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Faraday effect in graphene enclosed in an optical cavity and the equation of motion method for the
study of magneto-optical transport in solids
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We show that by enclosing graphene in an optical cavity, giant Faraday rotations in the infrared regime are
generated and measurable Faraday rotation angles in the visible range become possible. Explicit expressions for
the Hall steps of the Faraday rotation angle are given for relevant regimes. In the context of this problem we
develop an equation of motion (EOM) method for calculation of the magneto-optical properties of metals and
semiconductors. It is shown that properly regularized EOM solutions are fully equivalent to the Kubo formula.
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I. INTRODUCTION

Electromagnetic radiation emitted by far stellar objects
travels for long periods of time through very diluted concen-
trations of interstellar gases, traversing regions where week
magnetic fields exist. In this circumstance, the polarization
of the electric field rotates due to its interaction with the
gases immersed in the magnetic field. Due to the enormous
traveling distances through such interstellar regions, the degree
of rotation of the polarization can be important. This magnetic
rotational effect turns out to be a problem in astrophysics,
since it modifies, in an unpredictable way, the polarization
state of the emitted radiation, introducing additional diffi-
culties in the interpretation of astronomical observations. In
the electrodynamics of metals and insulators the effect of
polarization rotation induced by a magnetic field was first
discussed by Faraday1 and, on Earth, has many different
applications.

In magneto-optics, the effect coined optical Faraday
rotation1 refers to the rotation of the plane of polarization of
light when it transverses either a dielectric2 or a metal,3 in the
presence of a static magnetic field applied along the direction
of propagation of the electromagnetic wave. In addition to
the rotation of the plane of polarization, the polarization itself
acquires a certain degree of ellipticity. In dielectrics, the effect
can be explained using a model of harmonic oscillators coupled
to light.2 In metals, the effect has its roots in the Hall effect.4

For a two-dimensional (2D) metal, such as graphene, in the
Hall regime, the conductivity becomes a tensor σ̂ , with finite
(nonzero) values for both diagonal and off-diagonal compo-
nents. In magneto-optics, the components of the tensor depend
both on the frequency of the impinging electromagnetic wave
and on the cyclotron frequency of the electrons, due to the
magnetic field perpendicular to the plane of the metal. The
response of the electrons to the external magnetic field has
two regimes: (i) the semiclassical limit, of low fields and/or a
high electronic density; and (ii) the quantum Hall regime, of
strong fields and/or a low electronic density.

For interpretation of the optical Faraday rotation, in the
semiclassical regime, the Drude theory of metals suffices.3 In
the case of graphene, it is possible to change its electronic
density either by use of a gate or by the adsorption of
molecules.5,6 At high doping, graphene is in the semiclassical

regime and Boltzmann transport theory can be used to compute
the Hall conductivity.7

In the absence of disorder and other relaxation mecha-
nisms (such as electron-phonon scattering), the conductivity
of graphene (at zero magnetic field) would be exclusively
determined by interband transitions. In the limit of no disorder,
the optical conductivity of doped graphene, in the infrared
region of the spectrum and at zero magnetic field, is given
by8–15

σxx = σgnF (h̄ω − 2EF ) , (1)

where σg = πe2/(2h) is the so-called ac universal conductivity
of graphene.8,16–18

When a magnetic field is applied perpendicularly to
graphene’s surface, the system develops a finite Hall con-
ductivity. In the quantum regime, it was shown that the
Faraday rotation angle θF is solely determined by the fine
structure constant α and presents a step-like structure as
the Fermi energy crosses different Landau levels (LLs).19 The
estimated Faraday rotation steps’ height in this case is of
the order of θF ∼ 0.4◦,19 a magnitude that can be resolved
experimentally.20 In the context of topological insulators,
similar quantization rules in certain thin-film geometries have
been derived in Refs. 21 and 22. We note in passing that, when
the external magnetic field is absent, a dynamic Hall effect can
still be induced by using circularly polarized light impinging
on graphene at a finite angle with the normal to the graphene
surface.23

On the theoretical side, the magneto-optical transport
properties of graphene have been investigated with the Green’s
function method8,10 and by means of numerical implementa-
tions of the Kubo formula, using exact diagonalization19 and
Chebyshev polynomial expansions.24 These approaches come
with pros and cons: numerical studies allow the exploration
of general scenarios, whereas Green’s functions allows one
to obtain analytic results, but many times at the expense of
lengthy calculations.

Motivated by the need for analytical flexible analytical
tools, the equation of motion (EOM) method employed in
Ref. 25 is generalized to include the effect of a magnetic field.
As shown later, starting from a small set of EOMs, an adequate
treatment permits the derivation of response functions with
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correct analytical properties (i.e., satisfying Kramers-Kronig
causality relations).

The present paper is divided into two main parts. In Sec. II
we present the EOM method for calculation of the magneto-
optical transport in metals and semiconductors; to be concrete,
the method is described in the context of the properties of
graphene. In Sec. III we describe in detail the Faraday effect
in graphene and propose an experimental setup that is able to
enhance the Faraday effect up to the visible range. Section III
relies heavily on the results derived in Sec. II. Some technical
details are given in the Appendixes.

We have chosen to organize the subjects according to
the following interests of different readers: a reader having
a primary interest in the Faraday effect, and familiar with
the details on the magneto-optical properties of graphene,
should be able to read Sec. III with a bird’s-eye reading of
Sec. II. A reader interested in the Faraday effect in graphene
but not well acquainted with its magneto-optical properties
may want to go through Sec. II first. Finally, reading Sec. II
alone may appeal to readers interested in applying the EOM
method to another problem of interest bearing no relation to
graphene.

II. EQUATION OF MOTION METHOD FOR
CALCULATION OF THE MAGNETO-OPTICAL

CONDUCTIVITY

Here, we develop the EOM approach to the calculation
of the magneto-optical properties of a semiconductor. To be
concrete, the method is presented in the context of the optical
response of graphene.

Electrons constrained to two dimensions are responsible
for a variety of quantum manifestations, a striking example
being the integer quantum Hall effect (IQHE). Measured in
semiconductor 2D electron gases more than 30 years ago26

and in the early days of graphene, in both monolayer5,27 and
bilayer samples28 (very recently also in trilayer graphene29),
the static quantum Hall effect is a hallmark of elementary
excitations in electronic systems.30

Its dynamical analog—the ac quantum Hall effect—can
provide additional information about charge carriers, such as
the opening of gaps in the spectrum.31 Recent advances in
time-domain spectroscopy in the Thz regime20 have paved the
way to measurement of dynamical optical conductivities at
impinging field energies closer to the scale of interest. The
goal is to reach cyclotronic energies, usually O(10) meV in
fields of 1–10 T, where strong optical responses take place. The
so-called optical quantum Hall conductivity of 2D electron
gases shows a robust plateaux as the Fermi energy is swept,
although no quantization rule for the plateaux’s height exists.32

Due to its peculiar band structure, graphene has been predicted
to display a characteristic optical quantum Hall effect which
should be detectable via Faraday rotation measurements.19

In the semiclassical regime, on the other hand, the Faraday
rotation of graphene was reported to be O(1) degrees in fields
of a few tesla,33 a surprisingly high value for a one-atom-thick
electronic system.

FIG. 1. (Color online) Lattice structure and Brillouin zone of
monolayer graphene. Left: Hexagonal lattice of graphene, with the
next nearest neighbor δi and the primitive ai vectors depicted. The
area of the primitive cell is Ac = 3

√
3a2

0/2 � 5.1 Å2, and a0 � 1.4 Å.
Right: Brillouin zone of graphene, with the Dirac points K and K ′

indicated. Close to these points, the dispersion of graphene is conical
and the density of states is proportional to the absolute value of the
energy.

A. Graphene

The starting point of the present analysis is the low-
energy continuum description of single-layer graphene; having
two (carbon) atoms per unit cell and sixfold symmetry,
its elementary excitations obey a 2D Dirac equation with
linear electronic dispersion.34 This section is meant to fix the
notation. The Brillouin zone of graphene has six corners, and
among these, only two are inequivalent, the so-called K and
K′ Dirac points (see Fig. 1). At these points, the valence and
conduction bands touch, with a linear electronic spectrum up
to energies of ∼2 eV.

We assume, in what follows, that the two Dirac points can
be treated independently and introduce the valley degeneracy
index gv = 2 when pertinent. This consideration is justified
for typical experimental conditions (i.e., low concentrations
of scattering centers, finite temperatures, etc.) and provides
an accurate description of graphene’s electronic transport
properties at finite densities.16,35

In accordance, we resort to the 2 × 2 Dirac Hamiltonian
of graphene, describing the physics of elementary excitations
within the K valley, HK = vF σ · p, where vF � 106 m/s is the
Fermi velocity, σ = (σx,σy) [with σi (i = x,y) denoting Pauli
matrices], and p is the momentum of the low-energy excitation
(measured relative to the K point).34 HK has eigenvalues given
by

E = ±h̄vF |k| (2)

[with k = (kx,ky) denoting a 2D wave vector] and (normal-
ized) wave functions given by

ψλ,k(r) = 1√
2A

(
1

λeiθk

)
eik·r, (3)

where A is the area of the graphene sample, λ = +1(−1) for
electron(hole)-like excitation, and θk = arctan(ky/kx).

The electromagnetic field can be incorporated via minimal
coupling, p → p + eAg, where −e < 0 is the electron charge,
and the vector potential Ag relates to the electromagnetic
field according to the usual relations, B = ∇ × Ag and E =
−∂Ag/∂t .
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Here, the vector potential contains the information about
the impinging electromagnetic radiation and possible external
static magnetic fields. Assuming light linearly polarized along
the x axis, the radiation term reads A = [A0(r)e−iωt + c.c.]ex,
where ω stands for the frequency of the radiation field
and A0(r) describes its position dependence. For clarity of
exposition, we separate the light-matter interaction term from
the free Hamiltonian,

H = H0 + evF σ · A, (4)

where H0 ≡ HK + evF σ · AB , with AB describing the static
magnetic field.

A typical experimental scenario corresponds to a constant
magnetic field B > 0 applied in the transverse direction with
respect to the graphene plane. In such case, LLs develop
and the eigenenergies of charge carriers become quantized
according to36

En = sign(n)
h̄vF

lB

√
2|n|, n = 0,±1,±2, . . . , (5)

with lB = √
h̄/(eB) denoting the magnetic length. Choosing

the gauge AB = (0,Bx,0) results in the following set of
Landau eigenfunctions:

ψn,ky
(r) = Cn√

L

(
φ|n|−1(x)

isign(n)φ|n|(x)

)
eikyy, (6)

where φn(x) = e−ξ (x)2/2Hn(ξ (x))/
√

n!2n
√

πlB , Hn(x) is the
Hermite polynomial of degree n � 0, φ−1(x) = 0, and ξ (x)
stands for the dimensionless center of the Landau orbit, ξ (x) =
lBky + x/lB . Here, L is the linear dimension of the system
in the y direction and Cn is a normalization constant that
distinguishes the zero-energy level from the remaining levels,
Cn = 1 for n = 0 and Cn = 1/

√
2 for |n| � 1.

Having reviewed the basics of the graphene’s electronic
low-energy theory, in what follows we present the EOM
approach to the study of magneto-optical transport.

B. Theoretical methods

In the context of electronic systems, the EOM was
extensively used in calculations of light polarization in
semiconductor laser theory.37 Recently, it has been used to
study excitons in graphene in zero field.25

The EOM approach avoids the calculation of current-
current correlators (i.e., Kubo formula) and, hence, provides
a shortcut to determination of the response of electronic
systems to external perturbations. As shown in detail in
Appendix C, with an appropriate regularization procedure, the
EOM solutions become fully equivalent to the Kubo formula
and, hence, provide an accurate description of transport in
the linear response regime. Another advantage of the present
approach is that it allows for the calculation of nonlinear
corrections to the conductivity.

At the heart of the EOM approach to calculation of the
magneto-optical conductivity is the Heisenberg equation for
the electronic current density J(t) in the presence of an
external electromagnetic field, i.e., d J/dt = (i/h̄)[H,J], with
H being the total Hamiltonian, Eq. (4). Having solved for
the current density of the system in the presence of external

perturbation, in first order in the external field A, the optical
conductivity follows from the constitutive electromagnetic
relation

σij (ω) = gsgv × J̃i(ω)

Ẽj (ω)
, (7)

where Õ(ω) relates to the average O(t) [O = Ji,Ej ] ac-
cording to O(t) = Õ(ω)e−iωt + c.c., with appropriate regu-
larization implicit (Appendix C; Sec. II D). Having graphene
in the Dirac cone approximation in mind, the latter equation
contains the relevant degeneracies. The spin contribution as
a degeneracy factor, gs , should be valid for typical magnetic
fields (�15 T) when the Zeeman effect does not manifest.

The first step is to project the Heisenberg EOM for the
current onto the space of unperturbed single-particle states: we
introduce the field operator �σ (r,t) = ∑

α ĉα,σ (t)ψα(r) (and
the respective Hermitian conjugate), where ĉα,σ (ĉ†α,σ ) is the
annihilation (creation) operator obeying fermionic anticom-
mutation rules: {ĉα,σ ,ĉ

†
α′,σ ′ } = δαα′δσ,σ ′ and {ĉα,σ ,ĉα′,σ ′ } =

{ĉ†α,σ ,ĉ
†
α′,σ ′ } = 0. The symbol α = (λ,k, . . . ) specifies the

single-particle state of the electron (or hole) and σ = ±1 is the
spin variable. The kets |α,σ 〉 ≡ ĉ

†
α,σ |0〉 represent eigenstates

of H0, and therefore, the position representation, 〈r|α,σ 〉 ≡
ψα,σ (r), equals Eq. (3) at zero magnetic field or Eq. (6) in the
presence of a transverse uniform magnetic field.

The second-quantized form of the full Hamiltonian and the
current density operator is given by

Ĥ (t) =
∑

σ

∫
dr�†

σ (r,t)H�σ (r,t) , (8)

Ĵi(t) =
∑

σ

∫
dr�†

σ (r,t)ji�σ (r,t), (9)

respectively, where

j = −evF

A
σ , (10)

is the current density of graphene in the continuum
description.16,35 We omit the spin dependence of the operators
hereafter for clarity of exposition.

We now define the generic operator,

P̂αβ(t) ≡ ĉ†α(t)ĉβ(t), (11)

whose EOM reads

d

dt
P̂αβ(t) = i

h̄

∑
γ ,δ

hγ δ[P̂γ δ(t), P̂αβ(t)] , (12)

where hγ δ = 〈γ |Ĥ |δ〉 are the matrix elements of the full
Hamiltonian [Eq. (4)]. Solving for P̂αβ(t) gives directly the
current density according to

Ĵi(t) =
∑
α,β

〈α|ji |β〉P̂αβ(t), (13)

and hence the (still nonregular) optical conductivity via Eq. (7).
The regularization is the final step in the EOM approach
needed to obtain a fully consistent conductivity (in particular,
obeying Kramers-Kronig relations).38 The respective technical
procedure is given in Appendix C.
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In the following section, we solve Eq. (12) explicitly in the
linear response regime (i.e., first order in the electric field) for
any pair of quantum states α, β, in the absence of a magnetic
field. The case of finite (nonzero) magnetic field intensity is
left for Sec. II D.

C. Graphene in a zero magnetic field

The purpose of this section is to show the EOM method
at work in the context of a simple problem, which allows
us to derive well-known results. In the absence of magnetic
fields, the macroscopic electronic current follows the applied
optical field, and thus only the longitudinal conductivity
is nonzero. From symmetry considerations, we also have
σxx(ω) = σyy(ω). According to the statement Eq. (13), the
relevant set of EOMs to be solved is determined by the nonzero
matrix elements of the current density.

Defining 〈k,λ|jx |k′,λ′〉 = −(evF /A)jx
λ,λ′,k,k′ and using the

wave functions Eq. (3), we easily find

jx
λ,λ′,k,k′ = δk,k′

2
(λ′eiθk + λe−iθk ). (14)

With this notation, the current density along the x direction
reads

Jx(t) = −evF

A

∑
λ,λ′,k

jx
λ,λ′,k,k〈ĉ†λ,k(t)ĉλ′,k(t)〉. (15)

The non-null matrix elements in Eq. (14) contributing to the
conductivity correspond to transitions between different bands
conserving the momentum k. These transitions are said to
be “vertical,” and in addition, since they connect states in
different bands, they are refereed to as being interband-like (see
Fig. 2).

FIG. 2. (Color online) Allowed interband transitions (vertical
arrows) in graphene; a photon of energy h̄ω produces an excitation
from the lower to the upper Dirac, as long as h̄ω > 2μ. The transitions
conserve k and hence are said to be “vertical.” For h̄ω � 2μ, Pauli
blocking forbids any (interband) transition. In practice, due to disorder
(impurities, etc.), the interband conductivity can be nonzero even for
h̄ω � 2μ.

FIG. 3. (Color online) Schematic of electronic transitions con-
tributing to σxx(ω) of doped graphene in a magnetic field. In this
example, EF � E1, and thus the last occupied LL, n = NF � 1,
belongs to the conduction band. Two types of transitions take
place: (i) interband transitions, connecting LLs from the lower cone
(valence band) with LLs in the upper cone (conduction band); and
(ii) intraband transitions within the upper cone. Intraband transitions
are limited to adjacent LLs: NF → NF + 1. The figure shows
the following interband transitions: (a) the pair −NF → NF + 1
and −NF − 1 → NF , whose energy difference is EN+1 + EN (the
lowest interband energy; note that transitions −NF − 1 → NF are
forbidden because n = NF is occupied); and (b) the pair −NF − 1 →
NF + 2 and −NF − 2 → NF + 1. The respective energy difference
is EN+1 + EN+2 (the second lowest interband energy difference), and
in this case both transitions take place. Transitions with higher energy
differences are not represented.

Taking the dipole approximation A(r) → A0, the Hamilto-
nian [Eq. (8)] reads

Ĥ =
∑
λ,k

Eλ(k)ĉ†λ,kĉλ,k + evF A0(e−iωt + c.c.)

×
∑

k

jx
c,v,k,kĉ

†
c,k,σ ĉv,k,σ + (c ←→ v). (16)

In the latter equation, Eλ(k) ≡ λh̄vF k, and the subscripts c (v)
denote electrons (holes).

As described above, we need to compute the time evolu-
tion of the operator P̂v,c,k(t) = ĉ

†
v,k(t)ĉc,k(t). Straightforward

algebra yields

d

dt
P̂v,c,k = i

h̄
{[Ev(k) − Ec(k)]P̂v,c,k

+ evF A0(e−iωt + c.c.)jxc,v,k,k[n̂c(t) − n̂v(t)]},
(17)

where we have defined the occupation operator for electrons
(holes) as n̂c(v)(t) ≡ ĉ

†
c(v),k(t)ĉc(v),k(t). A similar equation

holds for P̂c,v,k,σ which can be obtained by interchanging
c ←→ v.

To proceed, we take the average of Eq. (17) with respect
to the unperturbed Hamiltonian H0 and approximate 〈n̂c(t) −
n̂v(t)〉0 � 〈n̂c − n̂v〉0. Both procedures are consistent with an
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expansion of Ĵx(t) up to first order in the parameter A0. The
solution of the above differential equation reads

〈P̂v,c,k(t)〉0 = P̃v,c,k(ω)e−iωt + P̃v,c,k(−ω)eiωt , (18)

with

P̃v,c,k(ω) = evF A0j
x
c,v,k,k

〈n̂c〉0 − 〈n̂v〉0

Ec(k) − Ev(k) − h̄ω − i�
, (19)

and we have introduced an imaginary energy � by hand, so
as to account for disorder phenomenologically. The remaining
term P̃v,c,k,σ (ω) can be obtained from the latter expression by
making ω → −ω and � → −�. From Eq. (15), the oscillator
strength of the current density along the x direction J̃x(ω) is
seen to be given by

J̃x(ω) = −evF

A

∑
k

[
jx
v,c,k,kP̃v,c,k(ω) + jx

c,v,k,kP̃c,v,k(ω)
]
.

(20)

The longitudinal optical conductivity, σxx , follows from
Eq. (7),

σ inter
xx (ω) = gvgs

e2v2
F

iω

∫
d2k
4π2

(sin2 θk)

× nF [Ev(k)] − nF [Ec(k)]

Ec(k) − Ev(k) − h̄ω − i�
+ (c ↔ v), (21)

where nF (E) = 1/[e(E−μ)/kBT + 1] stands for the Fermi-Dirac
distribution (μ is the chemical potential). In deriving this
expression, we have used the relation Ẽx(ω) = iωA0. Taking
the clean limit � → 0 and considering ω > 0 and T = 0, one
obtains the well-known result

Re σ inter
xx (ω) = πe2

2h
θ (h̄ω − 2|μ|). (22)

The latter result is the T → 0 limit of Eq. (1). For photon
energies higher than 2μ (see Fig. 2), the interband conductivity
is essentially frequency independent (up to energies of ∼2 eV)
and equals

σg = πe2

2h
, (23)

which is nothing other than the universal conductivity of
graphene mentioned in Sec. I. For μ = 0, and contrary to
ordinary semiconductors, there is no frequency threshold for
interband transitions: according to Eq. (22), some interband
transitions will always be available for a sufficiently high
photon frequency. As a consequence, Drude’s description will
not suffice for a general description of the optical response of
graphene.

In addition to the interband transitions discussed here,
there is an intraband contribution in graphene which can
be appreciable for μ 
= 0. This contribution comes from
nonvertical processes (e.g., via collisions with phonons), not
included in the Hamiltonian Eq. (16). This contribution gives
the Drude response and reads39

Re σ intra
xx (ω) = 2e2

h
|μ| �

h̄2ω2 + �2
. (24)

Interestingly enough, the latter result can be derived from a
full quantum mechanical calculation by considering a finite

magnetic field intensity and taking the limit B → 0 in the
end.10 This is because a magnetic field open gaps in the
spectrum of a clean system, allowing for intraband transitions
(see Sec. II D). A semiclassical calculation also leads to an
equivalent result (Sec. II E).

D. Optical conductivity of graphene in a magnetic field

In what follows, we show that the EOM method can be
employed to study the magneto-optical response of graphene
along the same lines as in Sec. II C. The presence of a
transverse magnetic field in the Hamiltonian develops LLs, and
hence we must start from the eigenstates given in Eq. (6). The
latter defines the field operator �(r,t) = ∑

n,ky
ĉn,ky

(t)ψn,ky
(r)

(together with the respective Hermitian conjugate); the index
n labels the degenerate LL with energy given by Eq. (5). The
field operator can be written as

�(r,t) = 1√
2L

∑
n
=0,ky

(
φ|n|−1(x)

isign(n)φ|n|(x)

)
eikyy ĉn,ky

+ 1√
L

∑
ky

(
0

φ0(x)

)
eikyy ĉ0,ky

. (25)

This peculiar spinorial structure, with a single level being
highlighted, is based on non- features in the magneto-optical
conductivity of graphene.8,11,31,40

1. The longitudinal conductivity

According to Eq. (7), calculation of the longitudinal
conductivity requires computation of the average value of the
current density operator along the x direction,

Jx(t) =
∑
n,n′

∑
ky ,k′

y

〈n,ky |jx |n′,k′
y〉〈ĉ†n,ky

(t)ĉn′,k′
y
(t)〉. (26)

Using the LL wave functions [Eq. (6)], we easily find the
nonzero matrix elements to be

〈0,ky |jx | ± 1,k′
y〉 = − evF√

2A
δky,k′

y
, (27)

〈n,ky |jx |n′,k′
y〉 = −evF

2A
i[sign(n′)δ|n|−1,|n′ |

− sign(n)δ|n|,|n′|−1]δky,k′
y
, (28)

where in the last line n,n′ 
= 0. These statements show that the
optical transitions conserve ky and occur between levels with
indexes n and n′ satisfying |n| − |n′| = ±1.

Two sets of transitions are thus allowed: intraband transi-
tions, occurring within the same band, and, as in the absence
of a magnetic field, transitions connecting LLs in the valence
and conduction bands, which are interband-like. Transitions
involving the zero-energy state n = 0 can be considered either
intraband- or interband-like, since the zero-energy state is
shared between electrons and holes. For the sake of simplicity
in defining the set of EOMs, throughout, we classify transitions
involving the zero-energy state as being interband.
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In order to clearly distinguish among the possible types of
transitions, we define

ĉn,ky
≡

⎧⎪⎨
⎪⎩

cn for n > 0,

v|n| for n < 0,

a0 for n = 0,

(29)

with the Hermitian conjugates following identical redefini-
tions. Note that with these definitions the subscript n in the
operators take only positive integer values.

(a) Interband transitions. Using the field operator in the
presence of a magnetic field [Eq. (25)], and keeping track of
just the interband terms for the moment, the full Hamiltonian
takes the form

Ĥ =
∑
n�1

[Enc
†
ncn + E−nv

†
nvn]

+ evF A(t)√
2

[c†1a0 + v
†
1a0 + h.c.]

− evF A(t)

2
i
∑
n�1

[
P̂ (1)

n + P̂ (2)
n − h.c.

]
, (30)

where A(t) ≡ A0(e−iωt + c.c.), and

P̂ (1)
n = c†nvn+1, (31)

P̂ (2)
n = c

†
n+1vn. (32)

(Also, for clarity, we have omitted ky under all the summation
signs.) The first line in Eq. (30) describes massless Dirac
fermions in a transverse magnetic field and the remaining lines
contain the electronic transitions among different LLs induced
by the external electric field.

The interband current density along the x direction can be
recast into the form

Ĵx(t) = − 1√
2A

evF (c†1a0 + v
†
1a0 + h.c.)

+ 1

2A
evF

∑
n�1

(
iP̂ (1)

n + iP̂ (2)
n + h.c.

)
. (33)

From the form of the current we see that there are two basic
sets of EOMs to be solved: the first set refers to the time
evolution of operators involving the zero-energy state (c†1a0,
v
†
1a0, and Hermitian conjugates), while the other set refers

to higher energy LLs. Take, for instance, the operator P̂ (1)
n

belonging to the latter set; as in the case of zero magnetic
field (Sec. II C), the commutator [H,P̂ (1)

n ] gives rise to
(i) occupation number operators (v†

n+1vn+1 and c
†
ncn), and

(ii) a free evolution term, that is, the operator P̂ (1)
n itself.

In addition, intraband terms with |n| − |n′| = ±2 show up,
namely, c

†
ncn+2, v

†
n−1vn+1 and a

†
0v2δn,1. These terms do not

originate real intraband transitions, since the respective current
density matrix elements are null.

We are now in the position to write the prototype EOMs
governing the interaction of Landau quasiparticles with an
external oscillating electric field,

h̄

i

d

dt
P̂ (1)

n = [En − E−(n+1)]P̂
(1)
n − i

2
evF A(t)

× [v†
n+1vn+1 − c†ncn], (34)

h̄

i

d

dt
P̂c = E1P̂c + 1√

2
evF A(t)[a†

0a0 − c
†
1c1], (35)

where we have omitted the time dependence of the operators
and defined P̂c(v) = c(v)†1a0. The remaining operators obey
similar equations. [The EOM for P̂ (2)

n is obtained making
P̂ (1)

n → P̂ (2)
n and interchanging n with n + 1 on the right-hand

side of Eq. (34). As for P̂v , we let P̂c → P̂v , E1 → E−1, and
c1(c†1) → v1(v†

1) in Eq. (35).]
To solve the above set of differential equations to first

order in A0, we proceed as in Sec. II C. Taking the average
value 〈. . . 〉0 of each EOM with respect to the unperturbed
Hamiltonian, H0, the solution for each operator O can
be written as 〈O(t)〉0 = Õ(ω)e−iωt + Õ(−ω)eiωt , where the
oscillator strengths read

P̃ (1)
n (ω) = − i

2
evF A0

〈v†
n+1vn+1〉0 − 〈c†ncn〉0

E−(n+1) − En − h̄ω − i�
, (36)

P̃c(ω) = 1√
2
evF A0

〈a†
0a0〉0 − 〈c†1c1〉0

−E1 − h̄ω − i�
, (37)

and where, as in Sec. II C, we have added a imaginary energy �

to account for level broadening. The solutions for P̃ (2)
n (ω) and

P̃v(ω) can be obtained from the latter expressions as described
immediately following Eq. (35).

Combining these results and Eq. (33), we easily find

J̃x(ω) = 1

2A
evF

∑
ky

⎧⎨
⎩∑

n�1

[
iP̃ 1

n (ω) + iP̃ 2
n (ω)

]

−
√

2[P̃c(ω) + P̃v(ω)] + “c.c.term”

⎫⎬
⎭ , (38)

where the summation over ky has been restored. This summa-
tion yields the degeneracy of the LLs

∑
ky

= A/(2πl2
B). The

last term in the above equation (i.e., the c.c. term) is obtained
taking the complex conjugate and making ω → −ω of all the
previous terms.

The final expression for the longitudinal (interband) con-
ductivity is derived in two steps: (i) dividing Eq. (38) by Ẽx(ω)
[Eq. (7)] and (ii) undertaking appropriate regularization to
remove the divergent factor 1/ω:

σ inter
xx (ω)

= e2v2
Fh̄

2πl2
B

i

Nc∑
n=0

(1 + δn,0)
∑
α=±1

α

×
[

1

E−(n+1) − En

× nF [E−(n+1)] − nF [En]

E−(n+1) − En − α(h̄ω + i�)

+ (n ↔ n + 1)

]
. (39)

The above expression is analytic in the upper-half plane
and finite at ω = 0, thus obeying Kramers-Kronig causality
relations. (We refer to Appendix C for the derivation and
physical grounds of the regularization procedure.) Note that,
as usual when dealing with low-energy theories, a cutoff
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energy Ecut of the order of the bandwidth must be considered
for consistency; we take n � Nc, with Nc = int[(Ecut/E1)2],
where int[. . . ] denotes the integer part. Nc varies roughly as
104B−1 with B in teslas. Within the physical relevant range
for Ecut, these summations converge quite rapidly; the figures
in the present work have Ecut ≈ t � 2.7 eV.

(b) Intraband transitions. The intraband interaction Hamil-
tonian reads

Ĥ intra
int = i

2
evF A(t)

∑
n�1

[v†
nvn+1 − c†ncn+1 − h.c.], (40)

and the zero-energy operators (a0 and a
†
0) are absent given

our classification of intraband transitions [see Eq. (29) and the
following text]. The calculation follows identical steps to the
interband conductivity and, hence, is not repeated. The final
expression for the (regular) intraband diagonal conductivity
reads

σ intra
xx (ω) = e2v2

Fh̄

2πl2
B

i
∑
α=±1

α

Nc∑
n=1

×
[

1

En+1 − En

nF [En+1] − nF [En]

En+1 − En − α(h̄ω + i�)

+ (En → −En ∧ En+1 → −En+1)

]
. (41)

The full longitudinal conductivity σxx(ω) is given by adding
its interband and intraband counterparts, that is, Eqs. (39) and
(41), respectively; straightforward algebra yields

σxx(ω) = e2

h

Nc∑
n
=m=−Nc

�xx
nm

iEnm

nF (En) − nF (Em)

h̄ω + Enm + i�
, (42)

with Enm = En − Em, and where we have defined the longi-
tudinal matrix elements

�xx
nm = h̄2v2

F

l2
B

(1 + δm,0 + δn,0)δ|m|−|n|,±1. (43)

Equation (42) is the main result of the present section.
It coincides with Eq. (7) in Ref. 41 obtained via a Green’s
function calculation in the bubble approximation and, also,
with a Kubo formula calculation within the Dirac cone
approximation (see Appendix C). We note in passing that, on
top of the interband and intraband contributions discussed here,
there is a correction arising from phonon-electron coupling. At
low temperatures and zero field, this correction is expected
to be small.39 At a high magnetic field, though, a recent
calculation shows that phonon energy peaks split the LLs
nearby,42 which can lead to a measurable signature in magneto-
optical experiments.

2. The general properties of σxx(ω)

In what follows, we overview the main features of
graphene’s longitudinal magneto-optical conductivity, an es-
sential step to understanding the Faraday rotation in graphene
(Sec. III).

(a) Low electronic density. At a low electronic density, more
precisely, for |EF | < E1, no intraband transitions can take
place. Because the LL energy scale in graphene is relatively
high (e.g., E1 � 36 meV for a field of 1 T), the magneto-optical

FIG. 4. (Color online) Longitudinal magneto-optical conductiv-
ity as a function of the photon energy for a field of 7 T, zero
chemical potential, T = 17 K, and � = 6.8 meV (∼79 K). The
horizontal dashed-dot (black) line marks the graphene’s universal
ac-conductivity background [Eq. (1)].

conductivity is fully driven by interband transitions even close
to room temperature.

Figure 4 shows a plot of Eq. (42) for zero Fermi energy
and a magnetic field of 7 T: a sequence of absorption peaks,
corresponding to the maximum of the real part of each term
in Eq. (39), h̄ω � E1, E2 − E−1, E3 − E−2, etc., is clearly
observed [see Eq. (49) and text thereafter]. The conductivity
never vanishes, even though the concentrations of carriers is
very low (EF → 0), a genuine signature of graphene’s LL
structure.5

The contributions from different interband transitions
[Eq. (39)] partially overlap at a high frequency, with the effect
that the real part of σxx(ω) displays the so-called Shubnikov–de
Haas oscillations around the universal ac optical conductivity
of graphene σg (the imaginary part, in turn, oscillates around
0).8–15 The semiclassical conductivity is null, on the other
hand, thus failing to describe the magneto-transport in neutral
graphene.

(b) High electronic density. Away from charge neutrality,
more precisely, for |EF | > E1, the picture is more involved;
intraband transitions can now occur, while some interband
transitions will be blocked. We take T = 0 and, without loss
of generality, assume that EF > 0 (similar conclusions hold
for holes); direct inspection of Eq. (41) shows that a single
type of intraband transition is allowed, whose contribution to
the optical conductivity reads

σ intra
xx (ω) = e2

h

2ih̄v2
F

�ωNF
l2
B

h̄ω + i�

(h̄ω + i�)2 − h̄2�ω2
NF

. (44)

In the above formula,

�NF
≡ h̄�ωNF

= ENF +1 − ENF
(45)

denotes the intraband gap, with NF being the index for the last
occupied LL.

Let us first consider the limiting case when the energy gap
�NF

is larger than the level broadening, �NF
� �. The latter

typically happens at high magnetic fields and not too high
Fermi energies; in this limit, the real part of Eq. (44) displays
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FIG. 5. (Color online) Longitudinal conductivity as a function
of photon energy for EF = 0.2 eV. Other parameters as in Fig. 4.
The solid horizontal (black) line shows graphene’s universal ac-
conductivity background [Eq. (1)].

a maximum at ω � �ωNF
, with an intensity falling off as

B/�ωNF
,

Re σ intra
xx (�ωNF ) �

(
2eBv2

F

π��ωNF

)
× σg. (46)

The intraband magnetopeak, Eq. (46), is the lowest frequency
peak in the absorption spectrum of graphene with EF >

E1; its magnitude increases with increasing Fermi energy
and/or magnetic field intensity. An example of an intraband
absorption line occurring at ω � �ωNF

is shown in Fig. 5. In
that case, the parameters correspond to �NF

= 22.6 meV and
� = 6.8 meV, and hence �NF

� �. Some points are worth
mention: (i) the intraband contribution to the conductivity
[Eq. (44)] dominates at low photon frequencies; and (ii) the
curve for Re σxx(ω) shows that the remaining absorption peaks
are found in the higher frequency part of the spectrum, above
the threshold for interband transitions, h̄ω � ENF

+ ENF +1.
(Note that, at a low magnetic field and/or high Fermi energy,
the level spacing between adjacent LLs is so reduced that
ENF

� ENF +1 � EF , and thus one recovers the condition
found earlier, namely, h̄ω > 2EF .) Such interband peaks cause
Shubnikov–de Haas oscillations despite the finite electronic
density.

For a general relation between the broadening and the
energy gap �NF

, the maximum for the intraband peak occurs
at

ωintra
peak = Re

√
2�ωNF

√
�ω2

NF
+ �2/h̄2 − �ω2

NF
− �2/h̄2.

(47)

When �ωNF
� �/(

√
3h̄) (typically the case for a very high

Fermi energy and/or low magnetic field), the intraband
conductivity is maximal at null frequency, with an intensity
given by Eq. (46) multiplied by a factor of 2.

The regime �NF
� � is illustrated in the bottom panel in

Fig. 12. Two magnetic fields are considered, at a fixed Fermi
energy, EF = 0.3 eV, with Re σxx(ω) being represented by
the solid lines. When B = 7 T (left-hand panel), although a
considerable number of levels are occupied (NF = 9), one has
�NF

� 1.4�, which, according to Eq. (47), corresponds to a

maximum of the longitudinal conductivity at ω � �ωNF
. This

is indeed confirmed by the numerical calculation shown there.
Decreasing the magnetic field down to B = 3 T (right-hand
panel) reduces �NF

(recall that the LL energy varies as l−1
B ∼√

B), which in turn increases the number of occupied levels to
NF = 22. As a consequence, �NF

� 0.67�, and the maximum
of the intraband peak is seen to be shifted to zero frequency,
again in accordance with Eq. (47).

Given the intrinsic large cyclotron gap of graphene E1,
the intraband contribution [Eq. (44)] controls the magneto-
optical response of this material in the microwave region up to
terahertz frequencies in samples with a finite electronic density
(EF > E1).

The interband contribution, on the other hand, is important
both in samples with a low electronic density EF < E1, where
it determines the full magneto-optical response (discarding
the effect of phonons as discussed above), and in samples with
arbitrary carriers concentrations, for photon energies above
the threshold for interband transitions h̄ω = ENF

+ ENF +1

(typically within the near-infrared region).
The positions of each interband peak can be obtained from

Eq. (47), with �ωNF
replaced by

��n = (En+1 + En)/h̄, (48)

with the constraint n � NF . At finite electronic densities NF �
1, typically one has h̄��n � �, and thus we arrive at the
following useful approximation:

ω
inter (n)
peak � ��n, n � NF . (49)

For not too small fields, B � 0.1 T, the cyclotron gap E1 �
36 × √

B meV · T−1/2 is larger than the LL broadening, and
thus, in practice, the latter statement can be generalized to
include the case of NF = 0.

For general parameters, the intensity of each interband peak
is no longer given by a simple expression, because many
interband transitions can contribute to the spectral weight close
to each of the resonances ω � ��n. As a result, as ω varies,
the real part of σxx(ω) oscillates around a constant value of
about σg. Examples are shown in Fig. 4 for EF = 0 and in
Fig. 5 for EF = 0.2 eV. In the first case, we have NF = 0
and therefore all the observed peaks are interband-like. The
second case has NF = 4 and therefore one intraband peak
is observed, corresponding to transitions n = 4 → n = 5, at
a low photon energy, whereas the interband peaks appear at
energies h̄ω � 2EF = 0.4 eV.

We finally remark that, as long as not too low magnetic
fields are considered (B � 0.1 T), the above considerations
are valid even close to room temperature (e.g., for B = 1 T,
the first LL corresponds to a thermal energy of 420 K).

3. The Hall conductivity

The Hall optical conductivity of graphene σxy(ω) follows
directly from Eq. (7); choosing i = y, j = x, we obtain

σxy(ω) = −gsgv × J̃y(ω)

Ẽx(ω)
, (50)

where we have invoked graphene’s sixfold crystallographic
symmetry to write σxy(ω) = −σyx(ω). The central quantity
to be computed this time is the average value of the current
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density operator along the y direction; using Eqs. (6) and (25),
we get

Jy(t) = −evF

∑
n,n′

〈n,ky |jy |n′,ky〉〈ĉ†n,ky
(t)ĉn′,k′

y
(t)〉. (51)

The nonzero matrix elements read

〈0,ky |jy | ± 1,ky〉 = −i
evF√

2A
, (52)

〈n,ky |jy |n′,ky〉
= −evF

2A
[sign(n′)δ|n|−1,|n′ | + sign(n)δ|n|,|n′|−1], (53)

(plus respective complex conjugates), where, in the last line,
n,n′ 
= 0. Omitting the summation over ky , the total current
density reads

Ĵy(t) = i√
2A

evF (c†1a0 + v
†
1a0 − h.c.)

− 1

2A
evF

∑
n�1

(
P̂ (1)

n − P̂ (2)
n + h.c.

)
− 1

2A
evF

∑
n�1

(c†ncn+1 − v†
nvn+1 + h.c.). (54)

The EOMs resemble those derived for the longitudinal con-
ductivity [Eqs. (34) and (35)], the reason being that the current
matrix elements in the x and y directions are the same except
for phase factors [compare Eqs. (27) and (28) with Eqs. (52)
and (53)]. The final formula (after regularization) yields,

σ reg
xy (ω) = e2

h

Nc∑
n
=m=−Nc

�
xy
nm

iEnm

nF (En) − nF (Em)

h̄ω + Enm + i�
, (55)

with matrix elements �
xy
mn related to �xx

nm [Eq. (42)] according
to,

�xy
nm = i�xx

nm(δ|m|,|n|−1 − δ|m|−1,|n|) . (56)

Likewise σxx(ω), the result for the Hall conductivity based
on the EOM method coincides with the result obtained using
Green functions calculations.41

Symmetry considerations imply that only two terms con-
tribute in general for the zero-temperature Hall conductivity,
and hence the formula Eq. (55) can be considerably simplified.
The first term is the intraband contribution and reads,

σ intra
xy (ω) = e2

h

2h̄2v2
F

l2
B

1 − δNF ,0

(h̄ω + i�)2 − h̄2�ω2
NF

, (57)

and the second is interband-like, connecting electronic states
with n = −NF and n = NF + 1, and reads,

σ inter
xy (ω) = e2

h

2h̄2v2
F

l2
B

1 + δNF ,0

(h̄ω + i�)2 − h̄2��2
NF

. (58)

A single interband transition play a role in setting the Hall
conductivity, even for zero Fermi energy. This is at odds
with the situation for σxx(ω), where many non equivalent
interband transitions contribute to the optical spectral weight.
To understand this peculiar feature of σxy(ω), let us con-
sider the second lowest interband resonant energy, namely,
�E2 = ENF +2 − E−NF −1: there are two distinct sorts of

FIG. 6. (Color online) Schematic of electronic transitions con-
tributing to the Hall conductivity of doped graphene in a magnetic
field. Contrary to the longitudinal conductivity (Fig. 3), symmetry
implies that only interband transitions involving the smallest energy
difference, h̄��NF

= ENF
+ ENF +1, contribute to σxy . The remain-

ing interband transitions (��n, with n > NF ) come in pairs whose
contribution to the Hall current mutually cancel as explained in the
text: an example of a pair of interband transitions that cancel is shown
in zigzag arrows. Note: The schematic picture is strictly adequate
for NF � 1; the case of NF = 0 admits a single type of electronic
transition, namely, n = 0 → n = 1.

interband transitions n → m involving such energy difference,
namely, the pair n1 = −NF − 2 ∧ m1 = NF + 1 and n2 =
−NF − 1 ∧ m2 = NF + 2, whose Hall matrix elements read,
�

xy
n1m1 = i�xx

n1m1
and �

xy
n2m2 = −i�xx

n2m2
, respectively. When

substituting into Eq. (55), these contributions cancel each
other at T = 0 because �xx

n2m2
= �xx

n1m1
. The same argument

applies to all transitions involving an energy difference larger
than the interband gap, h̄��NF

. The only exception is indeed
the interband transition −NF → NF + 1 because, contrary
to interband transitions involving larger energy differences,
it cannot be canceled by the other member of the pair,
n = −NF − 1 ∧ m = NF , since the latter is forbidden via
Pauli blockade; a schematic picture is given in Fig. 6.

The extremum points of the real part of the Hall conductiv-
ity occurs at zero frequency, ω = 0, and

ωintra
± � �ωNF

± �/h̄, (59)

ωinter
± � ��NF

± �/h̄, (60)

where we have considered �/h̄ � �ωNF
[see Eq. (46) and

text therein] and made use of �/h̄ � ��NF
. The latter

consideration is true in virtually all situations except for
graphene at a low electronic density and small magnetic field
B. Within the same accuracy, the Hall conductivity at ω = 0
reads

Re σxy(0) � −
(

1 − δNF,0

�ω2
NF

+ 1 + δNF,0

��2
NF

)(
4eBv2

F

h̄π

)
× σg,

(61)

whereas at the point ωintra
± it is given by

Re σxy(ωintra
± ) � F±

�ωNF

(
1 − δNF,0

�ωNF

)(
eBv2

F

π�

)
× σg, (62)
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FIG. 7. (Color online) Hall conductivity as a function of photon
energy for EF = 0 (top) and EF = 0.2 eV (bottom). In both plots
T = 0 (other parameters as in Fig. 4). At zero Fermi energy (top),
σxy(ω) originates in a single type of interband transition, centered
at h̄ω ≈ E1 � 96 meV, and therefore cannot be described by a
semiclassical treatment [Eq. (58)]. When EF = 0.2 eV (bottom),
the first four LLs are fulfilled, which results in a classical intraband
contribution [Eq. (57)], centered at h̄ω � E5 − E4 ≈ 23 meV, and a
single interband transition [Eq. (58)] centered at h̄ω � E5 + E4 ≈
0.4 eV � 2EF . The latter is shown in the inset.

and for ωinter
± it reads

Re σxy(ωinter
± ) � F±

��NF

(
1 + δNF,0

��NF

)(
eBv2

F

π�

)
× σg, (63)

where we have defined F±
ω = ±h̄ω/(h̄ω ± �). The intensity of

the Hall peak’s dependence on the magnetic field intensity B is
the same as for the longitudinal (intraband) peaks [Eq. (46)],
i.e., as ∼√

B. Also, similarly to σxx(ω), in doped graphene
with NF > 1, the interband peak is very low compared with the
intraband Hall peak for �ωNF

� ��NF
. We, finally, remark

that the anomaly associated with the zero-energy LL is present
in all the latter expressions via the factor 1 + δNF ,0.

Figure 7 shows the Hall conductivity of graphene at a
high magnetic field (B = 7 T) for NF = 0 (top) and NF = 4
(bottom), corresponding to neutral and highly doped graphene
samples, respectively. The main characteristics of Re σxy(ω)
can be explained using Eqs. (61)–(63). In particular, for
doped graphene, the spectral weight concentrates around
two well-separated parts of the spectrum: (i) an intraband-
dominated region (n = 4 → n = 5), at low photon energies,
with a maximum (minimum) intensity occurring at h̄ω+ �
�4 + � � 30 meV (h̄ω− � �4 − � � 16 meV) [intensity
equal to �10e2/h (�−20e2/h), in accordance with Eq. (62)],
and (ii) an interband-dominated region (n = −4 → n = 5), at
high photon energies, with a maximum (minimum) intensity
occurring at h̄�+ � h̄��4 + � � 413 meV (h̄�− � h̄��4 −
� � 400 meV) [intensity equal to �0.81e2/h (�−0.85e2/h),
in accordance with Eq. (63)].

Dependence on the Fermi energy. The variation of conduc-
tivity with the Fermi energy reveals other peculiar feature of 2D
systems: Hall quantization.26,30 Figure 8 shows the formation

FIG. 8. (Color online) The dc Hall conductivity as a function
of the Fermi energy. The parameters are T = 17 K and � =
0.68 meV. The plateaux show Hall quantization values according
to the theoretical prediction for massless Dirac fermions [Eq. (64)].

of a plateau in the static (or dc) Hall conductivity, σxy(0),
direct evidence for discrete energy levels. In conventional 2D
electron gases, the widths of such plateaux are constant (the
LLs energy scales as n), whereas in graphene the plateau’s
width decreases with increasing Fermi energy (the LLs energy
scales as

√
n). As for the steps heights, they are equidistant

in graphene, �σxy(0) = 4e2/h, even when crossing EF = 0,
whereas in conventional 2D systems the step from the first
electron LL (n = 1) and the first hole LL (n = −1) is twice
the value of the remaining steps (a manifestation of the
zero-energy LL graphene anomaly).

The Hall conductivity quantization rule for graphene can
be readily obtained by adding the intraband and interband Hall
conductivities,

σxy(0) = −4e2

h

(
NF + 1

2

)
, (64)

where we have used � � E1 in order to simplify the
denominators of Eqs. (57) and (58). Despite the filling
factor, ν = 4NF + 2, being an integer number, there is no
complete correspondence with the conventional 2D IQHE,
for which σxy = −4e2NF /h; an extra 1/2 factor due to the
contribution of the zero-energy state, shared by both electrons
and holes, shows up, which must be taken separately, making
ν always even—this is known as the anomalous IQHE and is
a hallmark of chiral massless fermions. The anomalous IQHE
was predicted theoretically8,40 and measured5,27 in the early
days of graphene.

E. The semiclassical solution

Within the semiclassical approach, the spinorial nature
of the electrons’ wave function is immaterial. On the other
hand, the massless nature of the spectrum invalidates a
straightforward Drude-like approach43,44 to the calculation
of the transport coefficients, and Boltzmann transport theory
is required, since in this formulation the central quantity to
be computed is the deviation of the momentum distribution
function from the equilibrium Fermi distribution.
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In the semiclassical regime (that is, a high electronic density
and/or low magnetic fields), the physics of the Hall effect
can be explained in terms of Boltzmann’s theory of transport,
where the electric current is given, in the case of graphene, by

J = e2

h

∫
dkg(B,k,ω)vk, (65)

with spin and valley degeneracies included, and where
g(B,k,ω) ≡ gk is the deviation of the carriers’ (electrons or
holes) distribution function from the equilibrium Fermi distri-
bution f0(ε), e is the charge of the carrier, the static magnetic
field B is considered to be perpendicular to graphene’s surface,
ω is the frequency of the electromagnetic field, and the carrier’s
velocity reads vk = (vx,vy) = vF (cos θ, sin θ ). In the presence
of both an electric and a magnetic field, the distribution gk is
the solution of the equation43

−eE · vk
∂f0

∂ε
= gk

τk
+ ∂gk

∂t
+ e

h̄
(vk × B) · ∇kgk, (66)

where we have employed the the standard relaxation
approximation,43 i.e.,

∂fk

∂t

∣∣∣∣
scatt

= −gk

τk
, (67)

where τk is the relaxation scattering time, E = (E0,x,E0,y) is
the electric field, and ∇k is the gradient operator with respect
to the momentum k. Writing gk as

gk = e−iωtk · A (68)

and noting that (vk × B) · ∇kgk = vk · (B × ∇kgk), Eq. (66)
can be solved exactly, where the vector A needs to be
determined. Solving Eq. (66), the components of the vector
A = (Ax,Ay) are obtained in the form

Ax = (1 − iωτk)Ex − τkωcEy

(1 − iωτk)2 + ω2
cτ

2
k

, (69)

Ay = (1 − iωτk)Ey + τkωcEx

(1 − iωτk)2 + ω2
cτ

2
k

, (70)

where

ωc = ev2
F B/|EF | (71)

is the graphene’s cyclotron frequency, and Ex(y) is defined as

Ex(y) = −eE0,x(y)vx(y)
∂f0

∂ε
. (72)

Introducing gk in Eq. (65), and assuming T = 0, we obtain the
components of the conductivity tensor, which read

σxx = e2

h

2|EF |τkF

h̄

1 − iωτkF(
1 − iωτkF

)2 + ω2
cτ

2
kF

, (73)

σxy = −e2

h

2EF τkF

h̄

ωcτkF(
1 − iωτkF

)2 + ω2
cτ

2
kF

. (74)

Note that setting ωc = 0 in Eq. (73) leads to the semiclassical
longitudinal conductivity at zero field mentioned in Sec. II C.

Validity of the semiclassical calculation. The results pre-
sented so far demonstrate the reliability of the Boltzmann
approach in regions of the spectrum where the optical weight
is mostly due to intraband transitions. This is borne out in

Fig. 5 [Fig. 7 (bottom)], where σxx(ω) [σxy(ω) ] is plotted
as a function of h̄ω for B = 7 T and EF = 0.2 eV: the
agreement between the real part (imaginary part) of the
quantum calculation shown by the solid (blue) line [dashed–
double-dotted (red) line] and the semiclassical calculation
shown by the dashed (green) curve [dashed-dotted (orange)
line] in these figures is confined to energies h̄ω � 2EF . For
high photon frequencies—more precisely, above the threshold
for interband transitions, h̄ω � 2EF —the conductivity cannot
be described by Boltzmann’s transport theory.

The fine agreement observed at low photon energies is not
accidental and ceases to occur only for a very low Fermi
energy. To see why, we note that Eqs. (44) and (57) (intraband
conductivity) and Eqs. (73) and (74) (semiclassical conduc-
tivity) coincide, upon identification of the intraband energy
gap �NF

, with the cyclotron energy h̄ωc. This identification
is justified when a sufficient number of LLs are filled. In
fact, expressing the Fermi energy as EF = (h̄vF / lB)

√
2N�,

we obtain �NF
→ h̄ωc provided that

√
NF + 1 −

√
NF → 1

2
√

N�
. (75)

Noting that NF = int[N�], we then see that the latter limit is
achieved when N� � 1, as anticipated.

For the parameters in Fig. 5 (see also Fig. 7, bottom), even
though only a few LLs are fulfilled, i.e., NF = 4, the values of
�NF

and h̄ωc are quite similar, �NF
= 0.0226 eV and h̄ωc =

0.0230 eV, explaining the consistence between the two theories
in describing the intraband electronic transport. In practice,
only for a very low Fermi energy and/or a very high magnetic
field, such that NF = 0, does the semiclassical calculation
fail to describe the conductivity in the whole optical spectrum,
since all transitions are interband-like in this case. Remarkably,
already for a single occupied LL, NF = 1, the semiclassical

FIG. 9. (Color online) The real part of the longitudinal conductiv-
ity is plotted as a function of the photon energy for EF = 0.1 eV (left)
and EF = 0.15 eV (right). In these plots, B = 7 T and � = 6.8 meV.
The dashed (red) line represents the semiclassical result [Eq. (73)]
and the solid (blue) line represents the EOM quantum solution
[Eq. (42)]. Note that, in the right panel, there is no interband peak
n = −1 → m = 2, at EF ≈ 230 meV, and the peak at h̄ω ≈ 300 meV
loses half of its intensity because the n = −3 → m = 2 transitions
get blocked when the Fermi energy crosses the LL with n = 2.
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TABLE I. Values of several relevant quantities related to the
numerical simulations given in Figs. 5, 7, 9, and 11. The agreement
between the semiclassical calculation and the quantum intraband
expression comes from the similarity between �NF

and h̄ωc.

B (T) EF (eV) NF �NF
/h̄ωc

1 0.30 68 0.9990
2 0.30 34 0.9954
5 0.30 13 1.0066
7 0.20 4 0.9837
7 0.15 2 0.9933
7 0.10 1 0.8629

calculation provides a reasonable description of the optical
conductivity, as long as one remains inside the portion of
the spectrum where the interband processes have little or no
weight, that is, h̄ω � E1 + E2 (see Fig. 9). We note again,
however, that the intraband region extends for a large range of
frequencies given the large intrinsic cyclotron gap of graphene.

In summary, the validity of the semiclassical calculation
is bound to photon energies below the interband threshold,
h̄ω � ENF

+ ENF +1, and for a not too low Fermi energy,
NF � 1. For the parameters used in Figs. 5, 7 (bottom), 9, and
11, we list in Table I the corresponding values of �NF

/h̄ωc.
These figures have NF > 1 and hence the semiclassical
conductivity agrees well within the far-infrared part of the
spectrum. For completeness, Fig. 9 shows the real part of
σxx(ω) for NF = 1 (left) and NF = 2 (right). The former has
�NF

/h̄ωc � 0.86 and hence the semiclassical calculation is
only partially accurate. In particular, it underestimates the
maximum intensity for intraband light absorption. The right
panel in Fig. 9, with NF = 2, has �NF

/h̄ωc � 0.99, which
explains the excellent agreement between the two curves in
the intraband region, h̄ω � 0.3 eV.

Having presented the calculation method for the magneto-
optical properties of graphene based on the EOM method, we
now turn to study of the Faraday effect.

III. THE FARADAY EFFECT IN GRAPHENE

We discuss the transmission of electromagnetic radiation
between two dielectric media separated by graphene. The
scattering geometry is given in Fig. 10, where the transverse
magnetic mode is chosen as a particular example. Since we
are interested in a normal incidence, there is no distinction
between the transverse magnetic and the transverse electric
modes.

The present section is organized as follows: in Sec. III A,
we derive general expressions for transmission, ellipticity,
and Faraday rotation angle. These quantities depend on
the frequency of the impinging light ω, magnitude of the
(transverse) magnetic field B, scattering mechanisms (i.e.,
level broadening �), temperature T , and Fermi energy EF , via
the magneto-optical conductivity tensor of graphene derived
in Sec. II.

Our theoretical results are tested against experimental data
measured recently by Crassee et al. using graphene samples
with a high electronic density.33 The limit of a low electronic
density is studied in Sec. III C, where the Faraday rotation

FIG. 10. (Color online) Schematic of the Faraday effect: an
electromagnetic wave polarized in the xy plane (transverse magnetic
mode) and traveling in the positive z direction passes through a
graphene film subjected to a transverse magnetic field B. In this case,
graphene is adhered to a substrate (typically SiO2), but the experiment
can also be made with suspended graphene. The transmitted field sees
its plane of polarization rotated by an angle θF and acquires a certain
degree of ellipticity.

angle is shown to display quantum jumps as a function of the
Fermi energy.

Finally, in Sec. III D, an experimental setup is proposed
that is able to greatly enhance the Faraday rotation angle in the
entire optical spectrum.

A. Faraday rotation in graphene

We now solve the problem posed in Fig. 10, considering
only a single graphene sheet separating two dielectrics. In what
follows, we assume that graphene is deposited on top of a
lossless dielectric medium (i.e., fully transparent to impinging
light) of relative permittivity εr . The generalization of the
problem to the case of a lossy dielectric poses no difficulties,
except for the introduction of a complex index of refraction
associated with the dielectric medium. We further assume
that the incoming electromagnetic field is linearly polarized
along the x axis and propagates along the z direction, as shown
in the diagram in Fig. 10; that is,

Ei = exE
i
xe

i(qz−ωt), (76)

such that q = √
εrω/c.

Due to the optical Faraday rotation of the plane of
polarization of the electric field, both the reflected, Er , and
the transmitted, Et , fields acquire a finite component along
the y direction; that is,

Er = (
Er

x,E
r
y

)
e−i(qz−ωt), (77)

Et = (
Et

x,E
t
y

)
ei(kz−ωt), (78)
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where k = ω/c. For this problem, Maxwell’s equation for the
electric field reads (in MKS units)

∂2Ei

∂z2
+ iωμ0δ(z)

∑
j=x,y

σijEj + ω2εrμEi = 0, (79)

where Ei is the i component of the electric field (we have
i = x,y), μ0 is the vacuum permeability, and σij are the
components of the magneto-optical tensor of graphene (see
Sec. II). The boundary conditions at the substrate-graphene-air
interface are the continuity of the tangential components of the
electric field at the surface of graphene (z = 0),(

Ei
x,0

) + (
Er

x,E
r
y

) = (
Et

x,E
t
y

)
, (80)

and (the derivatives are evaluated at z = 0)

∂Et
l

∂z
− ∂Ei

l

∂z
− ∂Er

l

∂z
= −iωμ0

∑
j=x,y

σljE
t
j , (81)

where the last condition was derived from integrating Eq. (79)
in the interval z ∈ [0−,0+] and l = x,y. Calculation of the
transmitted intensities becomes easier to perform if we rewrite
the boundary conditions in terms of circularly polarized waves:

−2qEi
x + (k + q)Et

± = −μωσ∓Et
±, (82)

where E± = Ex ± iEy and σ± = σxx ± iσxy , for in this
representation the two circular polarizations decouple from
each other. From Eq. (82) the transmission amplitudes follow
in the form

t± ≡ Et
±

Ei
x

= 2
√

εr

1 + √
εr + cμ0σ∓

= |t±|eiθ± . (83)

The transmittance can be written as

T (B) = 1

2
√

εr

(|t+|2 + |t−|2), (84)

where the factor 1/2 comes from the proper normalization of
circularly polarized waves (omitted in the definition above,
for simplicity of writing) and the factor 1/

√
εr is due to flux

conservation. Faraday’s rotation angle θF and the ellipticity
are given by45–47

θF = 1
2 (θ+ − θ−), (85)

δ = |t+| − |t−|
|t+| + |t−| , (86)

respectively. From Eq. (83), θF is given in terms of the
conductivity σ±, since

θ± = − arctan
μcσ ′′

∓
1 + √

εr + cμσ ′∓
, (87)

where σ± = σ ′
± + iσ ′′

±, and σ ′
± and σ ′′

± are the real and
imaginary parts of σ±, respectively. Explicitly, we have

σ± = (σ ′
xx ∓ σ ′′

xy) + i(σ ′′
xx ± σ ′

xy), (88)

from which follows the approximate expression

θF ≈ − cμ0

1 + √
εr

σ ′
xy, (89)

where we have assumed that θF � 1 and that 1 + √
εr �

cμ0σ
′
∓. The latter assumption is the more stringent of the two.

FIG. 11. (Color online) Faraday rotation angle (in degrees),
normalized transmittance, and ellipticity of electromagnetic radiation
passing through graphene subjected to a perpendicular magnetic field.
The graphene sample is assumed to have a finite electronic density,
EF = 0.3 eV, and to be on top of SiO2 (εr = 3.9). Top six panels:
Simulation of θF , T (B)/T (0), and δ, considering a broadening of
� = 7 meV. Bottom six panels: Simulation of the same quantities
as above for � = 3.7 meV. In all panels, dashed lines correspond
to approximate calculations, as given by Eqs. (89) and (91), and
T = 17 K.

For comparison, in the numerical studies shown in Fig. 11, we
represent both the exact and the approximate results for θF , δ,
and T . This allows us to check the validity of the approximate
results. Discarding terms of the order of (cμ0σ∓)2 in Eq. (84),
we obtain an approximate expression for the total transmitted
light in the form

T (B) ≈ 4
√

εr

(1 + √
εr )2

(
1 − 2cμ0

1 + √
εr

σ ′
xx

)
. (90)

Within the same degree of approximation used to derive
Eq. (89), the ellipticity is given by

δ ≈ − 2cμ

1 + √
εr

σ ′′
xy. (91)
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The validity of these approximations depends on the photon
frequency, as can be seen in Fig. 11. In what follows, the exact
expression is used in all numerical studies.

In our simulations of the Faraday effect, we assume
broadenings of the order of 10 meV. Our assumption is
consistent with the values found in pump-probe experiments
performed in exitaxial and exfoliated graphene samples48,49

and in infrared spectroscopy studies of the Drude conductivity
of graphene.50

B. Fit to experimental data in the high-density regime

Figure 12 shows fits for two sets of experimental data for
θF ,33 measured when electromagnetic radiation passes through
graphene epitaxially grown on silicon carbide (data taken at a
temperature of 6 K). According to the experiments by Crassee
et al.,33 it was possible to produce a single graphene sheet
grown on the Si-terminated surface of 6H-SiC (the sample
underwent H passivation of the Si dangling bonds, resulting
in quasi-free-standing single-layer graphene). Two sets of
experimental data are shown in Fig. 12 (top), corresponding
to two magnetic field intensities, B = 7 T and B = 3 T.

In the course of the experiments it was found that the bare
substrate did not reveal any Faraday effect, and therefore the
measured rotation angle is intrinsic to graphene. This statement
is confirmed by the model developed in Sec. III A. ARPES
measurements on the sample used indicated a Fermi energy of
the order of EF � 0.34 ± 0.01 eV.

In order to fit the data we have used EF = 0.3 eV. We do
not expect a perfect fit because we are considering a lossless
dielectric. Nevertheless, the fit is fairly accurate, given the
simplicity of the model. Moreover, the value of εr was set to
4.4, which is not the relative permittivity of SiC and must be
understood as an effective number, given that the experimental
data were taken with epitaxially grown graphene. Although the
calculation in Sec. II D does not include this fact explicitly, the
fits are satisfactory, for they reproduce the main features of
the experimental data: a decrease in θF with the photon energy
until a minimum is reached for h̄ω ≈ 26 meV (20 meV) when
the magnetic field intensity is 7 T (3 T).

Comparing the top and bottom panels in Fig. 12, it can
be seen that the minimum (maximum) of the Faraday rotation
angle coincides roughly with the maximum (minimum) of σ ′

xy .
The latter fact agrees well with what could be concluded from
the approximated result stated in Eq. (89). In order to interpret
the variation of the Faraday rotation angle with the photon
energy, it is sufficient to use the simplified results derived in
Sec. II D for T = 0, namely, Eqs. (57)–(63). (This is clearly
justified given the low temperature in the experiment in Ref.
33; the respective thermal energy corresponds to about 0.01
times the level spacing �1 = E1 − E0 [see Eq. (45) for the
definition of �n ] for both intensities of magnetic field.)

For a magnetic field of 7 T (3 T), intraband transitions
n = 9 → n = 10 (n = 22 → n = 23) control the variation of
θF , from positive up to negative values, as the photon energy
varies. Here, the index n denotes LLs with energy given by
En = sign(n)

√
2|n|h̄vF/lB [see Eq. (5) and text thereafter].

The remaining transitions contributing to the Hall conductivity
are interband-like and occur at much higher photon energies

FIG. 12. (Color online) Faraday effect in doped graphene. Top:
Faraday rotation angle (in degrees) when graphene is grown on silicon
carbide. Fit to the experimental values of θF , at a magnetic field of
B = 7 T (left) and B = 3 T (right), using the semiclassical approach
[dashed (green) line] and the full quantum calculation [solid (red)
line]. Parameters are EF = 0.3 eV, � = 10.5 meV, T = 6 K, and
εr = 4.4. Bottom: Theoretical optical conductivity [Eqs. (42) and
(55)] for the same parameters used to fit the experimental data: B =
7 T (left) and B = 3 T (right).

h̄ω � 2EF , and thus it does not influence the Faraday rotation
in the range of energy plotted in Fig. 12.

In this example, intraband transitions involve a very small
difference in energy, even when the magnetic field is 7 T.
The value of the intraband gap [Eq. (45)] is �NF

� 16 meV
(�NF

� 7 meV) for B = 7 T (B = 3 T), which is comparable
to � (here NF denotes the last occupied LL for a given Fermi
energy). The exact calculation shows that the extrema points
of the real part of the intraband Hall conductivity [Eq. (57)]
occur at ω = 0, and,

ωintra
± = 1

h̄
Re

√
�2

NF
+ �2 ± 2�

√
�2

NF
+ �2. (92)

Substituting the values given in the caption to Fig. 12 into the
latter formula, we obtain ωintra

+ � 27 meV (ωintra
+ � 20 meV)

for a field intensity of 7 T (3 T). As mentioned above, these
are the points where the Faraday rotation reaches its minimum
value. Increasing further the photon energy, h̄ω > h̄ωintra

+ , the
Faraday rotation increases toward zero, essentially because at
large ω, below the interband threshold, the Hall conductivity
becomes very low (Fig. 12) and no distinction arises between
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σ− and σ+, and thus t+ ≈ t−. Increasing the photon energy
up to h̄ω ∼ 2EF , the interband transition comes into play and
drives the Faraday rotation. Interband transitions are important
in samples with low electronic densities, as explained in the
following section.

The curves for θF , computed either from the semiclassical
expressions for the conductivity [Eqs. (73) and (74)] or
via the EOM expressions [Eqs. (42) and (55)] are almost
indistinguishable (see Fig. 12, top), in the range of photon
energies considered, except for h̄ω ≈ 10 meV, where a very
small deviation is observed when the intensity of the magnetic
field is 7 T.

The agreement between the quantum and the semiclassical
solutions is explained by the similarity of the intraband gap
�NF

and the cyclotron energy h̄ωc [see Eq. (71)]. The values
for these quantities are �NF

� 6.62(15.6) meV and h̄ωc �
6.58(15.4) meV for a field of 3(7) T. The agreement between
the methods breaks down near the interband threshold, h̄ω �
2EF � 0.6 eV, where the quantum contribution arising from
the interband transition cannot be neglected.

C. Quantum jumps in the Faraday rotation: the
low-electronic-density limit

When low Fermi energies are considered, energy quantiza-
tion becomes important (see Secs. II D and II E). The limiting
case occurs for 0 � EF <

√
2h̄vF / lB , i.e., NF = 0. In this

case, at T = 0, LLs with n � 1 are all empty, and a single
type of transition contributes to the Hall conductivity, n =
0 → n = 1. Since this transition is interband-like, it cannot be
explained within the semiclassical treatment (Secs. II D and
II E). This situation is illustrated in Fig. 13 (bottom): when
NF = 0, the real part of the Hall conductivity [solid (green)
line] has a finite (nonzero) value around ω � (E1 + E0)/h̄.

FIG. 13. (Color online) Low electronic density limit. Top:
Faraday rotation angle (in degrees) for free-standing graphene (εr =
1) for different LL occupations: from left to right, NF = 0, 1, and 2.
The magnetic field intensity is B = 7 T, � = 10.5 meV, and T = 0.
Adding a dielectric substrate to graphene decreases the maximum
amount of Faraday rotation that is achievable, without introducing
major qualitative changes [see Eq. (89)]. Bottom: Real part of the
quantum conductivity tensor for the Fermi energies considered in the
top panel.

[Note that the extrema of the interband Hall conductivity
can be obtained from Eq. (92) by making the replacement
�NF

→ h̄��NF
, with ��NF

given by Eq. (48).] The Faraday
rotation given by the semiclassical model is obviously 0
[dashed (red) line] since EF = 0 [Eq. (74)]. The respective
Faraday rotation angle (top) is approximately proportional to
−σxy(ω).

At higher Fermi energies (i.e., NF > 0), two types of
transitions contribute to the Hall conductivity: in general, for
ENF

< EF < ENF +1, with NF � 1, the allowed transitions
are (i) interband between the hole’s LLs with n = −NF

and the electron’s LLs with n = NF + 1 and (ii) intraband
between LLs with n = NF and n = NF + 1 (Sec. II D).
The maximum intensity of σ ′

xy falls off with the inverse
of the energy difference associated with a given electronic
transition [Eqs. (62) and (63)]. Since, up to a good degree
of approximation, the Faraday effect is controlled by σ ′

xy , the
latter means that the amount of Faraday rotation induced by
the interband transitions at ω = ��NF

will be smaller than the
Faraday rotation due to intraband processes.

The above-mentioned facts can be appreciated in Fig. 13,
where numerical data for θF (top) and σ ′

xx and σ ′
xy (bottom)

are shown with Fermi energy increasing from left to right.
As higher LLs in the conduction band become occupied, the
spectral weight for the interband contribution to σ ′

xy shifts
toward higher energies (that is, h̄��NF

increases →ωinter
±

increases). The opposite occurs for intraband transitions,
since in this case, the relevant energy scale �NF

decreases
with increasing EF . As a result, the intraband part of σ ′

xy

concentrates its spectral weight at the lower edge of the
plotted spectrum and displays a much higher amplitude than its
interband counterpart, as explained above. Similar conclusions
apply to θF , as direct inspection of the bottom and top panels
shows.

When NF = 1, a significant departure from the semiclas-
sical behavior can be appreciated in the intraband region
0–100 meV). Remarkably, though, already for NF = 2, the
semiclassical Hall conductivity approximates the quantum
result well, with a significant deviation occurring only near
the interband threshold (≈300 meV), where the semiclassical
approach must necessarily fail. These features are in accor-
dance with the general conclusions drawn in Sec. II D.

For comparison, the real part of the longitudinal con-
ductivity is also shown in the bottom panel in Fig. 13.
The longitudinal current can be induced by photons which
are resonant with any interband transition allowed by the
Pauli principle (i.e., h̄ω > h̄��NF

� 2EF ), and hence many
absorption peaks can be observed. On the contrary, the Faraday
rotation essentially depends on σ ′

xy and therefore is driven only
by two resonances.

Dependence on the Fermi energy and magnetic field. We
have seen that when few LLs are occupied, quantum effects
come into play and the semiclassical solution no longer gives
an accurate description of the Faraday effect. The latter can
even happen in the intraband region (see, e.g., Fig. 13, middle
panel), embodying the departure of the intraband gap �NF

from its semiclassical analog, the cyclotron energy h̄ωc (see
Table I). Given the importance of energy quantization for a low
electronic density, we expect θF to display abrupt behavior
when the Fermi energy crosses the first few LLs. The latter
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FIG. 14. (Color online) Quantization of the Faraday effect in
graphene. Top: Faraday rotation angle (in degrees) for free-standing
graphene as a function of the Fermi energy at a magnetic field of
B = 7 T for h̄ω = 10 meV (left) and h̄ω = 50 meV (right). The
respective semiclassical result is plotted by the dashed lines. Other
parameters: � = 10.5 meV and T = 12 K. Bottom: Same as the top
panel but with � = 2 meV.

behavior should reflect directly the step structure of the optical
(or ac) Hall conductivity σ ′

xy(ω).19

Figure 14 shows the Faraday rotation angle versus EF for a
fixed magnetic field, B = 7 T. The heights of the steps are not
uniform since the optical Hall conductivity no longer obeys
the dc quantization rule [Eq. (64)]. When the Fermi energy
crosses higher LLs, the smooth semiclassical result (dashed
curves) is recovered.

Combining the approximated formula for θF [Eq. (89); valid
for cμσ ′

∓(ω) � 2 and θF � 1] and the exact Hall conductivity
at T = 0 [Eqs. (57) and (58)], explicit formulas for the step
heights can be obtained. When the Fermi energy crosses
LLs with n > 1, the expression for �θF becomes somewhat
cumbersome. Nevertheless, simple analytical expressions can
be obtained in some regimes. For instance, when the photon
energy is low compared to relevant scales, h̄ω � � � E1, the
steps are predicted to be approximately uniform,

�θ
(n→n+1)
F � 2cμe2

h
= 4α � 0.03 rad, (93)

where α denotes the fine structure constant, α = e2/(4πh̄ε0c).
In Ref. 19, for estimation of the magnitude of the effect it was
assumed that the step height of σ ′

xy is approximately given
by �σ ′

xy(ω) � e2/h, resulting in �θF � α. Rigorously, the

step height for the transitions n = 0 → n = 1 is about 4e2/h,
hence explaining the extra factor of 4 in our expression. In fact,
in the limit h̄ω � � � E1, the steps in the Hall conductivity
will all have approximately the same height, as in the dc case
[see Eq. (64)].

In Fig. 14, a decrease in the step’s height relative to the
estimated value in Eq. (93) can be observed already for the
first step. This happens because the condition � � E1 is too
restrictive, and hence we relax this condition to � � E1 but, at
the same time, keep the low-photon-energy condition, h̄ω �
�. Doing so leads to a better approximation,

�θ
(n→n+1)
F � 1

1 + (6 + 4n + δn,0)γ̃ 2

1

1 + 4nγ̃ 2
× 4α, (94)

where we have defined the dimensionless parameter γ̃ =
�/E1. Using this parameter, the validity condition of Eq. (94)
reads γ̃ � 1 and h̄ω � �.

Two physical scenarios where the Faraday steps are not
uniform are shown in Fig. 14. In the bottom panel, the
transitions n = 0 → n = 1 (EF � 100 meV) come with a
variation of θF of roughly 1.8◦ (�0.031 rad) for h̄ω = 10 meV,
versus −5.1◦ (�−0.089 rad) for h̄ω =50 meV, which does not
agree either with the rough uniform estimate or with Eq. (94).
The reason for this discrepancy is that the condition h̄ω � � is
not fulfilled for the photon frequencies considered in Fig. 14.
Recall that in graphene, � is about about 10 meV, and thus
infrared photons have h̄ω � �. It is therefore useful to derive
approximate formulas for �θF that are valid in the regime
h̄ω � �. Defining ω̃ = E1/(h̄ω), we arrive at

�θ
(n→n+1)
F � 4α

1 − 2(1 + 2n)ω̃2 + ω̃4

1 − ω̃4

1 − 2(3 + 2n)ω̃2 + ω̃4
.

(95)

Substituting for the respective values of ω̃, we obtain
�θ

(0→1)
F = 1.8◦ and �θ

(0→1)
F = −5.3◦ for h̄ω = 10 eV and

h̄ω = 50 meV, respectively, which agrees well with the
numerical results reported in Fig. 14 for � = 2 meV. As for
the steps observed in the top panel in Fig. 14, they cannot be
explained accurately with Eq. (95) since in that case we have
h̄ω ≈ O(�). We stress that Eqs. (94) and (95) are only accurate
when the statement, Eq. (89), provides a good description of
the Faraday effect in graphene, which in practice means very
high photon energies h̄ω (see also Fig. 11). For the parameters
used in Fig. 14, where the photon energies are not very high,
our analytical expressions for �θF are accurate only for the
first few steps.

Figure 15 shows the variation of θF with the magnetic
field for two cases: (i) low doping (EF = 0.05 eV) and
(ii) high doping (EF = 0.3 eV). In the latter case, we are
well inside the semiclassical regime even for the maximum
intensity of the magnetic field considered (B = 7 T), and thus
no distinction can be made between the curves computed using
the semiclassical conductivity tensor or the EOM formulas. In
this regime, the Faraday effect increases monotonously with
the magnetic field.

For a low electronic density, on the other hand, the
agreement between the Boltzmann and the EOM formalisms
takes place only for low magnetic fields. For increasing values
of the magnetic fields, such agreement ceases to occur as soon
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FIG. 15. (Color online) Faraday rotation angle (in degrees) as
a function of the magnetic field for EF = 0.30 eV (left) and
EF = 0.05 eV (right). In each panel two photon energies are
represented—h̄ω = 10 meV [solid (blue) line] and h̄ω = 30 meV
[dashed–double-dotted (red) line]—with the respective semiclassical
counterparts shown by dashed lines. Other parameters as in the top
panel in Fig. 14.

as the intraband gap does not match the cyclotron energy h̄ωc.
Then energy level quantization becomes important and the
EOM expressions must be considered (i.e., NF is small; see
Sec. II E): this explains the departure from the semiclassical
value for θF observed in the right panel in B ≈ 1 T for
h̄ω = 10 meV (B ≈ 0.5 T for h̄ω = 30 meV). If the magnetic
field intensity is higher than a given value, we necessarily have
NF = 0 (for 0.05 eV this value is about 1.9 T). In this case,
the Hall conductivity at T = 0 is fully determined by a single
type of interband transition, and assuming E1(B) � h̄ω,�, we
obtain [see Eq. (58)],

σ ′
xy �

largeB
−2e2

h
⇒ θF � 2α � 3 × 10−4 ◦ . (96)

The latter considerations explain the plateau formed at B ≈ 2 T
[solid (blue) line] in the right panel in Fig. 15. The dashed–
double-dotted (red) line corresponds to photons with a higher
energy, shifting the formation of the plateau toward higher
fields. Equation (96) is indeed the high-magnetic-field limit
[E1(B)� energy scales] of the Faraday rotation induced by
single-layer graphene.

Although the measured Faraday rotation angle is remark-
ably large given that it comes from a single graphene layer,
in both low and high doping regimes (see Fig. 15), it is the
needed magnetic field, B � 1 T. The goal is then to obtain large
Faraday rotation angles using graphene and modest fields at
the same time. A simple idea that uses the nonreciprocity of
the Faraday effect is to enclose graphene between two mirrors.
We discuss this possibility in the following section.

D. Enhancement of Faraday rotation in a cavity geometry

We have seen that the existence of intraband and in-
terband transitions in graphene permits the generation of
finite (nonzero) Faraday rotations in different ranges of the

electromagnetic spectrum. In doped graphene (NF � 1), e.g.,
the intraband gap is bounded from above by

Eintra � �1 = E2 − E1 � 15
√

B meV · T−1/2, (97)

implying that, by using magnetic field intensities ∼1 T,
graphene can be exploited for magneto-optical applications
from the microwave up to the far-infrared regimes, f =
E/h � 3.6 THz (an example of terahertz Faraday rotation
driven by intraband transitions is given in Fig. 12). Another
possibility is to make use of transitions connecting the
valence and conduction Dirac cones, whose interband gaps
are bounded from below,

Einter � h̄��1 = E1 � 36
√

B meV · T−1/2, (98)

thus obtaining far-infrared up to visible light frequencies
(an example of midinfrared Faraday rotation driven by
interband transitions is shown in Fig. 13). We recall that
increasing the electronic density in order to obtain even larger
interband gaps (h̄��n with n > 1), and thus shifting the
magneto-optical response of graphene above the midinfrared,
h̄ω ∼ h̄��NF

� 2EF , creates optical Hall conductivity peaks
with a low intensity. As a consequence, very small Faraday
rotations are produced already in the near-infrared regime. A
good estimate for the maximum achievable interband-induced
Faraday rotation can be obtained from Eqs. (63) and (89),

max |θF| �
(

eBv2
F

2ω�

)
× α, (99)

which, for example, taking B = 7 T, � = 10 meV, and
h̄ω = 1 eV, leads to max |θF| � 10−3. Although the amounts
of terahertz Faraday rotation, h̄ω � O meV, reported in
our figures are well within state-of-the-art capabilities [the
resolution for Faraday measurements in terahertz time-domain
spectroscopy is presently limited to 1 mrad20 (∼0.06◦)], high
magnetic fields, ∼1 T, are still needed, which can be a
disadvantage for specific applications; moreover, according to
Eq. (99) the needed magnetic field increases as higher photon
frequencies are to be probed.

The situation is very different in other 2D electron gases,
for which θF is proportional to the sample’s thickness (as
the light travels farther through the material, more Faraday
rotation accumulates). Single-layer graphene, on the other
hand, being one atom thick and hence truly 2D, requires the
use of high magnetic fields in order to detect Faraday rotations.
It is therefore natural to ask whether it is possible to conceive a
setup leading to accumulation of Faraday effect; ideally, such
setup would avoid the use of several samples and, at the same
time, take advantage of the broad magneto-optical response of
single-layer graphene.

In what follows, we discuss a graphene-based system
that can enhance the intrinsic graphene’s Faraday rotation
at any frequency and thus can cope with the difficulty
mentioned above. The idea consists in enclosing graphene
in an optical cavity: due to intracavity interference, photons
undergo several round trips within the cavity before leaking
out. Loosely speaking, due to nonreciprocity of the Faraday
effect, accumulation of θF then takes place each time a
photon passes through graphene; a sketch of the experimental
apparatus is shown in Fig. 16.
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FIG. 16. (Color online) Schematic of the graphene-optical cavity
system: linearly polarized light shines into an optical cavity with
graphene placed at the center. The field inside the cavity perceives
graphene as an extra boundary and hence the two halves of the
cavity operate as independent cavities of effective size L/2. Matching
the light frequency h̄ω with a resonant frequency of the cavity
ω = nπc/L (n ∈ N) traps photons inside the cavity for several round
trips. As a consequence, Faraday rotation accumulates due to multiple
passages through graphene, leading to an output field with a large
Faraday rotation.

Explicit calculations (see below) show that giant Faraday
rotations are achieved even when the optical finesse of the
cavity is modest. The optical finesse can be easily tuned by
changing the reflectivity of the end mirrors: the higher the latter
quantity, the larger is the number of round trips of photons
inside the cavity, and hence further Faraday accumulation
occurs. Indeed, the cavity geometry gives a straightforward
solution to mimic the effect of a sample’s thickness (absent in
single-layer graphene).

Following the steps in Sec. III A, we write the boundary
conditions of the electromagnetic field in terms of circularly
polarized waves. Employing similar notation, we define the
input and output circular vector amplitudes,

E in
± = (Ein

±,Er
±)T , (100)

Eout
± = t(Et

±,0)T , (101)

respectively (see also Fig. 16), where Ein
± = Ein

x ± iEin
y (the

reflected Er
± and transmitted waves Et

± having analogous
definitions). The first (second) component of the vectors,
Eqs. (100) and (101), refers to the complex amplitude of light
traveling in the positive (negative) z direction.

The output field Eout
± , and thus the total Faraday rotation

angle, can be more conveniently computed using the transfer
matrix formalism. The method is explained in detail in
Appendix A. Here, we just state the basic results: the T matrix,
by definition, connects the input and output vector amplitudes,
according to

E in
± = T in→out

± Eout
± , (102)

where T in→out
± is a product of individual transfer matrices for

each boundary (optical component, metallic surface, etc.). Its
inverse permits us to compute Eout

± , given the input field E in
±,

and hence the optical characteristics of the cavity-graphene
system. In particular, the circular transmitted amplitudes t± =
Et

±/Ein
± are given by t± = 1/[T in→out

± ]1,1.

For the geometry posed in Fig. 16, the input-output T matrix
reads

T in→out
± = Tm ·

[
e−iωL/2c 0

0 eiωL/2c

]
· T

g
±

·
[

e−iωL/2c 0

0 eiωL/2c

]
· Tm . (103)

Each operator in Eq. (103) propagates the electric field to the
right until a boundary is reached. Tm encodes the effect of
the first interface, a mirror, and depends only on the mirror’s
transmission and reflection amplitudes, t and r , respectively.
It can be written as

Tm = 1

i|t |

[
1 |r|

−|r| −1

]
. (104)

(For a derivation, see, e.g., Ref. 51.) After interaction with
the left-end mirror, photons can enter into the cavity and
propagate for a distance of L/2 before the next interaction.
This means that another T matrix is needed; free propagation
merely adds a phase to the electric field [see Eq. (A5) and
text thereafter] and thus is represented by a diagonal matrix,
which is the second operator in Eq. (103). At z = L/2,
photons arrive at the air-graphene-air interface, whose T

matrix we denote T
g
±. (More involved types of interfaces could

be considered: for example, air-substrate-graphene-air. The
present choice has the advantage of keeping the mathematical
expressions elegant; generalization to other configurations us-
ing the present formalism is straightforward.) The graphene’s
T matrix depends on the magnetic field intensity, electronic
density, temperature, and LL broadening, via the complex
optical conductivity of graphene σ±(ω); its explicit form is

T
g
± = 1

2

[
2 + Z0σ∓(ω) Z0σ∓(ω)

−Z0σ∓(ω) 2 − Z0σ∓(ω)

]
, (105)

where Z0 = μ0c denotes the vacuum impedance; see
Appendix A for a detailed derivation. Finally, the second line
of Eq. (103) propagates the field in free space for a distance of
L/2 and adds the right-end mirror.

The Faraday rotation angle is obtained from θF =
(1/2)arg(t+/t−), with the circular amplitude ratio t+/t− given
by [T in→out

− ]1,1/[T in→out
+ ]1,1 [Eq. (A7)]. After some algebra,

we arrive at

t+
t−

= 2 + Z0σ+(ω) − |r|[Z0σ+(ω) − 2]eiωL/c

2 + Z0σ−(ω) − |r|[Z0σ−(ω) − 2]eiωL/c
, (106)

from which θF can be immediately deduced. Setting r = 0 in
the latter expression leads to the previous result in the absence
of a cavity [compare with t± as obtained from Eq. (83) with
εr = 1 ].

When r > 0, interference takes place and photons can make
several round trips before being transmitted through the cavity.
On an intuitive basis, we then expect that the Faraday rotation
angle can be enhanced due to multiple passages of photons
through graphene, which indeed is the case, as shown in
Fig. 17. Hereafter, the size of the cavity is set to L = nπc/ω,
with n odd. The solid line shows θF for the cavity-graphene
system and the dashed-dotted line shows θF for free-standing
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FIG. 17. (Color online) Faraday rotation angle of a cavity-
graphene system in the semiclassical and quantum regimes. Top left:
θF as a function of the photon energy for a cavity-graphene system
in a magnetic field of 7 T. The Fermi energy reads EF = 0.3 eV and
the cavity mirrors have r = 0.99. Other parameters: � = 10.5 meV
and T = 12 K. Top right: θF versus the reflection amplitude r for
h̄ω = 19 meV. Bottom: In the left (right) panel, the Fermi energy
reads EF = 0.05 eV (EF = 0.1 eV), which corresponds to an LL
occupation of NF = 0 (NF = 1). The orange dashed line shows θF

as obtained with the semiclassical conductivity tensor.

graphene for the same parameters: clearly, in the range of
frequencies considered, the Faraday effect is greatly enhanced.
For example, for a low frequency, h̄ω ≈ 10 meV, θF has
increased by a factor of about 5, reaching a value of 55◦,
whereas for h̄ω ≈ 19 meV, θF increases by a factor of about
20, reaching a value of approximately 25◦.

Direct inspection of Eq. (106) discloses the observed boost
of the Faraday effect: when r → 1 and the phase factor
exp(iωL/c) = −1, the constant factor of 2 cancels in both
the denominator and the numerator, leading to∣∣∣∣ t+t−

∣∣∣∣e2iθF �
n odd

r�1

σ+(ω)

σ−(ω)
, (107)

which can present large arguments, 2θF . The opposite limit,
r → 0, in which the isolated graphene system is recovered,
leads to much smaller arguments, since generally 2 �
Z0Im σ±, which implies that the real part of Eq. (83) is
predominant. Choosing a cavity mode with n odd and r � 1 is
fully equivalent to taking a large number of equally prepared
graphene sheets placed in a row (Appendix B). The cavity

geometry therefore permits us to take advantage of large
Faraday rotation accumulation using a single graphene sheet.

In a cavity geometry, the Faraday rotation is no longer
dominated by the behavior of σ ′

xy(ω) [see Eq. (89)], for θF

now depends on the full conductivity tensor [Eq. (107)]. The
most visible consequence of the latter fact is that photons with
h̄ω ≈ 20 meV undergo considerable Faraday rotation angles
in a cavity geometry, whereas, in a single passage through
graphene, photons with such energy do not produce Faraday
rotation at all (Fig. 17). This apparently counterintuitive result
is due to induced ellipticity in single passages and is explained
in Appendix B.

(a) Semiclassical versus quantum regimes in a cavity
geometry. Figure 17 (top) considers the case of EF = 0.3 eV
and B = 7 T, well inside the semiclassical regime, for which
the ac conductivity is dominated by intraband contributions
over a wide range of frequencies (Sec. II); the corresponding
intraband Faraday rotation is seen to be greatly enhanced in
the cavity geometry.

The low-electronic-density regime of the cavity-graphene
system is shown in the bottom panel in Fig. 17. Remarkably, for
energies above the interband threshold, namely, h̄ω � E1 �
95 meV for NF = 0 (left) and h̄ω � E1 + E2 � 230 meV
for NF = 1 (right), θF (ω) presents a behavior qualitatively
different from that of an isolated graphene sheet (black dot
double-dashed curve): oscillations do emerge. These oscilla-
tions are hindered in single-photon passages through graphene
(see also Fig. 13), but for multiple-photon passages, in the
high-frequency limit, Shubnikov–de Haas oscillations in the
longitudinal conductivity σxx(ω) (Fig. 4) are critical in defining
the orientation of light polarization axes. These oscillations are
obviously absent in the semiclassical Boltzmann calculation
[dashed (orange) curve]. In the top panel, where EF = 0.3 eV,
such oscillations are not present because the represented
photon energies are well below the threshold for interband
transitions h̄ω � 2EF .

(b) Near-infrared and visible-range Faraday rotation. We
finish this section by mentioning an important application
of the cavity-graphene system: interband-induced Faraday
rotations in the near-infrared and visible regimes. Figure 18
shows that energetic photons can attain θF � 1 by tuning the
Fermi energy to sufficiently high values. In this regard, the top
panel shows numerical data for graphene with EF = 0.85 eV;
such a high doping level of graphene samples is feasible using
chemically synthesized graphene with ferroelectric substrates
(instead of the conventional SiO2).52

Given the mirror reflection amplitude considered, r = 0.99,
photons are trapped for a large number of round trips. This
means that it is highly probable that photons get absorbed by
graphene before leaking into the cavity. This explains why
the transmissivity of the cavity-graphene system, as shown
in the right panel in Fig. 18, is well below 1 (but still large
enough that the effect can be measured). One way of increasing
the transmissivity of a cavity-graphene system is to decrease
the quality of the mirrors, at the expense of decreasing the
maximum achievable θF .

We, finally, remark that the nonlinearity associated with
next-neighbor hopping t ′ in a honeycomb graphene lattice can
play a role for photons with h̄ω � 1 eV, and hence corrections
to the Dirac cone approximation (Sec. II A), and thus to the
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FIG. 18. (Color online) Faraday rotation boost in the infrared and
visible ranges. Left: Faraday rotation angle versus photon energy
of a cavity-graphene system with EF = 0.85 eV (top) and EF =
0.3 eV (bottom)]. Right: Transmissivity of a cavity-graphene system
for the same parameters considered at the left. Inset: Transmissivity
of intrinsic graphene for the same parameters. Other parameters as
in Fig. 17. In order to obtain a measurable Faraday rotation at h̄ω ≈
1.7 eV [solid (red) line] [h̄ω ≈ 0.5 eV (infrared)], it is necessary to
tune the intraband resonance according to EF � h̄ω/2.

EOM solutions, may exist; such corrections are expected to be
very small, however.14

IV. CONCLUSION AND OUTLOOK

In the first part of this work, the EOM method has been
adapted to the study of magneto-optical transport of elec-
tronic systems. To illustrate the method, the magneto-optical
conductivity tensor of single-layer graphene in the Dirac cone
approximation has been derived, accounting for both intraband
(semiclassical) transitions and interband transitions between
the valence and the conduction bands.

The general regularization procedure to obtain the regular
conductivity tensor from the solutions of the EOM for the
current operator has been established; this procedure is shown
to lead to the correct formulas without the need for evaluation
of the Kubo formula. To the best of the authors’ knowledge,
such a procedure has not been discussed in the literature so far.
In addition, quantitative comparisons between the quantum

EOM solutions and the semiclassical Boltzmann formulas, in
the full optical spectrum and in both low- and high-doped
graphene samples, have been given throughout.

In the second part, the Faraday rotation effect in single-
layer graphene has been studied in detail; in particular, simple
formulas for the step heights in the quantum Hall regime have
been derived. Our results have been shown to account well for
available experimental data in the semiclassical regime.

Finally, we have proposed a simple experimental apparatus
based on an optical cavity that leads to an enhancement of the
Faraday rotation effect of graphene by orders of magnitude,
thus allowing us to obtain giant Faraday rotation angles in
the infrared region and modest Faraday rotation angles in the
visible region.

We hope that the present work further stimulates the
research on magneto-optical properties of ultrathin 2D gases
and graphene-based solid-state devices.
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APPENDIX A: TRANSFER MATRIX FORMALISM

The transfer matrix (T matrix) approach is a widely used
method in optics and related fields and provides an efficient
means of calculating the amplitude and phase of transmitted
electric fields through an arbitrary number of interfaces. In
this appendix, we give a self-contained review of the method
and derive explicitly the T matrix for a general 2D conducting
media.

1. General formalism

For concreteness, we assume that an incident electromag-
netic wave of frequency ω travels in the z direction through a
set of N metallic interfaces, placed normal to the direction of
propagation, with labels αn,n+1, and located at positions z = zn

(n ∈ 1,2, . . . ,N ). These interfaces are separated by dielectric
mediums; Fig. 19 shows the configuration we have in mind.

The electric field is separated according to the direction
of propagation: E+

n (z) represents the part the electric field
traveling in the positive direction of z, within the region n,
whereas E−

n (z) represents the part traveling in the opposite
direction.

As shown below, calculation of transmitted and reflected
amplitudes becomes easier upon writing the boundary con-
ditions in terms of circularly polarized waves (see also
Sec. III A). Therefore, we focus on the circular amplitudes,

E±
n,τ (z) = E±

n,x(z) + iτE±
n,y, (A1)

where τ is the polarization index: τ = ±1 [+1(−1) means
right-handed (left-handed) circular polarization]. Indeed, in a
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FIG. 19. (Color online) Schematic of an optical system consisting
of an array of interfaces separated by different types of dielectric
media. An electromagnetic wave, Ein = E+

1 , coming from a medium
with dielectric permittivity ε1 interacts with an interface α12. As a
result, it is partially reflected and partially transmitted into the medium
ε2. Equivalent events take place at the remaining interfaces. The
vectors with superscript +(−) denote the component of the electric
field traveling in the positive (negative) direction of z. A uniform
static magnetic field B = Bey is assumed.

given region i, the total (complex) electric field is the sum of
both components,

En(z,t) = E+
n (z)e−iωt + E−

n (z)e−iωt . (A2)

The physical electric field is obtained by taking the real part
of the latter expression. We omit the time dependence in the
remainder of this appendix.

The T matrix connects the amplitude of the electric field
to the left and to the right of a given boundary (interface).
Take, for instance, the interface labeled α1,2 in Fig. 19. The
respective T matrix, T̂ 1,2, is defined as(

E+
2,τ (z+

1 )

E−
2,τ (z+

1 )

)
= T̂ 1,2

τ

(
E+

1,τ (z−
1 )

E−
1,τ (z−

1 )

)
, (A3)

where z±
1 denote the position where the electric field is to be

evaluated: right after (+) or before (−) the interface located
at z = z1. For ease of notation, we define the vector of
amplitudes,

En,τ (z) =
(

E+
n,τ (z)

E−
n,τ (z)

)
, (A4)

and drop the superscripts in the coordinates zn.
If more than one interface is present, the light propagates

a given distance before interacting with the next component.
Propagation of light through a dielectric medium merely adds
a phase to each τ circular component of the electric field.
Indeed, its action can be represented by a diagonal matrix,

En,τ (zi) =
[

e−ikn�zn 0

0 eikn�zn

]
En,τ (zi+1), (A5)

where the index n just takes the values for which there is
intermediate light propagation, i.e., n = 1, . . . ,N − 1, the
wave vector depends on the dielectric medium according to
kn = ω

√
εn/c, and �zn = zn+1 − zn is the width of region n.

Note that Eq. (A5) defines a particular case of a T matrix,
which we denote F̂n.

The problem of determining how the output electric field,
of definite polarization τ , immediately after leaving the last

interface, E+
N+1,τ (zN ), relates to the incoming electric field,

with the same polarization τ , E+
1,τ (z1), then amounts to taking

the product of the individual transfer matrices:

E1,τ (z1) = T̂ 1,2
τ F̂2T̂

2,3
τ . . . T̂ N−1,N

τ F̂N T̂ N,N+1
τ︸ ︷︷ ︸

T̂ in→out
τ

EN+1,τ (zN ).

(A6)

The total T matrix T̂ in→out
τ has the desired information:

E+
N+1,τ

E+
1,τ

= 1/
[
T̂ in→out

τ

]
1,1. (A7)

As for the relation between the output field and the reflected
field at the first boundary, E−

1,τ (z1), we obtain

E+
N+1,τ

E−
1,τ

= 1/[T̂ in→out]2,1. (A8)

In what follows, we show how to construct the T matrix
for a general 2D conducting medium. Knowledge of the
transfer matrices allows us to determine the characteristics
of transmitted and reflected light through a general set of
conducting 2D thin films, mirrors, etc., by employing Eq. (A6).

2. T matrix for a general conducting 2D interface

We restrict the present derivation to nonmagnetic media
and assume the standard constitutive relations hold:

D(r,ω) = ε(r,ω)E(r,ω), (A9)

J(r,ω) = σ̂ (r,ω)E(r,ω), (A10)

where D, ε, and σ denote the displacement field, permittivity,
and conductivity, respectively. Also, and without prejudice, we
take the 2D conducting interface to be located at z = 0. The T

matrix is defined as(
E+

a,τ (z = 0−)

E−
a,τ (z = 0−)

)
= T̂ (ab)

τ

(
E+

b,τ (z = 0+)

E−
b,τ (z = 0+)

)
, (A11)

where a (b) is the bookkeeping index for the medium at the
left (right) of the interface.

Various constraints emerge due to continuity of E (and its
derivative) at the 2D conducting interface. Indeed, Maxwell
equations imply that

Ea(0) = Eb(0), (A12)(
∂ Ea

∂z

)
z=0

−
(

∂ Eb

∂z

)
z=0

= iωμ0σ̂ Eb(0), (A13)

where the conductivity tensor reads

σ̂ = σij (ω)δ(z). (A14)

The conductivity depends on the light frequency ω and,
generally, also on other quantities (Fermi energy of the
interface, temperature, etc.). In the latter expression, the
subscripts i,j = x,y are Cartesian coordinates. In terms of
circularly polarized fields, Eq. (A13) reads

ka(E+
a,τ − E−

a,τ ) − kb(E+
b,τ − E−

b,τ )

= ωμ0(E+
b,τ + E−

b,τ )σ−τ (ω), (A15)
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where we have admitted an isotropic medium, σxx = σyy , and
have defined

σ±(ω) = σxx(ω) ± iσxy(ω). (A16)

The statement, Eq. (A15), shows that the two circularly
polarizations are decoupled, even in the presence of a complex
conductivity σ±(ω). This is why it is advantageous to write
the boundary conditions in terms of circularly polarized fields
(Sec. III A).

According to the definition of the T matrix [Eq. (A11)], we
need to relate E+

a,τ with E±
b,τ and E−

a,τ with E±
b,τ , separately.

To do so, we make use of the continuity condition, Eq. (A12),
written in circular waves, E+

a,τ + E−
a,τ = E+

b,τ + E−
b,τ , in order

to arrive at

±2kaE
±
a,τ = kb(E+

b,τ − E−
b,τ )

+ [ωμ0σ−τ (ω) ± ka](E+
b,τ + E−

b,τ ). (A17)

Combining Eq. (A11) and the latter expression, we arrive
at the desired result,

T̂ (ab)
τ = 1

2ka

[
�ab

τ,++ �ab
τ,−+

�ab
τ,−− �ab

τ,+−

]
, (A18)

where

�ab
τ,±± = ka ± kb ± ωμ0σ−τ (ω). (A19)

3. Example: T matrix of suspended graphene

The T matrix of suspended graphene can be obtained
immediately from Eq. (A16). Admitting that the mediums at
the left and right of the single-layer graphene sheet are air, we
obtain

T̂ graph
τ = 1

2

[
2 + Z0σ

graph
−τ (ω) Z0σ

graph
−τ (ω)

−Z0σ
graph
−τ (ω) 2 − Z0σ

graph
−τ (ω)

]
,

(A20)

where Z0 = μ0c is the vacuum impedance.

APPENDIX B: FARADAY EFFECT

In the present appendix, we derive the exact analytical
conditions for the existence of Faraday rotation and discuss
their modification when graphene is enclosed in an optical
cavity. Despite the focus on graphene, most of the conclusions
drawn here apply generally for systems possessing in-plane
symmetry. Once again, for simplicity, we consider the case of
suspended graphene; generalization to the case of graphene on
top of a substrate is straightforward using the general formulas
given in Appendix A.

1. Conditions for the Faraday effect in free space

We consider a target graphene sheet, placed on the xy

plane, subjected to a normally incident electromagnetic wave,
linearly polarized along the x axis, Exe

−iωt . The magneto-
optical Faraday effect takes place when a magnetic field
B = Bez is applied. Then, Lorentz force acts on free carriers,
producing a Hall electronic ac current, which, under specific
conditions (see below), will produce out-of-phase radiation

polarized transversely to the impinging field, Eye
−iωt eiφ . As

a consequence, the resulting electromagnetic wave sees its
polarization plane rotated.

Without loss of generality, consider the graphene sheet to be
placed at z = 0. In the circular basis, eτ = (1/2)(ex + τ iey),
the electromagnetic field at z = 0− reads

E(0−) = E0e
−iωt (e+ + e−). (B1)

Note that the actual electric field is given by the real part of
the latter equation. After interaction with graphene, each of the
circular components τ = ±1 changes according to Eq. (A20).
The field right after the graphene plane is given by

E(0+) = E0e
−iωt

[
1

1 + β−
e+ + 1

1 + β+
e−

]
, (B2)

with β± = Z0σ±(ω)/2. To determine whether the plane of
polarization has rotated, we write the latter equation in the
Cartesian basis,

E(0+) = E0e
−iωt

2(1 + β+)(1 + β−)
[(2 + Z0σxx)ex − Z0σxyey],

(B3)

where we have used the definition of β± to simplify the term
inside brackets. Obviously, no Faraday rotation takes place
when σxy(ω) = 0. On the other hand, having σxy(ω) 
= 0 does
not suffice to rotate the polarization plane; linear polarization
can change to elliptic polarization with main axes along x and
y (this is the case for B = 5 T and h̄ω ≈ 15 meV, as shown
in the top panel in Fig. 11: elliptic polarized light leaves the
graphene sheet, δ ≈ 0.15, but still θF = 0). For this reason,
the actual condition for the existence of Faraday rotation is

|σxy | > 0 ∧ Arg

(
2 + Z0σxx

Z0σxy

)

= ±(2m + 1)

π

2
, m ∈ N0.

(B4)

The amount of Faraday rotation is given by Eq. (85) and thus
can be obtained directly from Eq. (B2), reading

θF = 1

2
Arg

(
2 + Z0σ−
2 + Z0σ+

)
. (B5)

In many situations (e.g. high photon energies and high elec-
tronic density), the longitudinal conductivity obeys Z0σ

′′
xx �

2 + Z0σ
′
xx , thus leading to the approximate condition, |σ ′

xy | >

0 ⇒ θF > 0. This is consistent with the approximated formula
derived for the Faraday rotation angle [Eq. (89)], which states
that θF is proportional to σ ′

xy (see also Fig. 11).

2. Conditions for the Faraday effect in an optical cavity

In Sec. III D, we have seen that large Faraday rotations
θF can be achieved in a cavity-graphene system, even for
such photon energies that do not cause Faraday rotation in free
space. An example is given in Fig. 17: in free space, impinging
light with h̄ω ≈ 20 meV does not change its polarization
direction, θF = 0, whereas θF can be as large as 25◦ for
graphene mounted on a cavity geometry.

In order to explain the above-described phenomenon, it is
sufficient to consider the simplified situation, where a normally
incident photon interacts with graphene twice in a row. For
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concreteness, we take two graphene samples, equally prepared,
separated by a given distance W . Let the photon frequency ω̄

be such that no Faraday rotation is produced in the passage
through the first graphene sample, that is,

Arg

[
2 + Z0σxx(ω̄)

Z0σxy(ω̄)

]
= ±(2m + 1)

π

2
, (B6)

for some m ∈ N0 [see Eq. (B4)]. In the latter expression, it is
assumed that σxy(ω̄) 
= 0, which is the case when a magnetic
field is present. Under these conditions, after the first passage,
the electric field [Eq. (B3)] can be written as

E1 = E0e
−iω̄t

2[1 + β+(ω̄)][1 + β−(ω̄)]
eiφ

× [|2 + Z0σxx(ω̄)|ex ± i|Z0σxy(ω̄)|ey], (B7)

where φ = Arg[2 + Z0σxx(ω̄)] and the sign ± depends on the
actual argument of σxy(ω̄). The latter equation describes a
field elliptically polarized with main axes along x and y (i.e.,
θF = 0). We thus see that although no Faraday rotation occurs
when Eq. (B6) is fulfilled, the polarization changes from linear
to elliptic, an unavoidable consequence for Lorentz force that
enforces some radiation to be emitted that is polarized along
the y axis.

In order to determine the field after the second passage, and
hence demonstrate our point, i.e., that some Faraday rotation
must necessarily be produced in multiple passages through
graphene (such as in a cavity geometry), we make use of the
transfer-matrix formalism. Indeed, we approximate the total
T matrix by T̂

graph
τ · T̂

graph
τ (this approximation is exact when

the phase for free propagation between the graphene sheets,
ωW/c, equals 2mπ ). Employing Eq. (A7), we obtain

E2 = E0e
−iω̄t

[1 + 2β+(ω̄)][1 + 2β−(ω̄)]
×{[1 + Z0σxx(ω̄)]ex − Z0σxy(ω̄)ey}. (B8)

This time, the condition for zero Faraday rotation,

Arg

[
1 + Z0σxx(ω̄)

Z0σxy(ω̄)

]
= ±(2m + 1)

π

2
, (B9)

cannot be fulfilled because Eq. (B6) fixes the photon frequency
in this example. Then a finite (nonzero) Faraday rotation is
produced in the second passage.

The case of graphene in a cavity geometry is more involved
because intracavity interference takes place. Nevertheless, the
physics behind the boost of Faraday rotation is analogous: if,
for graphene subjected to a transverse magnetic field, it turns
out that the first photon passage yields θF = 0, then in the
following passages it must be that θF > 0. See, for instance,
Eq. (107), valid for an optical cavity made of mirrors with very
high reflection amplitudes: because |σxy(ω)| > 0, for B > 0,
then θF > 0 for all light frequencies.

3. Row of graphene sheets

Taking a number N of graphene sheets separated by W ,
such that ωW/c = 2mπ , leads to the following electric field,
right after the last graphene plane:

EN = E0e
−iωt

[
1

1 + Nβ−
e+ + 1

1 + Nβ+
e−

]
, (B10)

and hence in the limit N � 1, we obtain

t+
t−

� σ+(ω)

σ−(ω)
, (B11)

which coincides with the result obtained for the cavity-
graphene system, given by Eq. (107).

APPENDIX C: REGULARIZATION OF THE EOM
OPTICAL CONDUCTIVITY

The EOM approach consists in extracting the optical
conductivity from the average of the current operator J(t)
(obtained through the corresponding Heisenberg equation).
This method avoids the calculation of current correlations, and
hence short-circuits the calculation of σij (ω). The crucial point
of the EOM approach is the regularization of the expression

ψij (ω) = J̃i(ω)

Ẽj (ω)
, (C1)

where Õ(ω) (O = J,E) is defined via

O(t) = Õ(ω)e−iωt + c.c. (C2)

Equation (C2) is valid for a monochromatic electromagnetic
field, A = A0e

iωt + c.c., and for EOM solutions J̃i(ω) in first
order in A0. For convenience, we write the external electric
field as E(t) = E+(t) + E−(t), with E±(t) = ±iωA0e

∓iωt .
Despite the resemblance of Eq. (C1) to Ohm’s law, ψij (ω)

is not the optical conductivity: in the linear response regime,
the EOM solution can be put into the form

J(t) = ψ̂(ω)E+(t) + c.c., (C3)

with ψ̂(ω) as defined in Eq. (C1). On the other hand, the
conductivity σ̂ (t) is defined via the relation

J(t) =
∫ ∞

−∞
dτ σ̂ (t − τ )E(τ ). (C4)

The Fourier transform of Eq. (C4) is nothing more than Ohm’s
law, J(ω) = σ̂ (ω)E(ω), with σ̂ (ω) = ∫ ∞

−∞ dtei(ω+i0+)t σ (t).
The function σ̂ (ω) is analytic in the upper complex plane and
therefore satisfies Kramers-Kronig causality relations.

From Eqs. (C3) and (C4), we immediately conclude that
ψ̂(ω) 
= σ̂ (ω). The bottom line of the EOM approach is that
the tensor ψ̂(ω) can be exactly transformed into σ̂ (ω) via a
simple regularization procedure, as we show in what follows.

Without loss of generality let A0 = A0ex, with A0 ∈ R,
and consider that no current flows in the absence of external
perturbations, 〈Jj (t)〉 = 0. Since we are interested in the
regular part of the optical response, we also take Jj (t) =
JP

j (t) ≡ Jj (t); then, in first order in A0,

〈Ji(t)〉H = − i

h̄

∫ t

−∞
dτA(τ )

〈[
J I

x (τ ),J I
i (t)

]〉
β
, (C5)

with i = x,y. Using the Lehman representation, and similar
notation as employed above, the latter expression can be
written as

〈Ji(t)〉H = − i

Zh̄

∑
n
=m

∫ t

−∞
dτA(τ )〈m|Jx |n〉〈n|Ji |m〉

× eiωmn(τ−t)(e−βEm − e−βEn ). (C6)
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Since we wish to find the explicit form of ψ̂(ω), we perform
the integration over the variable τ . We obtain

〈Ji(t)〉H = 1

Zh̄

∑
n
=m

1

ω + ωnm + i0+ 〈m|Jx |n〉〈n|Ji |m〉

× (e−βEm − e−βEn )A0e
−iωt + c.c., (C7)

where a small imaginary part has been added to ensure
convergence. Making use of the definition, Eq. (C3), we arrive
at the desired result,

ψij (ω) = − 1

Zh̄

1

iω

∑
n
=m

1

ω + ωnm + i0+

× 〈m|Jj |n〉〈n|Ji |m〉(e−βEn − e−βEm ), (C8)

where i = x. We also have ψxy(ω) = −ψyx(ω).
On the other hand, the frequency-dependent conductivity

is obtained from the Fourier transform of σ (t), leading to the
well-known Kubo formula:

σij (ω) = 1

Zh̄

∑
n
=m

1

iωnm

1

ω + ωnm + i0+

× 〈m|Jj |n〉〈n|Ji |m〉(e−βEn − e−βEm ). (C9)

Comparison of Eq. (C8) with Eq. (C9) yields the general
regularization procedure:

∑
n
=m

e−βEn − e−βEm

ω
[. . . ] →

∑
n
=m

−e−βEn − e−βEm

ωnm

[. . . ].

(C10)

In a single-electron representation, the Gibbs factorsZ−1e−βEn

are substituted for the Fermi occupation numbers nF (En).
This procedure was used in Sec. II D to regularize the EOM
solutions of graphene in the presence of a magnetic field.

In Sec. II C, no regularization was employed to derive the
interband universal conductivity of graphene in zero field,
Re σxx(ω); see Eqs. (21) and (22). The reason is that the
1
ω

prefactor [coming from the electric field Ẽx(ω) = iωA0]
is canceled by the numerator in Eq. (C1) in this particular
example, since in zero field, J̃x(ω) ∼ ω. It is straightforward
to show that applying the regularization, Eq. (C10), to Eq. (21)
yields exactly Eq. (22). As for the imaginary part of the
conductivity, the regularization, Eq. (C10), is compulsory
in order to obtain a consistent result; the imaginary part of
Eq. (21), as it stands, diverges.

The regularization prescription, Eq. (C10), is general and
makes the link between the solutions of the EOM ψ̂(ω)
[Eq. (C3)] and the exact regular optical conductivity σ̂ (ω)
of electronic systems.
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