the elements of the traceless quadrupole moment tensor
Q̂ associated with the dipole p are presented by

Qββ = 2(2β ′pβ − γ ′pγ − τ ′pτ ),
(A7)

Qβγ = 3(β ′pγ + γ ′pβ) ,

where β = x,y,z, and γ = x,y,z, and τ = x,y,z; moreover,
β �= γ , β �= τ , and γ �= τ . After some tedious but straightfor-
ward transformations, using the expression for the magnetic
dipole and electric quadrupole moments, one gets for the
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near-field part

ĜN (r,r′)p ≈ (−Û + 3n ⊗ n)
eikd r

4πk2
dr

3
p

+ eikd r

4πk2
dr

3

{
1

vd

[n × m] − ikd

2n(r′ · p)

3

+
[(

ikd − 6

r

)
Û+

(
15

r
− 3ikd

)
n ⊗ n

]
Q̂n
6

}
.

(A8)

Applying this approach to the intermediate-field and far-field
parts of the expression (A1), one obtains

ĜI (r,r′)p

≈ (Û − 3n ⊗ n)
ieikd r

4πkdr2
p + ieikd r

4πkdr2

×
{[

− 1

vd

− 1

ikdvdr

]
[n × m] +

[
ikd + 1

r

]
2n(r′ · p)

3

+
[(

−ikd + 5

r

)
Û +

(
−12

r
+ 3ikd

)
n ⊗ n

]
Q̂n
6

}
,

(A9)

and

ĜF (r,r′)p ≈ (Û − n ⊗ n)
eikd r

4πr
p + eikd r

4πr

{
− 1

vd

[n × m]

+ 2n(r′ · p)

3r
+

[(
−ikd + 2

r

)
Û

+
(

−3

r
+ ikd

)
n ⊗ n

]
Q̂n
6

}
. (A10)

Finally, the electric field (A1) can be presented approximately
as a superposition of the electric fields created by the electric
dipole p, magnetic dipole m, and the electric quadrupole Q̂

located at the origin of the coordinate system (Fig. 5):

E(r) = k2
0

ε0
[ĜN (r,r′) + ĜI (r,r′) + ĜF (r,r′)]p

≈ Ep(r) + Em(r) + EQ(r) , (A11)

where

Ep(r) = k2
0e

ikd r

4πε0r

{(
1 + i

kdr
− 1

k2
dr

2

)
Û

+
(

−1 − i3

kdr
+ 3

k2
dr

2

)
n ⊗ n

}
p , (A12)

Em(r) =
√

μ0

ε0

k0kde
ikd r

4πr

(
1 + i

kdr

)
[m × n] , (A13)

EQ(r) = k2
0

ε0

{(
−1 − i3

kdr
+ 6

k2
dr

+ i6

k3
dr

3

)
Û

+
(

1 + i6

kdr
− 15

k2
dr

2
− i15

k3
dr

3

)
n ⊗ n

}
ikde

ikd r

24πr
Q̂n .

(A14)

Formally, Eqs. (A12)–(A14) determine electric fields in all
wave zones created by point dipole and quadrupole sources
located in the origin of the coordinate system. If we assume
that these sources are located at the point rc, we get expressions
(20)–(22) with the quadrupole propagator determined by
Eq. (23).

The problem is significantly simplified if we consider
electric fields only in the far-field zone (in the radiation zone
r � λ � r ′). In this case, we should take only zero-order
terms with respect to r ′/r in the Taylor series of the far-field
part of Green’s tensor. The electric field at the point r radiated
by the electric dipole p located at the point r′ is given by

EF (r) = (Û − n ⊗ n)
k2

0e
ikd r

4πε0r
e−ikd (n·r′)p. (A15)

To obtain the multipole presentation one should expand the
factor exp[−ikd (n · r′)] with respect to the small parameter
r ′/λ′. The zero-order and the first terms correspond to the
electric dipole contribution and both magnetic dipole and
electric quadrupole contributions, respectively. Second-order
term corresponds to the magnetic quadrupole and electric
octupole contributions and so on. Including the MQ and EOC
terms, the electric field can be presented in the following
form:25,46

EF (r) = k2
0e

ikd r

4πε0r

(
[n × [p × n]] + ikd

6
[n × [n × Q̂n]]

+ 1

vd

[m × n] + ikd

2vd

[n × (M̂n)]

+ k2
d

6
[n × [n × ((Ôn)n)]]

)
, (A16)

where

M̂ = −2iω

3
[r′ × p] ⊗ r′ ≡ 4

3
m ⊗ r′

is the magnetic quadrupole moment at the origin of the
coordinate system associated with the dipole p located at the
point r′. The symmetrical tensor Ô is the electric octupole
moment with components

Oβββ = 3pββ ′2 , Oβγ τ = pβγ ′τ ′ + pγ β ′τ ′ + pτβ
′γ ′,

Oββγ = Oβγβ = Oγββ = 2pββ ′γ ′ + pγ β ′2,

where β = x,y,z, and γ = x,y,z, and τ = x,y,z; moreover,
β �= γ , β �= τ , and γ �= τ . Here M̂ is traceless, but not
symmetric; while Ô is totally symmetric, but not traceless.25

Note that in our considerations we use the definition of the
traceless electric quadrupole moment Q̂ from Ref. 39 that
differs from the quadrupole moment considered in Ref. 25 by
a factor of 3.
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