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Chiral surface states in topological insulators are robust against interactions, nonmagnetic disorder, and
localization, yet topology does not yield protection in transport. This work presents a theory of interacting
topological insulators in an external electric field, starting from the quantum Liouville equation for the many-body
density matrix. Out of equilibrium, topological insulators acquire a current-induced spin polarization. Electron-
electron interactions renormalize the nonequilibrium spin polarization and charge conductivity, and disorder
in turn enhances this renormalization by a factor of 2. Topological insulator phenomenology remains intact in
the presence of interactions out of equilibrium, and an exact correspondence exists between the mathematical
frameworks necessary for the understanding of the interacting and noninteracting problems.

DOI: 10.1103/PhysRevB.84.235411 PACS number(s): 73.23.−b, 71.10.Pm, 72.25.Dc, 73.20.At

I. INTRODUCTION

The understanding of insulating behavior has been revolu-
tionized by the landmark discovery of topological insulators
(TIs),1–4 which are bulk band insulators with spin-orbit
induced conducting states on the surface [three dimensional
(3D)] or edge [two dimensional (2D)]. These states are a
manifestation of Z2 topological order: topology guarantees
the existence in equilibrium of a crossing of bands connecting
time-reversal invariant momenta, which is robust against
smooth time-reversal invariant perturbations such as nonmag-
netic disorder and electron-electron interactions. The surface
states of 3D TIs are described by a Rashba Hamiltonian5 with
Dirac-cone-like dispersion, and are gapless and chiral, with
a well-defined spin texture (spin-momentum locking.) They
carry a π Berry phase, which protects against backscattering
and thus localization, and is associated with Klein tunneling, a
half quantized anomalous Hall effect6 and a giant Kerr effect.7

Nontrivial topology makes TI a platform for the observation of
Majorana fermions8 and for topological quantum computing.9

The rise of topological insulators is following a close
parallel to the rise of graphene a short time ago. Three-
dimensional topological insulators have grown from nonexis-
tence to a vastly developed mature field involving hundreds of
researchers practically overnight. Within this time span, chiral
surface states started out as a mere theoretical concept, were
predicted to exist in several materials, and were subsequently
imaged.2,3 Unlike graphene, the Hamiltonian of topological
insulators is a function of the real spin, rather than a sublattice
pseudospin degree of freedom. This implies that spin dynamics
is qualitatively different from graphene. Moreover, the twofold
valley degeneracy of graphene is not present in topological
insulators. Despite the apparent similarities, the study of
topological insulators is thus not a simple matter of translating
results known from graphene. Due to the dominant spin-
orbit interaction, topological insulators are also qualitatively
different from ordinary two-dimensional spin-orbit coupled
semiconductors.

The topological order present in TIs is a result of one-
particle physics. In light of this, we recall that electron-electron
interactions modify the effective mass, heat capacity, and

ground-state energy of solids, as well as the response of
solids to external magnetic fields.10 In fact, electron-electron
interactions can lead to spontaneous magnetism in itinerant
electron systems. The best-known example of this effect is
Pauli paramagnetism in interacting electron systems. It is
known from Fermi-liquid theory that the Pauli paramagnetic
susceptibility is enhanced by electron-electron interactions.
This can be derived rigorously using various types of linear-
response formalisms, such as diagrammatic Kubo linear-
response theory, the Keldysh kinetic equation formalism, or
density-matrix formalisms based on the Liouville equation.
Interaction effects in systems with strong spin-orbit inter-
actions have been studied in 2D TI s11,12 and 3D TIs,13–19

and previously in spin-orbit coupled semiconductors.20–25 In
topological insulators the focus has been on phenomena in
equilibrium and in the quantum Hall regime. [Remarkably,
Ostrovsky et al., Phys. Rev. Lett. 105, 036803 (2010), showed
that interactions can fully localize surface states in strongly
disordered TI.]

In the meantime, transport in topological insulators has
made enormous strides recently.26 In initial experimental
efforts, it appeared impossible to identify any signatures what-
soever of the elusive surface states. Yet lately experimental
work on transport in topological insulators has begun to
advance at a brisk pace, and is without doubt entering its
heyday, in the way angle-resolved photoemission spectroscopy
(ARPES) and scanning tunneling microscopy (STM) work did
two years ago. A beautiful experiment27 recently detected the
topological surface states of Bi2Se3, in which Sb was partially
substituted for Bi to reduce the bulk carrier density to 1016

cm−3. At large magnetic fields the surface states were clearly
seen, with Shubnikov–de Haas oscillations depending only
on the perpendicular magnetic field, and oscillatory features
growing with increasing field. Another work showed that
carrier densities can be tuned over a wide range with a back
gate.28 A more recent experimental breakthrough29 investi-
gated surface transport in thin films of Bi2Se3 of thickness
≈ 10 nm, observing Landau levels that evolve continuously
from electronlike to holelike. In another breakthrough, Kim
et al.30 studied Bi2Se3 surfaces in samples with thicknesses of
<10 nm, using a gate electrode to remove bulk carriers entirely
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and take both surfaces through the Dirac point simultaneously.
Ambipolar transport was observed with well-defined p and n

regions, together with a minimum conductivity of the order of
e2/h, reflecting the presence of electron and hole puddles.
Exciting developments in HgTe transport have also been
reported.31,32

Due to spin-momentum locking, the charge current flow-
ing on the surface of a TI is intimately linked to its
spin polarization.33 First, it is evident that an out-of-plane
spin polarization can be generated by a magnetic field or
magnetization. However, an in-plane magnetic field cannot
generate an in-plane spin polarization for a Dirac cone: it
simply shifts the origin of the cone and can be removed
by a gauge transformation.34 On the other hand, the com-
bination of spin-momentum locking plus an electric field
can be understood as a net effective magnetic field, which
is in the plane of the TI, and generates an in-plane spin
polarization.

This paper presents a study of the role of electron-electron
interactions in topological insulators in an electric field, and
their effect on the spin polarization generated electrically in
the plane of the TI. A fundamental question is whether basic
TI phenomenology survives interactions out of equilibrium.
It is known that in transport topology only protects against
backscattering. Topological protection stems from time-
reversal symmetry, whereas transport is inherently irreversible.
Therefore robustness against electron-electron interactions in
equilibrium does not translate into the same robustness in
transport. I will demonstrate that the effect of interactions
can be absorbed by a renormalization of the noninteracting
charge conductivity and spin polarization, and the response is
qualitatively the same. Topological insulator phenomenology
therefore remains unchanged by electron-electron interactions
in the steady state.

A multiband matrix formulation is imperative to capture in-
terband dynamics and disorder effects, which give a nontrivial
factor of 2 to the renormalization factor appearing in the charge
current and spin polarization. This paper uses an alternative
matrix formulation of linear response theory, which contains
the same physics as conventional approaches and is potentially
more transparent, relying on the quantum Liouville equation
in order to derive a kinetic equation for the density matrix.
This theory was first discussed for graphene monolayers35 and
bilayers,36 and was recently extended to topological insulators
including the full scattering term to linear order in the impurity
density.33 Peculiarities of topological insulators, such as the
absence of backscattering, which reflects the π Berry phase
and leads to Klein tunneling, are built into this theory in a
transparent fashion. In this work, the formalism of Ref. 33
is extended to account for electron-electron interactions via a
mean-field approach. Since transport in noninteracting systems
was studied in that work, only minimal overlaps required for
consistency have been retained in this paper. It is assumed
that T = 0 so that electron-electron scattering is absent.
The theory assumes εF τ/h̄ � 1, where εF is the Fermi
energy, located in the surface conduction band, and τ is the
momentum relaxation time. The physics considered here is
distinct from spin-Coulomb drag,24,37 which requires electron-
electron scattering, and from previous work on transport in
noninteracting TIs.33

Electron-electron interaction effects have also been studied
in graphene transport.38 The interaction physics discussed here
is to be distinguished from that of graphene, since, as stated
above, graphene is a multivalley system, and its Hamiltonian
is a function of the pseudospin, due to the sublattice degree of
freedom, rather than the real spin. It is also important to realize
that the mean-field Hartree-Fock treatment of interactions is
particularly advantageous in topological insulators, because
formulating a large-N renormalization group expansion is
a challenging task. This is because, whereas in graphene
the spin and valley degeneracies yield N = gsgv = 4, but in
topological insulators N = gsgv = 1.

The outline of this paper is as follows. In Sec. II a general
effective Hamiltonian for interacting systems is introduced.
The dynamics of the density matrix in interacting systems are
discussed in a mean-field formulation in Sec. III. Following
that, the effective one-particle kinetic equation is derived in
Sec. IV. This is then solved so as to obtain the correction
to the conductivity and its renormalization due to disorder,
followed by a brief discussion of current TIs, a summary, and
conclusions.

II. EFFECTIVE HAMILTONIAN FOR
INTERACTING SYSTEMS

The many-body Hamiltonian is

H =
∑
αβ

Hαβc†αcβ + 1

2

∑
αβγ δ

V ee
αβγ δc

†
αc

†
βcγ cδ

= H 1e + V ee. (1)

The two-particle matrix element V ee
αβγ δ in a general basis

{φα(r)} is given by

V ee
αβγ δ =

∫
d3r

∫
d3r ′ φ∗

α(r)φ∗
β(r ′)V ee(r − r ′)φδ(r)φγ (r ′).

(2)

Hermiticity implies Vαβγ δ = V ∗
γ δαβ and identity of electrons

Vαβγ δ = Vβαδγ . The antisymmetrized form is

Ṽαβγ δ = 1
2 (Vαβγ δ − Vαβδγ ). (3)

I will consider henceforth the crystal momentum represen-
tation, where α ≡ ks. The electron-electron interaction is
taken to be explicitly of the Coulomb form. The many-body
Hamiltonian is written as H 1e + V ee, where

H 1e =
∑

ks

Hkk′ss ′c
†
ksck′s ′ ,

(4)

V ee = 1

2

∑
q

v(q)
∑
kk′ss ′

c
†
k+q,sc

†
k′−q,s ′ck′s ′cks .

The one-particle matrix element Hkk′ss ′ includes band-
structure terms and disorder. The matrix element v(q) = v(q)
is given by (εr is the relative permittivity)

v(q) = e2

2ε0εrq
. (5)
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The real v(q) arises from Coulomb interaction matrix elements
between plane waves,

Vk1s1,k2s2,k3s3,k4s4 = δs1s4 δs2s3 δk1+k2,k3+k4 v(k2 − k3). (6)

The term with k2 = k3 is canceled by the positive background
of the lattice, so v(0) = 0.

In TIs in the random-phase approximation (RPA), abbre-
viating q = k′ − k, one replaces v(q) ≡ v(q) → v(q)/ε(q),
where ε(q) is the dielectric function. The polarization function
is obtained by summing the lowest bubble diagram. At T = 0
the long-wavelength limit of the dielectric function is39

ε(q) = 1 + e2

4πε0εrA

(
kF

q

)
. (7)

The polarization function was also calculated in Ref. 19. The
screened electron-electron Coulomb potential has the form

v(q)

ε(q)
= e2

2ε0εr

1√
k2 + k

′2 − 2kk′ cos γkk′ + rskF

2

. (8)

The Wigner-Seitz radius rs (alternatively, the effective fine-
structure constant), which parametrizes the relative strength
of the kinetic energy and electron-electron interactions, is a
constant for the Rashba-Dirac Hamiltonian, given by rs =
e2/(2πε0εrA). In addition to the electron-electron Coulomb
potential, the matrix element Ūkk′ of a screened Coulomb
potential between plane waves, which will be relevant in
transport below, is given by

Ūkk′ = Ze2

2ε0εr

1

|k − k′| + kT F

, (9)

where Z is the ionic charge (which I will assume for simplicity
to be Z = 1) and kT F = kF rs/2 is the Thomas-Fermi wave
vector, with kF the Fermi wave vector.

III. DENSITY MATRIX

The many-particle density matrix F obeys40

dF

dt
+ i

h̄
[H,F ] = 0. (10)

The one-particle reduced density matrix ρ is the trace

ρζη = Tr (c†ηcζ F ) ≡ 〈c†ηcζ 〉 ≡ 〈F 〉1e. (11)

The reduced density matrix satisfies

dρζη

dt
+ i

h̄
[H 1e,ρ]ζη − i

h̄
〈[V ee,c†ηcζ ]〉 = 0. (12)

In terms of the antisymmetric Coulomb matrix element Ṽαβγ δ

defined above, the last term on the left-hand side (LHS) is

[Vee,c
†
ηcζ ] =

∑
αβγ

[Ṽαβγ η c†αc
†
βcγ cζ + Ṽβγαζ c†ηc

†
αcβcγ ]. (13)

The many-electron average is evaluated as follows:

〈[V ee,c†ηcζ ]〉 =
∑
αβγ

〈Ṽαβγ η c†αc
†
βcγ cζ + Ṽβγαζ c†ηc

†
αcβcγ 〉

(14a)

〈c†αc
†
βcγ cδ〉 = 〈c†αcδ〉〈c†βcγ 〉 − 〈c†αcγ 〉〈c†βcδ〉 + Gαβγ δ.

(14b)

The focus of this work is on the first two terms on the right-
hand side (RHS) of Eq. (14b), which represent the Hartree-
Fock mean-field part of the electron-electron interaction. The
remainder, Gαβγ δ , gives the electron-electron scattering term
in the kinetic equation,40 is second-order in the interaction,
and vanishes at T = 0. I will treat the case of zero temperature
and reserve electron-electron scattering for a forthcoming
publication. To evaluate the Hartree-Fock factorization, note
that Ṽαβγ ηργβ cancels, and the remainder becomes

〈[Vee,c
†
ηcζ ]〉 =

∑
αβγ

[Ṽαβγ η (ρζαργβ − ργαρζβ )

+ Ṽβγαζ (ργηρβα − ρβηργα)]. (15)

I will introduce two mean-field terms by letting Ṽαβγ ηργβ =
AMF

αη and Ṽαβγ ηργα = BMF
βη , then

〈[Vee,c
†
ηcζ ]〉 = [ρ,AMF − BMF ]ζη. (16)

The effective kinetic equation becomes

dρ

dt
+ i

h̄
[H1e,ρ] + i

h̄
[AMF − BMF ,ρ] = 0. (17)

The one-particle Hamiltonian is renormalized by

H eff
ee = AMF − BMF . (18)

I emphasize that in the final analysis one is interested only
in the impurity average of ρ in the crystal-momentum repre-
sentation. In general one may always write ρkk′ = fkδkk′ +
gkk′ ,33 where the k-off-diagonal part, gkk′ , is eventually
integrated out to yield the scattering term in any desired
approximation. In the impurity average of Eq. (21), out of
the commutator 〈[H eff

ee (ρ),ρ]〉ζη only the terms [H eff
ee (f ),f ]

and [H eff
ee (g),g] survive, where to first order in the electric

field H eff
ee (ρ)ρ ≡ H eff

ee (ρ0)ρE + H eff
ee (ρE)ρ0. This implies that

H eff
ee (g)g ≡ H eff

ee (g0)gE + H eff
ee (gE)g0. In linear response g0 =

0, and we are left with H eff
ee (f )f . Specializing to this term,

spin indices are omitted and fk is treated henceforth as a 2 × 2
matrix in spin space.

To determine H eff
ee (f ), we evaluate the two mean-field

terms. Beginning with AMF , with summation implied over
repeated indices,

AMF
αη = Ṽαβγ ηfγβ ≡ Ṽk1s1,k2s2,k2s3,k4s4fk2s3s2

= v(k2 − k3) δs1s4 δs2s3 δk1+k2,k3+k4 fk2s3s2
(19)

= v(0) δs1s4 δk1 k4 tr fk2

∴ → 0, since v(0) = 0.

Therefore AMF vanishes in the most general case. Next, BMF

is given by

BMF
βη = Ṽαβγ ηργα ≡

∑
k′

v(k − k′) fk′sβ sη
. (20)

Note that BMF can be interpreted as an effective magnetic field
due to the Hartree-Fock mean-field electron-electron interac-
tion. This result reproduces the correct exchange energy,10 and
yields exchange enhancement of Zeeman field-induced spin
polarizations, as found in Fermi-liquid theory. It is similar in
spirit to the treatment of Ref. 41.
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Equation (12) is reduced to

dρ

dt
+ i

h̄
[H 1e,ρ] = i

h̄
[BMF ,ρ]. (21)

The single-particle Hamiltonian is renormalized by BMF (f ),
which is itself a function of the single-particle density matrix.

At this stage one may include explicitly disorder and driving
electric fields in the one-particle Hamiltonian and write H 1e

kk′ =
H0kδkk′ + HEkk′ + Ukk′ , where H0k is the band Hamiltonian,
HEkk′ is the electrostatic potential due to the driving electric
field, and Ukk′ is the disorder potential. The effective single-
particle kinetic equation takes the form

dfk

dt
+ i

h̄
[H0k,fk] + Ĵ (fk) = − i

h̄

[
HEk ,fk

] + i

h̄

[
BMF

k ,fk
]
.

(22)

One writes fk = f0k + fEk + f ee
k , where f0k is the equilib-

rium density matrix, fEk is induced by the electric field,
and f ee

k by electron-electron interactions. (The interaction
correction to the energy contributes a diagonal term to the
kinetic equation, which drops out of the Hamiltonian and does
not contribute to f0k.).

Equation (22) is solved iteratively in BMF . Let the bare
driving term Dk = − i

h̄
[HEk,fk]. The approach is to solve

the kinetic equation first with Dk as the source term. This
will give a spin polarization. The spin polarization will give
a nonzero BMF

k , which in turn will give an additional source
term, referred to as Dee

k in the next section. Then one solves
the kinetic equation again with Dee

k as the source term,

dfEk

dt
+ i

h̄
[H0k,fEk] + Ĵ (fEk) = − i

h̄
[HEk,f0k],

(23)
df ee

k

dt
+ i

h̄

[
H0k,f

ee
k

] + Ĵ
(
f ee

k

) = i

h̄

[
BMF

k ,f0k
]
.

On the RHS of the second equation only the equilibrium
density matrix f0k appears because BMF

k is first order in the
electric field. The iteration is continued to all orders in the
Wigner-Seitz radius rs (that is, to all orders in the effective
fine-structure constant).

We recall that electron-electron and electron-impurity
potentials are screened, with screening treated in the random-
phase approximation. The density-matrix formalism used
here is thus equivalent to the GW approximation. In the
nonequilibrium diagram technique, the correction discussed in
this work is obtained by including the real part of the Green’s
function due to electron-electron interactions.41

IV. KINETIC EQUATION FOR INTERACTING TI

Henceforth I specialize to TIs. The band Hamiltonian
H0k = h̄

2 σ · �k, where �k = − 2Ak
h̄

θ̂ , with θ̂ the tangential
unit vector in polar coordinates in reciprocal space. Interaction
with the electric field is given by HE,kk′ = (eE · r̂)kk′1 =
ieE · ∂

∂k δ(k − k′) 1, with 1 the identity matrix in spin space.
Uncorrelated impurities located at RI are represented by
Ukk′ = Ūkk′

∑
I ei(k−k′)·RI , with Ūkk′ the Fourier transform of

the potential of a single impurity. I will write fk = nk1 + Sk,
with nk the number density and Sk = 1

2 Sk · σ the spin density.
One decomposes Sk = Sk‖ + Sk⊥, where [H0k,Sk‖] = 0 and
Sk‖ is the fraction of carriers in eigenstates of H0k, while Sk⊥

represents interband dynamics, i.e., Zitterbewegung. Further,
Sk‖ = (1/2) sk‖ σk‖ and Sk⊥ = (1/2) sk⊥σk⊥, with the matrices
σk‖ = −σ · θ̂ and σk⊥ = σ · k̂.

A. Single-particle kinetic equation

The general single-particle kinetic equation is

dSk‖
dt

+ P‖Ĵ (Sk) = Dk‖, (24a)

dSk⊥
dt

+ i

h̄
[Hk,Sk⊥] + P⊥Ĵ (Sk) = Dk⊥, (24b)

where the driving term Dk = eE
h̄

· ∂ρ0k
∂k , and ρ0k is the equilib-

rium density matrix. This equation is solved as an expansion in
the small parameter h̄/(εF τ ), where the momentum relaxation
time τ is defined below. The leading-order term in this
expansion is ∝ [h̄/(εF τ )](−1) and is found from

P‖Ĵ (Sk‖) = Dk‖. (25)

The solution to Eq. (28) requires certain approximations.
With respect to the scattering potential one expands in the
small parameter h̄/(εF τ ). In the steady state in the Born
approximation the leading term in the solution to the kinetic
equation is ∝ [h̄/(εF τ )](−1). It is trivial to check that at finite
doping the next term in the expansion, i.e., ∝ [h̄/(εF τ )](0),
vanishes identically, which was demonstrated in Ref. 33. A
term ∝ [h̄/(εF τ )](0) would appear in the weak localization
regime, yet this correction is not relevant in the regime
εF τ/h̄ � 1 considered in this work.

The Born-approximation scattering term has the form

Ĵ (fk) = 1

h̄2

〈〈 ∫ ∞

0
dt ′ [Û ,e−iĤ t ′/h̄[Û ,f̂ ] eiĤ t ′/h̄]

〉〉
kk

, (26)

with γ = θ ′ − θ the angle between the incident and scattered
wave vectors, k and k′ respectively, and 〈〈〉〉 denoting the
average over impurity configurations. The projections of Ĵ (fk)
needed in this work have been determined before,33

P‖Ĵ (Sk‖) = kni σk‖
8h̄πA

∫
dγ |Ūkk′ |2 (sk‖ − sk′‖)(1 + cos γ ),

P⊥Ĵ (Sk‖) = kni σk⊥
8h̄πA

∫
dγ |Ūkk′ |2 (sk‖ − sk′‖) sin γ, (27)

P‖Ĵ (Sk⊥) = kni σk‖
8h̄πA

∫
dγ |Ūkk′ |2 (sk⊥ + sk′⊥) sin γ,

where γ = θ ′ − θ is the angle between the incident and
scattered wave vectors. The small sk‖ and sk⊥ are scalars,
sk‖ = −Sk · θ̂ and sk⊥ = Sk · k̂.

The scattering terms contain factors of (1 + cos γ ) (re-
flecting the π Berry phase) or sin γ , both of which prohibit
backscattering and give rise to Klein tunneling. Since the
current operator ∝ σ , only Sk is needed. In the absence of
scalar terms in the Hamiltonian, Ĵ (fk) does not couple nk with
Sk, and Eq. (22) makes evident the fact that the interaction term
does not couple nk and Sk, thus nk may be dispensed with for
the remainder of this work. The equation satisfied by Sk is

dSk

dt
+ i

h̄
[H0k,Sk] + Ĵ (Sk)

= − i

h̄

[
HEk ,Sk

] + i

h̄

[
BMF,(1)

k ,Sk
]
. (28)
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With respect to the electron-electron interaction one also needs
to define a perturbation expansion in order to solve Eq. (28),
which is done in what follows. Within the approximations
used in this paper, this expansion can be summed exactly.
The method of solution is summarized as follows. The kinetic
equation first with BMF

k set to zero. This solution is already
known33 and gives a spin polarization, which in turn generates
a nonzero BMF

k , which itself yields a new driving term, and so
forth. The full solution is found as a perturbation expansion
in the electron-electron interaction, which can be summed
exactly.

To obtain the solution in the interacting case, it is therefore
first necessary to solve the noninteracting problem. In the
absence of interactions33 the steady-state solution to the
density matrix in the Born approximation is33

SEk‖ = τ e E · k̂
4h̄

∂f0+
∂k

σk‖,
(29)

1

τ
= kni

4h̄A

∫
dγ

2π
|Ūkk′ |2 sin2 γ.

Above ni is the impurity density, while the factor of sin2 γ

represents the product (1 + cos γ )(1 − cos γ ). The first term in
this product is characteristic of TI and ensures backscattering
is suppressed, while the second term is characteristic of
transport, eliminating the effect of small-angle scattering. In
noninteracting TI the Zitterbewegung contribution to the con-
ductivity/spin density (i.e., due to S

ee,(0)
Ek⊥ ) vanishes identically

at finite doping. But in the interacting case it is necessary to
consider both the electron and the hole bands to capture the spin
dynamics.

The solution obtained, SEk ≡ SEk‖, is fed into BMF
k , which

in turn generates a new driving term in the kinetic equation.
Each term in this expansion by the index α, thus BMF,(α)

k .
The solution found in Eq. (29) corresponds to α = 0, that
is, in the noninteracting case SEk‖ ≡ S

ee,(0)
Ek‖ . The driving term

due to electron-electron interactions is generically denoted
Dee,(α)

k . The decomposition Dee,(α)
k⊥ = (1/2) d

ee,(α)
k⊥ σk⊥ is also

used. The solution to the spin part of the density matrix to
order α is denoted by S

ee,(α)
k . The driving term Dee,(α)

k is
always orthogonal to H0k, therefore Dee,(α)

k ≡ Dee,(α)
k⊥ . The

kinetic equation for the solution See
k in the presence of

electron-electron interactions can be written for each order
as

dS
ee,(α)
k⊥
dt

+ i

h̄

[
Hk,S

ee,(α)
k⊥

] = Dee,(α)
k⊥ , (30a)

P‖Ĵ
(
S

ee,(α)
k

) = −P‖Ĵ
(
S

ee,(α)
k⊥

)
, (30b)

where in Eq. (30b) it is understood that the RHS, found from
Eq. (30a), acts as the source for the LHS. The scattering term
does not appear in Eq. (30a) since, as was argued above,
Dee,(α)

k‖ = 0 always.

I will dwell first on the solution of Eq. (22) due to BMF,(1)
k ,

i.e., first order in the interaction, which requires S
ee,(0)
Ek‖ . From

Eq. (29),

BMF,(1)
k = e2kF

4πε0εr

∫ 1

0
dl′ l′

∫ 2π

0

× dγ

2π

S
ee,(0)
Ek′√

l2 + l
′2 − 2ll′ cos γ + rs

2

, (31)

where l = (k/kF ). The term in BMF,(1)
k in which Sk′ → S0k′

gives a vanishing contribution. For E ‖ x̂

BMF,(1)
k = e3Exτ

16πh̄ε0εr

[
I (1)
c cos θ σk‖ − I (1)

ee sin θ σk⊥
]
,

(32)

I (1)
ee (l,rs) = 1

2

∫
dγ

2π

(cos 2γ − 1)

(
√

1 + l2 − 2l cos γ + rs

2

.

In I (1)
c (l,rs) the sign of the cosine term is flipped. Although

BMF,(1)
k itself has a part ∝ σk‖, this part drops out of the

driving term in Eq. (33), because one is working to first
order in the electric field and the commutator [BMF,(1)

k ,Sk] →
[BMF,(1)

k ,S0k], and S0k ∝ σk‖. The effective electron-electron
interaction HamiltonianBMF,(1)

k therefore contributes a driving
term orthogonal to H0k, yielding a correction S

ee,(1)
Ek⊥ to the

density matrix. The scattering term does not appear in the
equation for S

ee,(1)
k⊥ . Equation (28) takes the simple form

dS
ee,(1)
Ek⊥
dt

+ i

h̄

[
H0,S

ee,(1)
Ek⊥

] = i

h̄

[
BMF,(1)

k ,S0k
]
. (33)

This equation is solved using the time evolution operator

S
ee,(1)
Ek⊥ = eExrsτI (1)

ee (l,rs)

16h̄k
f0+ sin θ σ · k̂. (34)

Another contribution stems from the projection

P‖Ĵ
[
S

ee,(1)
k‖

] = −P‖Ĵ
[
S

ee,(1)
k⊥

]
. (35)

It is understood that the RHS, found from Eq. (34), acts as the
source for the LHS. Straightforwardly,

S
ee,(1)
k‖ = eExrsτI (1)

ee (l,rs)

16h̄k
f0+ cos θ σ · θ̂ . (36)

S
ee,(1)
Ek⊥ and S

ee,(1)
k‖ contribute equally to the charge current

determined below. In effect, scattering from S
ee,(1)
Ek⊥ into S

ee,(1)
k‖

doubles the contribution to the electrical conductivity due to
S

ee,(1)
Ek⊥ .

The longitudinal current density operator jx = eA
h̄

σy : the
current density is equivalent to a spin polarization. The conduc-
tivity σ 0

xx of the noninteracting system is σ 0
xx = ( e2

h
) (AkF τ

4h̄ ).33

The first-order conductivity correction in the electron-electron
interaction is

σ ee,(1)
xx =

(
e2

h

)(
AkF τ

4h̄

)
rsI

(1)
ee

2
≡ σ 0

xx

(
rsI

(1)
ee

2

)
, (37)

where I (1)
ee (rs) = ∫ 1

0 dl I (1)
ee (l,rs). The electrical current and

nonequilibrium spin polarization are renormalized (reduced)
by electron-electron interactions.

Equation (37) has been obtained to first order in the
(screened) interaction. The source term due to d

ee,(1)
Ek con-

tains only e±iθ , identical in structure to the noninteracting
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problem.33 One solves for all higher terms in Hee
k by iterating

steps (31)–(36), obtaining the exact result for the conductivity
(and spin polarization),

σxx

σ 0
xx

= 1 + rs

2

[
I (1)
ee + rs

4
I (2)
ee +

(
rs

4

)2

I (3)
ee + · · ·

]
. (38)

The general formula for the dimensionless integral I (n)
ee for

n > 1 is

I (n)
ee = �i=n

i=1

∫ 1

0
dli

∫ 2π

0

dγi

2π

⎛
⎝ 1

rs

2 +
√

l2
1 + l2

2 − 2l1l2 cos γ1

⎞
⎠

×
⎛
⎝ 1

rs

2 +
√

l2
2 + l2

3 − 2l2l3 cos γ2

⎞
⎠

· · ·
(

(−1)n sin2 γn

rs

2 + √
1 + l2

n − 2ln cos γn

)
. (39)

In two dimensions v(q) ∝ 1/q, while in TI rs is density
independent, and the screened Coulomb potential v(q)/ε(q) ∝
1/q also. Thus Hee

k does not introduce density dependence: at
larger densities the Coulomb interaction is weaker. Solving
for See

Ek⊥ introduces a factor of 1/�k, which is canceled
by k in the 2D volume element. Thus 2D physics and TI
linear dispersion combine to ensure that the renormalization
is density independent.

The renormalization reflects the interplay of spin-
momentum locking and many-body correlations. A spin at
k feels the effect of two competing interactions. The Coulomb
interaction between Bloch electrons with k and k′ tends to align
a spin at k with the spin at k′, equivalent to a ẑ rotation—hence
the driving term in Eq. (33) is ∝ σz. The total mean-field
interaction tends to align the spin at k with the sum of all
spins at all k′, and Hee

k encapsulates the amount by which the
spin at k is tilted as a result of the mean-field interaction with
all other spins on the Fermi surface. The effective field �k

tends to align the spin with itself. As a result of this latter fact,
out of equilibrium, an electrically induced spin polarization is
already found in the noninteracting system.33 Given that the
spins at k and k′ are in the plane, interactions tilt the spin
at k in the direction of the spin at k′. Thus far the argument
helps one understand why, if there is no spin polarization to
start with, electron-electron interactions do not give rise to
a spin polarization. The mean-field result is zero, so there
is no overall tilt on any one spin due to the spins of the
remaining electrons. Interactions tend to align electron spins in
the direction opposite to that of the existing polarization. The
effective ẑ rotation explains the counterintuitive observation
that the renormalization is related to interband dynamics,
originating as it does in Sk⊥. Many-body interactions give an
effective k-dependent magnetic field ‖ ẑ, such that for E ‖ x̂
the spins sy and −sy are rotated in opposite directions. Due to
spin-momentum locking, a tilt in the spin becomes a tilt in the
wave vector: spin dynamics create a feedback effect on charge
transport, renormalizing the conductivity. This feedback effect
is even clearer in the fact that the projection −P‖Ĵ (Sk⊥)
doubles the renormalization. This doubling is valid for any
elastic scattering.

FIG. 1. Fractional change in the conductivity |δσ ee
xx/σ

0
xx | for

0 � rs � 1. The current generation of topological insulators has
rs � 1, so the theory presented in this work is applicable to these
materials.

I will discuss next the magnitude of this renormalization in
currently known topological insulators. Several materials were
predicted to be topological insulators in three dimensions. The
first was the alloy Bi1−xSbx ,42,43 followed by the tetradymite
semiconductors Bi2Se3, Bi2Te3, and Sb2Te3.44 These materials
have a rhombohedral structure composed of quintuple layers
oriented perpendicular to the trigonal c axis. The covalent
bonding within each quintuple layer is much stronger than
weak van der Waals forces bonding neighboring layers. The
semiconducting gap is approximately 0.3 eV, and the TI
states are present along the (111) direction. In particular
Bi2Se3 and Bi2Te3 have long been known from thermoelectric
transport as displaying sizable Peltier and Seebeck effects, and
their high quality has ensured their place at the forefront of
experimental attention.2 Initial predictions of the existence of
chiral surface states were confirmed by first-principles studies
of Bi2Se3, Bi2Te3, and Sb2Te3.45 In the current generation
of topological insulators, rs is small. Currently εr ranges
between 30 and 100 (200 for Bi2Te3), making rs between
0.14 and 0.46. The theoretical treatment adopted in this work
is therefore applicable, and interactions provide a correction to
the steady-state response. A plot of |δσ ee

xx/σ
0
xx | for 0 � rs � 1

is shown in Fig. 1, from which it emerges that interactions
may account for up to ≈15% of the observed conductivity of
surface states in the regime studied. I note that Heusler alloys
were recently predicted to have topological surface states,46 as
well as chalcopyrites,47 yet more work is needed to establish
the size of rs in these materials.

At this stage in topological insulator research, the results
found in this work are interesting for conceptual reasons, since
they demonstrate that TI phenomenology is unchanged by in-
teractions. The electrical conductivity/spin polarization has the
same form as in the noninteracting case, with a renormalization
that can be incorporated into a redefinition of the spin-orbit
constant, or alternatively of the Fermi velocity, and thus the
density of states. For large rs a nonperturbative treatment that
goes beyond the random-phase approximation is necessary, yet
such a theory must await materials progress. In this context,
I would like to note that the growth of new materials is a
nontrivial issue, and obtaining high-quality samples where
only the surface electrons can be accessed in transport has
proved to be a difficult task. It is especially important to
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recall that future work may initially be hampered by factors
such as roughness and dirt inherent in solid-state interfaces.
In addition, it remains true that all current TI materials are
effectively bulk metals because of their large unintentional
doping—at present, bulk carriers are only removed temporarily
by gating. Discussing TI surface transport in such bulk-doped
TI materials retains some ambiguity, since it necessarily
involves complex data fitting and a series of assumptions
required by the necessity of distinguishing bulk versus surface
transport contributions. Real progress is expected when surface
TI transport can be carried out unambiguously, without
any complications arising from the (more dominant) bulk
transport channel. The immediate tasks facing experimen-
talists are getting the chemical potential in the gap without
the aid of a gate, further experimental studies confirming
ambipolar transport, and the measurement of a spin-polarized
current.

V. CONCLUSIONS

I have demonstrated that, from the point of view of the
nonequilibrium spin polarizations and charge current, TI
behavior remains intact in the presence of interactions with
only quantitative modifications. The conductivity and spin
polarization are renormalized by electron-electron interactions
entering through a combination of interband dynamics and
scattering.
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