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Nonequilibrium quantum transport in fully interacting single-molecule junctions
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Using nonequilibrium Green’s functions, we derive a formula for the electron current through a lead-molecule-
lead nanojunction where the interactions are not restricted to the central region, but are spread throughout the
system, including the leads and the lead-molecule interfaces. The current expression consists of two sets of
terms. The first set corresponds to a generalized Meir and Wingreen expression where the leads’ self-energies
are renormalized by the interactions crossing at the molecule-lead contacts. The second set corresponds to
inelastic scattering events in the leads arising from any arbitrary interaction, including electron-electron and
electron-phonon coupling, treated beyond mean-field approximations. Using different levels of approximation,
we are able to recover well-known expressions for the current. We also analyze how practical calculations can
be performed with our formalism by using the new concept of generalized embedding potentials.
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I. CONTEXT

Developing a theory for the nonequilibrium electronic
quantum transport through nanoscale junctions is a challeng-
ing task, especially when thinking in terms of applications
for nanoscale electronics. Electronic transport through nano-
junctions (single-molecule junctions, for example) exhibits
many important new features in comparison with conduction
through macroscopic systems. This leads to promising new
applications in single-molecule electronics. In particular, in-
teractions such as Coulomb interactions between the electrons
and scattering from localized atomic vibrations are critically
important.

Having a simple expression for the current (or the con-
ductance) of a nanoscale object connected to terminals is
most useful. This is provided by the Landauer formula1 which
describes the current in terms of local properties (transmission
coefficients) of a finite central region C and the distribution
functions of the electron reservoirs connected to this region
C. However, the original Landauer formulation deals only
with noninteracting electrons. It has been used with success
in conjunction with density-functional theory calculations for
realistic nanoscale systems2–6 since DFT maps the many-
electron interacting system onto an effective single-particle
problem. However there are many cases when such a single-
particle approach becomes questionable.7,8 The Landauer
formula has been built upon by Meir and Wingreen9 to
extend the formalism to a central scattering region containing
interactions by using the nonequilibrium Green’s functions
formalism. Other generalizations of Landauer-like approaches
to include interactions and inelastic scattering in the region
C have been developed.10–13 However, in real systems the
interaction is not confined to the central region but exists
throughout the system. Accounting for the interaction along
the whole system is vital.7,14,15

In this paper, we provide a complete description which
generalizes the Meir and Wingreen formalism to systems
where interactions exist throughout the system, as well as at
the interfaces between the central region and the electrodes.
Since the choice of the location of these interfaces is purely
arbitrary, and since the interactions exist everywhere, our

approach is formally identical to a partition-free scheme.14,16

While keeping the approach of the original work of Meir
and Wingreen,9 we derive the most general expression of the
current for the fully interacting system. From this, we recover
all previously derived transport expressions or corrections
when introducing the appropriate level of approximation for
the interaction. Our formalism also leads to the generalization
of the concept of embedding potentials when the interaction
crosses at the boundaries. It therefore provides an alternative
way of introducing open boundary conditions with interaction
in finite-size systems.

The paper is organized as follows. In Sec. II, we provide
the generalized current formula for fully interacting systems.
We describe our model in Sec. II A and derive the current
expression in Sec. II B, with full details of the calculations
provided in Appendix C. The connections between more
conventional results—the current at equilibrium, the current
formula of Meir and Wingreen, and others—are given in
Secs. II C to II F. In Sec. II G we describe how to apply our
formalism in a specific case of interaction crossing at the
contacts. Finally, we conclude and discuss extension of our
work in Sec. III.

II. NONEQUILIBRIUM QUANTUM TRANSPORT

A. The model

The system consists of two electrodes, left L and right R,
which connect a central region C via coupling matrix elements.
The interaction, which we specifically leave undefined (e.g.,
electron-electron or electron-phonon), is spread over the entire
system and crosses at the interfaces between the L(R) and C

regions. We use different labels for the quantum states on
each side of these interfaces: {λ,λ′},{n,m},{ρ,ρ ′} are used to
represent the complete and orthogonal set of states for the L,C,
and R regions, respectively. We also use a compact notation
for the matrix elements M of Green’s functions (g,G), the
self-energies (�), and coupling to the leads (V ), where MC

represents the matrix elements Mnm in the region C, MLC for
Mλm, MCL for Mnλ′ , MRC for Mρm, MCR for Mnρ ′ , ML for
Mλλ′ , and MR for Mρρ ′ .
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FIG. 1. (Color online) Schematic representation of a central
scattering region C connected to the left L and right R electrodes,
with respective quantum-state labels {λ},{n},{ρ} for the three L,C,R

subspaces. Interactions are given by the coupling of the region C to the
L (R) electrode VLC/CL (VRC/CR), and by the many-body effects �MB

within all regions as well as across the LC and CR interfaces. Top:
Interfaces are arbitrarily placed at the contact between the scatterer
(a molecule) and the leads. They cannot be considered as being at
equilibrium, being each in a region of strong spatial variation of the
current and potential drop. Bottom: Interfaces are now well inside the
L,R regions (C region is now the so-called extended molecule) and
are at local quasiequilibrium.

The complete derivation of the current expressions for the
fully interacting lead–central region–lead junctions relies on
only two assumptions: the many-body effects of the interacting
particles are well described by self-energies �MB in the one-
particle Green’s functions G, and there is no direct coupling
or interaction between the states of the L and R regions: The
only interaction between the leads is mediated by the region
C. There is no direct coupling; i.e., �MB

λρ(ρ ′λ′) = 0.17

B. The nonequilibrium current

The location of the interfaces LC and CR is arbitrary
(Fig. 1) and chosen purely for mathematical convenience, as
the interaction spreads throughout the system. We include such
interfaces to make the connection between our results and other
previously derived expressions within the partitioning scheme.

From the continuity equation ∇ �j + ∂tn = 0, we write the
current through the interface between the L and C regions.
The current flowing at the LC interface is given by IL(t) =
−e∂t 〈N̂L(t)〉, where 〈N̂L(t)〉 is the number of electrons in the L

region and is related to the lesser Green’s function as 〈N̂L(t)〉 =∑
λ −iG<

λλ(t,t). From the equations of motion18,19 obeyed by
the Green’s functions on the Keldysh time-loop contour CK ,
we obtain the current IL as

IL(t) = e

h̄
Trλ[(�G)<(t,t) − (G�)<(t,t)]. (1)

From the rules of analytical continuation on CK (see Ap-
pendix B), we find that

(�G)< = �MB,<Ga + (VLC + �MB,r )G<,
(2)

(G�)< = G<(VCL + �MB,a) + Gr�MB,<.

There are no lesser (greater) components for VLC since its time
dependence is local VLC(t,t ′) = VLC(t)δ(t − t ′).

In the steady state, all double-time quantities X(t,t ′) depend
only on the time difference X(t − t ′). The steady-state current
is given after Fourier transform by using (�G)<(t,t) →∫

dω/2π�(ω)G(ω). To obtain the current, we need to cal-
culate the following trace:

Trλ[. . . ] =
∑
λ,n,γ

VλnG
<
nλ(ω) − G<

λn(ω)Vnλ

+�
MB,<
λγ (ω)Ga

γλ(ω) + �
MB,r
λγ (ω)G<

γλ(ω)

−G<
λγ (ω)�MB,a

γ λ (ω) − Gr
λγ (ω)�MB,<

γλ (ω), (3)

where γ runs only on the L and C regions, since �MB
λρ = 0

(there is no direct coupling between the L and R regions). We
then need to evaluate the Green’s functions matrix elements
G<

nλ,G
<
λn,G

a
nλ, Gr

λn, and G
<,r,a
λλ′ by using the Dyson equation

Gx
ij = gx

ij + [g�G]xij (with x = r,a, <, and {i,j} the indices
for the corresponding matrix elements) and the rules of
analytical continuation for the products (see Appendices B
and C for details).

We find the following general expression for the current IL

flowing through the left interface:

IL = e

h̄

∫
dω

2π
Trn

[
Gr

Cϒ̃l
LC +Ga

C

(
ϒ̃ l

LC

)†+G<
C

(
ϒ̃LC −ϒ̃

†
LC

)]

+ Trλ
[
�

MB,>
λλ′ G<

λ′λ − �
MB,<
λλ′ G>

λ′λ
]
, (4)

where

ϒ̃LC = �a
CL g̃a

L �r
LC,

ϒ̃
†
LC = �a

CL g̃r
L �r

LC, (5)

ϒ̃ l
LC = �<

CL

(
g̃a

L − g̃r
L

)
�r

LC + �r
CL g̃<

L �r
LC.

By definition �LC(ω) = VLC + �MB
LC (ω), and similarly for the

CL components. g̃
r,a
L (ω) are the Green’s functions of the

region L renormalized by the interaction inside that region:
(g̃r/a

L )−1 = (gr/a

L )−1 − �
MB,r/a

L where all quantities are defined
only in the subspace L.

There are two contributions to IL: The first trace is a
generalization of the Meir and Wingreen expression9 to the
cases where the interactions exist within the three L,C,R

regions as well as in between the regions. The different
quantities ϒLC are related to the generalized embedding
potentials (i.e., lead self-energies) with interaction crossing
at the LC and CR interfaces (see end of Appendix C). The
second trace in Eq. (4) is related to inelastic effects involving a
sum over the states of the L region. Although the L region
is semi-infinite by definition, an appropriate choice of the
location of the LC interface reduces the summation. For a
closed system at equilibrium, the trace Tr[�>G< − �<G>]
is zero simply because the system obeys the detailed balance
equation: �>G< = �<G>. For all other conditions, if the LC

interface is located deep enough in the L electrode, the system
is locally at quasiequilibrium, and hence the trace vanishes
(see below).

An expression similar to Eq. (4) can be obtained for the
current IR flowing at the right CR interface by swapping the
index L ↔ R and using the current conservation condition
IL + IR = 0.
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1. Different Green’s functions

Finally we need to know, for practical calculations, the
different Green’s functions in all three regions. To evaluate
the currents IL,R , we need the Green’s functions G

a/r,<

C and
G

a/r,<

L,R .
We find for Gr

C = 〈n|Gr |m〉

Gr
C(ω) = gr

C + gr
C �

MB,r
C Gr

C + gr
C Ỹ r

L+R Gr
C

= [[
gr

C(ω)
]−1 − �

MB,r
C (ω) − Ỹ r

L+R(ω)
]−1

, (6)

where Ỹ r
L+R is the sum of the generalized leads’ self-energies

Ỹ r
α (α = L,R) defined as Ỹ r

α = (�Cαg̃α�αC)r .
We find for Gr

R = 〈ρ|Gr |ρ ′〉 that

Gr
ρρ ′ = g̃r

ρρ ′ + g̃r
ρρ1

˜̃Y r
C,ρ1ρ2

Gr
ρ2ρ ′ , (7)

where ˜̃Y r
C is the embedding potential arising from the central

region C. It is defined in the right region R as follows:

˜̃Y r
C,ρ1ρ2

(ω) = �r
ρ1m

(ω) ˜̃gr
ml(ω) �r

lρ2
(ω), (8)

with �r
RC = VRC + �

MB,r
RC (similarly for �r

CR). ˜̃gr
C is a

retarded Green’s function of the region C renormalized by the
interaction inside the central region C and by the embedding
potential of the left region L only:

˜̃gr
C = [[

g̃r
C(ω)

]−1 − Ỹ r
L(ω)

]−1
. (9)

The form of these equations holds for the Green’s function
Gr

L as well as for the advanced Green’s functions Ga
L,R .

We finally get for G<
C = 〈n|G<|m〉

G<
C = Gr

C

(
�

MB,<
C + Ỹ <

L+R

)
Ga

C, (10)

with Y<
L+R(ω) = ∑

α=L,R(�Cαg̃α�αC)<. The rules of an-
alytical continuation need to be applied to the products
[�Cα(ω)g̃α(ω)�αC(ω)]<,r,a to get the full expansion of the
generalized embedding potentials.

C. The current at equilibrium

One of the obvious checks to perform is that there is
no net current at the LC and CR interfaces at equilibrium.
Considering the equation for IL given by Eq. (4), we have
already shown that the trace Trλ[...] vanishes at equilibrium
because of the detailed balance principle. Now we have
to prove the same for the trace Trn[...] in Eq. (4). For
this we use the procedure which consists of introducing
nonequilibrium distribution functions (see Sec. II F below).
Since at equilibrium all distributions are equal to the Fermi
distribution f eq, we end up, after long but trivial manipulation
of Eq.(4), with

Trn[...]eq = Trn
[
Gr

C�r
CL

(
f eqg̃r

L − g̃r
Lf eq

)
�r

LC

−Ga
C�a

CL

(
f eqg̃a

L − g̃a
Lf eq

)
�a

LC

]
, (11)

which after further manipulation (using complex-conjugate
relations between Green’s functions and self-energies) can be
shown to be equal to zero. Hence, as expected, the current IL

from Eq. (4) vanishes at equilibrium.

D. Recovering the Meir and Wingreen current formula

For systems where there are interactions only within C,
we have �MB

nm �= 0 and �
a/r

LC/CL = VLC/CL. Then g̃x
α ≡ gx

α , and
ϒ̃LC = VCL ga

L VLC , ϒ̃ l
LC = VCL g<

L VLC = −(ϒ̃ l
LC)†, and

Eq. (4) can be recast as

IL = ie

h̄

∫
dω

2π
Trn

[
fL

(
Gr

C − Ga
C

)
�L + G<

C�L

]
, (12)

with ifL�L = VCL g<
L VLC and i�L = VCL(ga

L − gr
L)VLC .

Hence we recover the result of Meir and Wingreen.9

Going one step further, we consider interaction within the
L and R regions as well. The current IL in Eq. (4) takes then
the form of the Meir and Wingreen expression Eq. (12), with
renormalized escape rates �̃L; i.e., i�̃L = VCL (g̃a

L − g̃r
L) VLC

and ϒ̃ l
LC ≡ if̃L�̃L(ω) = VCL g̃<

L VLC . The interactions within
the leads renormalize the coupling at the contacts �̃L. Note that
we have allowed for a renormalized distribution function f̃L in
the definition of ϒ̃ l

LC . The distribution of the left lead f̃L has the
same form as the Fermi distribution function, but depending
on the approximation chosen for the interaction �MB

L , the
corresponding Fermi level may also need renormalization.

E. Transport with interaction on the (TD)DFT level

We consider cases where the interaction is spread through-
out the entire system, and are treated at the level of density-
functional theory (DFT). The exchange and correlation effects
for interacting electrons are given by an effective potential
vxc(r,t) obtained from an xc action functional of the electron
density. To this potential corresponds an effective self-energy,
local in both space and time.7,14 This forms a class of self-
energies, where �MB(τ,τ ′) = �̂MB(τ )δ(τ − τ ′) cannot have
lesser or greater components, since the times τ and τ ′ must be
on the same time-loop branch. With no lesser and greater
components for �MB, the trace Trλ[...] in Eq. (4) simply
vanishes. We are thus left with

IL = e

h̄

∫
dω

2π
Trn

[
Gr

C ϒ̃l
LC + Ga

C

(
ϒ̃ l

LC

)†

+G<
C

(
ϒ̃LC − ϒ̃

†
LC

)]
, (13)

where ϒ̃ l
LC = �CL g̃<

L �LC , (ϒ̃ l
LC)† = −�CL g̃<

L �LC , ϒ̃†
LC =

�CL g̃r
L �LC , and � = V + vxc (V has only VαC/Cα compo-

nents, and vxc has local static or dynamic components vxc,{λ,n,ρ}
for DFT or time-dependent DFT calculations, respectively).20

Hence we recover a Meir-and-Wingreen-like expression for
the current with renormalized �̃L. The potential vxc is spread
throughout the system and inside the leads.7,14 Hence Eq. (13)
formally confirms the necessity of including the potential drop
due to vxc in the linear-response regime.21

One should note that our formalism includes all other cases
with other kinds of interactions (electron-phonon) confined
only in the central region.22–27 It also includes other kinds
of electron-hole excitations which can be present in the
leads28 and provides a way to treat systems with electron-hole
excitations crossing at the contacts between the central region
and the leads.
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F. The current in terms of distribution functions
and spectral densities

We now discuss when the second trace in Eq. (4) vanishes.
We introduce the nonequilibrium distributions f <(ω) obtained
from the generalized Kadanoff-Baym ansatz29 X<(ω) =
f <(ω)Xa(ω) − Xr (ω)f <(ω) for a Green’s function or a self-
energy X. We define

g̃<
L = f 0<

L g̃a
L − g̃r

Lf 0<
L ,

G<
C = f <

C Ga
C − Gr

Cf <
C ,

(14)
�<

LC = f int<
L �a

LC − �r
LCf int<

C ,

�<
CL = f int<

C �a
CL − �r

CLf int<
L

(with f 0<
L the Fermi distribution fL of the L region). We

rewrite Eq. (4) as follows:

IL = e

h̄

∫
dω

2π
Trn

[
δG<

C �a
CL

(
g̃a

L − g̃r
L

)
�r

LC

]

+ Trλ
[(

�r
LCGr

C�r
CL − �a

LCGa
C�a

CL

)
δg̃<

L

]
+ (2π )2Trλ

[
δf <

L A�
L (ω)AG

L (ω)
]
, (15)

with δg<
L = δf 0<

L g̃a
L − g̃r

L δf 0<
L , δG<

C = δf <
C Ga

C − Gr
C δf <

C .
The differences of distributions are δf 0<

L = f 0<
L − f int<

L ,
δf <

L,C = f <
L,C − f int<

L,C , and the spectral functions are AX
α =

(Xa
α − Xr

α)/2πi.
At equilibrium all distributions are equal to the Fermi dis-

tribution, all δf = 0 and IL = 0 as expected. For interactions
localized in C only, we again recover Eq. (12) by noticing
that �

a/r

LC(CL) = VLC(CL), A�
L = 0, and g̃L = gL. Furthermore,

when the LC interface is located well inside the L region,
the states λ on the left side of the interface are at their
local equilibrium. Hence the corresponding distributions are
equal to the local Fermi distribution and δf 0<

L = δf <
L = 0, and

therefore the traces Trλ[...] in Eq. (15) and in Eq. (4) vanish
(QED).

The current expression reduces then to

IL = e

h̄

∫
dω

2π
Trn

[
δG<

C �a
CL

(
g̃a

L − g̃r
L

)
�r

LC

]
, (16)

which is just another way to express the Trn[...] in Eq. (4).

G. An example of crossing interaction

We now give a brief description of how to implement our
formalism for a specific case. We consider a single-molecule
junction in the presence of electron-vibron interaction inside
the central region and crossing at one of the contacts. We use
the following Hamiltonian for the central region:

HC = ε0d
†d + ω0a

†a + γ0(a† + a)d†d, (17)

where one electronic level ε0 and one vibration mode of energy
ω0 are coupled together via the coupling constant γ0. The
central region is coupled to the noninteracting L and R regions
via hopping integrals t0α:

VLC + VCR =
∑

α=L,R

t0α(c†αd + d†cα). (18)

We also consider that the hopping of an electron from the C

to the L region (and vice versa) can excite another vibration
mode of energy ωA via the coupling constant γA:

HLC = γA(b† + b)(c†Ld + d†cL) + ωAb†b. (19)

This model can be understood as a lowest order expansion
of the hopping integral t0L(X) = t0L + t ′0LX between the
C and L regions in terms of the relative position X =√

h̄/(2mAωA)(b† + b) of the region C with respect to the
region L. The Hamiltonian HLC represents in this model the
interaction crossing at the LC interface. The corresponding
nonequilibrium Green’s functions and self-energies can be cal-
culated at different orders of the interaction using conventional
nonequilibrium techniques.26,27

Since there is no other interaction inside the L and
R regions, the current expression is given by the first
line of Eq. (4). We consider a mean-field approach to
treat the crossing interaction. This model leads to the
Hartree-like expressions for the self-energies at the LC

interface:

�
MB,r/a

LC = −2
γ 2

A

ωA

i

∫
dω

2π
G<

LC(ω) (20)

[similarly for �
MB,r/a

CL ∝ ∫
dωG<

CL(ω)].
The closed expression for G<

LC Green’s function matrix ele-
ments are calculated from the corresponding Dyson equations
G<

LC = [g�G]<LC . There are no lesser and greater components
for the self-energy �MB

LC at the mean-field level, as we have
explained in Sec. II E. Hence Eq. (5) reduces to

ϒ̃LC = �a
CL ga

L �r
LC,

ϒ̃
†
LC = �a

CL gr
L �r

LC,
(21)

ϒ̃ l
LC = �r

CL g<
L �r

LC,

(ϒ̃ l
LC)† = −�a

CL g<
L �a

LC,

with �
r/a

LC = t0L + �
MB,r/a

LC .
One can see that the interaction crossing at the LC interface

induces a static (however bias-dependent) renormalization
of the nominal coupling t0L between the L and C regions.
This nonequilibrium renormalization induces bias-dependent
modifications of the broadening of the spectral features of
the C region. It can also lead to new physical nonequilibrium
effects in the current.30

The effects of the crossing interaction can also be
treated beyond the mean-field level by considering a
Fock-like dynamical self-energy.26,27 In general the ef-
fects of other interaction (electron-electron) crossing at
the LC and/or CL interfaces can be treated in a similar
manner.

III. DISCUSSION AND CONCLUSION

We have derived an exact expression for the current through
systems with interaction both within the L,C,R regions and at
the LC and CR interfaces. Our result, Eq. (4), is general,
assuming that there are no direct interactions between the
leads—a condition that is physically sound, especially for
single-molecule junctions where the spatial gap between the
two electrodes is large enough. The location of the LC and
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CR interfaces with respect to the physical realistic scatterer is
arbitrary but, in practice, should be chosen conveniently for nu-
merical calculations. When local quasiequilibria are reached at
the interfaces, a simpler expression for the current is obtained,
since the local nonequilibrium distribution functions are equal
to the corresponding Fermi distributions. The deviations δf 0<

and δf < represent a quantitative tool to determine how far
inside the leads the LC/RC interfaces need to be to reach local
equilibrium. Our formalism provides a formal justification of
the concept of the extended molecule that is commonly used
with the conventional partitioned scheme.31 It also provides
the correction terms needed to deal with interaction crossing
at the contacts and when the contacts are not in their respective
local (quasi)equilibrium.

In practice, the calculations should be performed self-
consistently since the various self-energies �MB in the three
regions and at the interfaces are functionals of the all Green’s
functions in all the system. This offers extra degrees of
freedom to perform non-fully-self-consistent calculations, and
test different levels of approximations for the interaction.
We have given an example of how such calculations can
be performed for a specific case in Sec. II G. We have
also found that the current conservation conditions lead
to an important result for a fully interacting system: a
condition that the many-body self-energies �MB should
satisfying in order to keep the conservation IL + IR = 0 (see
Appendix D).

In a broader context, our formalism introduces in a formal
manner the concept of generalized embedding potentials to
interacting cases. Embedding methods provide the correct
boundary conditions for solving the Schrödinger equation in
a limited region of space, region I, automatically matching
the solution on to the wave function in the rest of the system,
region II, via the use of the embedding potential.32 In the
quantum transport community, the embedding potentials usu-
ally arise from the left and right leads to which the scatterer of
interest is connected, and are commonly referred to as the lead
self-energies. In conventional noninteracting approaches, they
are given by �α(ω) = VCαgα(ω)VαC . In our formalism, when
the interactions cross the LC/CR interfaces, we obtain a gen-
eralization of the embedding potentials, defined as Ỹ x

α (ω) =
[�Cα(ω)g̃α(ω)�αC(ω)]x . These generalized embedding poten-
tials contain a double nonlocality, in the sense that the many-
body part of �αC has a spatial extent different from that of the
coupling matrix elements VαC . Hence Ỹα defines a buffer zone,
contained between two surfaces whose separation is related to
the characteristic spatial range of the interaction self-energy
�MB

αC ≡ �MB(|xα − xn|). The generalized embedding potential
provides a new alternative for introducing open boundary
conditions with interaction within many-body finite-size
systems.

In summary, therefore, we have introduced a complete
formalism for an accurate expression for the electron current in
fully interacting systems. The expression is general and takes
into account the fact that the interaction is crossing through the
interface on which the current-density is integrated. Numerical
implementations of our formalism will enable us to study cases
in which the long-range Coulomb interaction is not sufficiently
screened between the central region and the electrodes to
be neglected or approximated, or cases in which vibration

excitations at the contacts play an important role in the
transport properties.

APPENDIX A: RELATIONSHIP AND SYMMETRY ON THE
KELDYSH CONTOUR

The relations between the different components of the
Green’s functions and self-energies on the Keldysh time-loop
contour CK are given by

Xr = X++ − X+− = X−+ − X−−,

Xa = X++ − X−+ = X+− − X−−,
(A1)

X++ + X−− = X+− + X−+,

X−+ − X+− = Xr − Xa,

with Xη1η2 (12) ≡ Gη1η2 (12) or �η1η2 (12), and where (i = 1,2)
is the composite index for space-time location (xi ,ti) and ηi

is the index of the Keldysh time-loop contour CK branch (+
forward time arrow, − backward time arrow) on which the
time ti is located. The usual lesser and greater projections are
defined respectively as X< ≡ X+− and X> ≡ X−+, and the
usual time-ordered (anti-time-ordered) as Xt = X++ (Xt̃ =
X−−).

By definition, complex conjugation of the different Green’s
functions follows the rules

Ga(1,2) = [Gr (2,1)]∗,
G≷(1,2) = −[G≷(2,1)]∗.

Similar expressions hold for the self-energies �x(1,2).

APPENDIX B: RULES FOR ANALYTICAL CONTINUATION

The rules for analytical continuation from CK to normal
real time make that the following products P(i)(τ,τ ′) on the
time-loop contour,

P(2) =
∫

CK

AB,

P(3) =
∫

CK

ABC, (B1)

P(n) =
∫

CK

A1A2...An,

have the following components P x
(i)(t,t

′) on the real-time axis
(x = r,a, > , <):

P
≷
(2) =

∫
t

ArB≷ + A≷Ba,

P
≷
(3) =

∫
t

A≷BaCa + ArB≷Ca + ArBrC≷, (B2)

P r
(n) =

∫
t

Ar
1A

r
2...A

r
n, P a

(n) =
∫

t

Aa
1A

a
2...A

a
n.

APPENDIX C: DERIVATION OF THE CURRENT IL

In this Appendix, we provide the details of the derivation
of the main results of this paper, mainly Eq. (4) and Eq. (5). In
the following, we choose to use the symbol •∑ for summations
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in order to have a better graphical distinction between the sum
signs and the self-energies �.

From Eq. (1) and Eq. (3), we need to calculate the following
traces:

Trλ[(�G)<]

= •
∑
λ,n

[(
Vλn + �MB

λn

)
Gnλ

]< + •
∑
λ,λ′

(
�MB

λλ′ Gλ′λ
)<

(C1)

and similarly

Trλ[(G�)<]

= •
∑
λ,n

[
Gλn

(
�MB

nλ + Vnλ

)]< + •
∑
λ,λ′

(
Gλλ′�MB

λ′λ
)<

(C2)

since �MB
λρ = 0 and �MB

ρλ = 0.
We first consider the sums •∑λ,λ′ :

•
∑
λ,λ′

(
�MB

λλ′ Gλ′λ
)< − •

∑
λ,λ′

(Gλλ′�MB
λ′λ )<

= •
∑
λ,λ′

�
MB,<
λλ′ Ga

λ′λ+�
MB,r
λλ′ G<

λ′λ−G<
λλ′�

MB,a
λ′λ −Gr

λλ′�
MB,<
λ′λ

= •
∑
λ,λ′

�
MB,<
λλ′

(
Ga

λ′λ − Gr
λ′λ

) + (
�

MB,r
λλ′ − �

MB,a
λ′λ

)
G<

λ′λ

= •
∑
λ,λ′

�
MB,<
λλ′ (G< − G>)λ′λ + (�MB,> − �MB,<)λλ′G<

λ′λ

= •
∑
λ,λ′

�
MB,>
λλ′ G<

λ′λ − �
MB,<
λλ′ G>

λ′λ

= Trλ
[
�

MB,>
L G<

L − �
MB,<
L G>

L

]
. (C3)

In the first line of Eq. (C3), we used the rules of analytical
continuation. In the second, we have used the equivalent of
cyclic permutation in the calculation of a trace, i.e., swapping
the index λ and λ′ in the last two terms. This is possible
here since the sums and all matrix elements are defined in
the single subspace of the L electrode. The final result looks
like the collision terms usually obtained in the derivation of a
generalized Boltzmann equation from quantum kinetic theory.
They correspond to the particle production (scattering-in)
and absorption or hole production (scattering-out) related to
inelastic processes (i.e., nondiagonal elements of the self-
energy on the time-loop contour �<) occurring in the left
electrode.

Now we consider the sums •∑λ,n in Eq. (C1) and Eq. (C2).
We find that

•
∑
λn

[...] = •
∑
λn

[
�r

λnG
<
nλ − G<

λn�
a
nλ

+�MB<
λn Ga

nλ − Gr
λn�

MB<
nλ

]
. (C4)

We now need to calculate the following different Green’s
functions matrix elements G<

nλ,G
<
λn,G

a
nλ, and Gr

λn. For this
we use the Dyson-like equation defined for the nondiagonal
elements: Gx

nλ = 〈n|(G�g)x |λ〉 and Gx
λn = 〈λ|(G�g)x |n〉.

We concentrate on one matrix element 〈n|(G�g)<|λ〉 to
show the mechanism of the derivation:

G<
nλ = 〈n|(G�g)<|λ〉=〈n|Gr�<gr +G<�aga+Gr�rg<|λ〉

= •
∑

λ1,λ2,m

Gr
nλ1

�<
λ1λ2

ga
λ2λ

+ Gr
nm �<

mλ2
ga

λ2λ

+G<
nλ1

�a
λ1λ2

ga
λ2λ

+ G<
nm �a

mλ2
ga

λ2λ

+Gr
nλ1

�r
λ1λ2

g<
λ2λ

+ Gr
nm �r

mλ2
g<

λ2λ
, (C5)

with �
a/r

mλ = Vmλ + �
MB,a/r

mλ and �<
mλ = �

MB,<
mλ , and, as ex-

plained above, we have used the condition �x
ρλ = 0. The same

principle holds for the derivation of the other Green’s functions
matrix elements.

The interesting point is that the terms in �
a/r

λ1λ2
can be

factorized out and included within the renormalization of the
left lead Green’s functions g

a/r,<

λ1λ2
as follows:

ga
λλ′(1 − �MB,aga)−1

λ′λ1
= g̃a

λλ1
. (C6)

Therefore the matrix G<
nλ = 〈n|(G�g)<|λ〉 can be recast

as G<
nλ = 〈n|(GC �CL g̃L)<|λ〉, or similarly with an explicit

summation:

G<
nλ = •

∑
m,λ′

Gr
nm �r

mλ′ g̃<
λ′λ

+Gr
nm �

MB,<
mλ′ g̃a

λ′λ + G<
nm �a

mλ2
g̃a

λ′λ. (C7)

We also find that

G<
λn = 〈λ|(g̃L �LC GC)<|n〉,

Ga
nλ = 〈n|(GC �CL g̃L)a|λ〉, (C8)

Gr
λn = 〈λ|(g̃L �LC GC)r |n〉.

Using the rules of analytical continuation for products of
three quantities, we find that Eq. (C4) becomes

•
∑
λn

〈λ|�r
LC |n〉 〈n|(GC �CL g̃L)<|λ〉 − 〈λ|(g̃L �LC GC)<|n〉 〈n|�a

CL|λ〉

+ 〈λ|�MB<
LC |n〉 〈n|(GC �CL g̃L)a|λ〉 − 〈λ|(g̃L �LC GC)r |n〉 〈n|�MB<

CL |λ〉
= •

∑
n

〈n|(G<
C �a

CL g̃a
L + Gr

C �<
CL g̃a

L + Gr
C �r

CL g̃<
L

)
�r

LC |n〉 + 〈n|Ga
C �a

CL g̃a
L �<

LC − �<
LC g̃r

L �r
LC Gr

C |n〉

+〈n|�a
CL

(
g̃<

L �a
LC Ga

C + g̃r
L �<

LC Ga
C + g̃r

L �r
LC G<

C

)|n〉
= •

∑
n

〈n|Gr
C

(
�<

CL g̃a
L �r

LC + �r
CL g̃<

L �r
LC − �<

CL g̃r
L �r

LC

) + Ga
C

(
�a

CL g̃a
L �<

LC − �a
CL g̃<

L �a
LC − �a

CL g̃r
L �<

LC

)

+G<
C

(
�a

CL g̃a
L �r

LC − �a
LC g̃r

L �r
LC

)|n〉 = Trn
[
Gr

Cϒ̃l
LC + Ga

C

(
ϒ̃ l

LC

)† + G<
C

(
ϒ̃LC − ϒ̃

†
LC

)]
. (C9)
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In the second equality of Eq. (C9), the matrix elements have
been swapped to get a trace only over the central region
subspace {n}. The final two equalities are just exactly the Trn
entering the definition of the current IL given by Eq. (4) with
the definitions of ϒ̃ l

LC and ϒ̃LC (and their adjoints) given by

ϒ̃ l
LC = �<

CL

(
g̃a

L − g̃r
L

)
�r

LC + �r
CL g̃<

L �r
LC

= (�g̃)<CL �r
LC − �<

CL (g̃�)rLC, (C10)

ϒ̃LC = �a
CL g̃a

L �r
LC,

and

(ϒ̃ l
LC)† = �a

CL

(
g̃a

L − g̃r
L

)
�<

LC − �a
CL g̃<

L �a
LC

= (�g̃)aCL �<
LC − �a

CL (g̃�)<LC,

ϒ̃
†
LC = �a

CL g̃r
L �r

LC. (C11)

(QED). Equations (C3), (C9), (C10), and (C11) are the main
results of this paper.

Now we can follow the same mechanism of derivation
to obtain an expression similar to Eq. (4) for the current IR

flowing at the right CR interface. Concretely, the expression for
IR is given by Eq. (4) by swapping the index L ↔ R and with
a minus sign because of the current conservation condition
IL + IR = 0.

Finally, one should note that because of the following three
conditions, (i) the very existence of the interaction crossing
at the contact, (ii) the fact that in the most general cases
�a

Cα/αC �= �r
Cα/αC , in opposition with the non-interaction

case where V a
Cα/αC = V r

Cα/αC = VCα/αC , and (iii) the rules
of analytical continuation for triple products P(3), the usual
cyclic permutation performed in the calculation of the trace
Trλ[(�G)< − (G�)<] cannot be used to transform the initial
trace over {λ} onto a trace over {n}. Therefore the current IL at
the LC contact is not given by a straightforward generalization
of the Meir and Wingreen formula of the type

IL �= e

h̄

∫
dω

2π
Trn[Y<

L G>
C − Y>

L G<
C ]

+ Trλ[�MB>
L G<

L − �MB<
L G>

L ], (C12)

where Y x
L is the generalized (interacting) embedding potential

of the L electrode.
This is another very important result of our work which has

strong implication in the expression of the current itself, and
also in the conditions of current conservation.

APPENDIX D: CURRENT CONSERVATION CONDITION

First we consider the general definition of the lesser and
greater Green’s functions:

G≷ = (1 + Gr�r )g≷(1 + �a Ga) + Gr �< Ga. (D1)

The first term represents the initial conditions g≷.
For the central region, we have chosen the initial condition

such as 〈n|g<|m〉 = 0 [see Eq. (10)]. We could have chosen
another initial condition. Such choices have no effects on
the steady-state regime when a steady current flows through
the central region; however, the initial conditions play an
important role in the transient behavior of the current.33–36

For the definition of the lesser left and right Green’s
functions, it is however not possible to neglect the initial

conditions (before full interactions and coupling to the region
central are taken into account). This is because it would not be
physical to ignore the presence of the left and right Fermi seas,
obtained as the thermodynamical limit of the two semi-infinite
leads which act as electron emitter and collector in our model
device.

One can however recast Eq. (D1) as follows:

G< = Gr ((gr )−1g<(ga)−1 + �<) Ga = Gr �̄< Ga, (D2)

with �̄< = �< + γ < and γ < = (gr )−1g<(ga)−1, and simi-
larly for G>. Hence γ < − γ > = (ga)−1 − (gr )−1 and �̄< −
�̄> = (Ga)−1 − (Gr )−1.

From these properties, it can be easily shown that

Trall[�̄
<G> − �̄>G<] = 0 (D3)

for each ω. The trace runs over all indexes in the system
(all ≡ {λ,n,ρ}) and the interaction � are spread over the whole
L,C,R regions. This is the starting point to find the conditions
for current conservation.

Because the trace runs over all three subspaces, we can
apply the usual cyclic permutation and recast Eq. (D3) as
follows:

−Trall[(�G)< − (G�)<] + Trall[γ
<G> − γ >G<] = 0

(D4)

or equivalently∫
dω Trall[(�G)< − (G�)<] + Trall[γ

>G< − γ <G>] = 0.

(D5)

Expanding the trace in the first term over each subspace
Trall[...] = Trλ[..] + Trn[...] + Trρ[...], one can identify the
definition of the currents IL and IR from Trλ[...] and Trρ[...],
respectively.

Hence the condition of current conservation IL + IR = 0
leads to∫

dω Trn[(�G)< − (G�)<] + Trall[γ
>G< − γ <G>] = 0.

(D6)

After further manipulation, lengthy but trivial in the light
of Appendix C, we find that the current conservation leads to
the following condition:∫

dω Trα=L,C,R

[
�MB>

α G<
α − �MB<

α G>
α

] + CLC + CCR = 0

(D7)

with

CLC(ω) = Trn
[(

Ỹ >
L + ϒ̃LC − ϒ̃

†
LC − ϒ̃ l

LC

)
G<

C

− (
Ỹ <

L − ϒ̃ l
LC

)
G>

C + (
ϒ̃ l

LC + (ϒ̃ l
LC

)†
)Ga

]
(D8)

and CCR = CLC[{L ↔ R}].
The first trace in Eq. (D7) corresponds to the sum over the

three regions L,C,R of the integrated collision term. The two
other traces CLC and CCR arise from the interactions crossing
at the LC and CR interfaces. But, globally, Eq. (D7) still
implies that the total integrated collision terms must vanish.
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