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Temperature-dependent compressibility in graphene and two-dimensional systems
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We calculate the finite-temperature compressibility for two-dimensional (2D) semiconductor systems,
monolayer graphene, and bilayer graphene within the Hartree-Fock approximation. We find that the calculated
temperature-dependent compressibility including exchange energy is nonmonotonic. In 2D systems at low
temperatures, the inverse compressibility decreases first with increasing temperature, but after reaching a
minimum, it increases as temperature is raised further. At high enough temperatures, the negative compressibility
of low-density systems induced by the exchange energy becomes positive due to the dominance of the
finite-temperature kinetic energy. The inverse compressibility in monolayer graphene is always positive and
its temperature dependence appears to be the reverse of the 2D semiconductor systems, i.e., it increases first with
temperature and then decreases at high temperatures. The inverse compressibility of bilayer graphene shows the
same nonmonotonic behavior as ordinary 2D systems, but at high temperatures, it approaches a constant that is
smaller than the value of the noninteracting bilayer graphene. We find the leading-order temperature correction
to the compressibility within Hartree-Fock approximation to be T 2 ln T at low temperatures for all three systems.
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I. INTRODUCTION

In this paper, we provide a detailed theory for the
temperature-dependent electronic compressibility (K) of an
interacting two-dimensional (2D) electron (or hole) system
within the Hartree-Fock theory. We consider three distinct
2D systems of active current interest in condensed matter
physics: 2D semiconductor systems (e.g., quantum wells,
heterostructures, inversion layers, etc.); monolayer graphene;
bilayer graphene. For the purpose of comparison (and also for
the sake of completeness), we also provide as an Appendix the
corresponding finite-temperature Hartree-Fock compressibil-
ity for a standard three-dimensional electron gas (3DEG) since
this result does not appear to be available in the theoretical
literature in spite of the 60-year-long history of studying
many-body interaction effects in 3DEG.

Ever since the pioneering measurement of the 2D com-
pressibility by Eisenstein et al.,1,2 it has been extensively
studied in 2D systems because the compressibility provides
fundamental insight into quantum ground-state properties,
which are not readily obtained from transport measurements.
Some experimental studies3–5 of the compressibility have
shed light on understanding the 2D metal-insulator transition
(MIT).6 The inverse compressibility (K−1) is positive when the
kinetic energy dominates over interactions at high densities.
As the 2D density is reduced, K−1 changes sign and becomes
negative due to the increase of exchange energy associated with
electron-electron interaction.1,2 The negative K−1 reaches a
minimum value at a certain low density n and then increases
dramatically with further decreasing n as the 2D MIT sets in.
The minimum point in K−1 has occasionally been loosely
identified as the critical density for the 2D MIT and is
closely related to the transition from a homogeneous system
to an inhomogeneous nonlinear screening regime,4,7 where
the system is dominated by the formation of electron (or
hole) puddles. Whether this observed low-density behavior
of K is a cause for or an effect of 2D MIT is unclear.
The low-density compressibility of 2D electronic (in this
paper, we use the term “electron” to imply either electron

or hole as should be obvious from the context) systems has
been of interest for almost 20 years now, with the early
experiments1–5 studying semiconductor-based 2D systems
extensively and very recent experiments studying monolayer
and bilayer graphene. The reason for the focus on the density
dependence of compressibility is that, in general, quantum
interaction effects increase monotonically with decreasing
density in a Coulomb system (with monolayer graphene
being an odd exception where the interaction parameter, the
so-called graphene fine-structure constant, is independent of
carrier density8), as discussed above, leading eventually to the
electronic compressibility becoming negative at low densities,
but easily accessible, due to exchange effects.

It is curious, however, that in spite of this intense interest
in the strongly interacting low-density 2D compressibility,
there has been little research on the theoretical functional
dependence of 2D compressibility on temperature. This is
strange because the scale for the temperature dependence
of any electronic property is the Fermi temperature TF =
EF /kB , which invariably decreases with decreasing density.
Thus, temperature effects on 2D compressibility become
progressively more important even at a fixed temperature as the
electron density goes down since the important dimensionless
temperature t ≡ T/TF increases with decreasing density even
if T is kept fixed. For example, 2D GaAs holes have TF < 1 K
for a hole density of 1010 cm−2, which means that T = 1 K is
effectively a high-temperature regime for 2D hole densities
�1010 cm−2! Our work in this paper takes a first step in
correcting this omission in the literature. Our results are
important for interpreting low-density 2D compressibility
(even at relatively low temperatures) existing in the literature.

The thermodynamic isothermal compressibility (or, simply,
compressibility) of a system is defined as the change of
pressure with volume K = −V −1(∂V/∂P )N,T , where N is the
particle number, T is the temperature, V is the system volume,
P = −(∂E/∂V )N,T is the pressure, and E is the total energy of
the system. Thus, K−1 ≡ V (∂2E/∂V 2). In the nondegenerate
or classical systems, the velocity of thermodynamic sound v0
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often provides a convenient experimental measure of com-
pressibility v2

0 = 1
mn

1
K

, where m and n = N/V are the mass
and the density of the system, respectively. In the quantum
limit, the compressibility can be obtained theoretically by
using the theorem of Seitz9 (i.e., by connecting K with the
change in chemical potential with density ∂μ/∂n, where μ

is the chemical potential and n is the carrier density of the
system). Another method of evaluating K is through the
compressibility sum rule. This is an exact relationship between
the compressibility and the long-wavelength limit of the static
dielectric function.10 In 2D quantum systems, the compress-
ibility is often measured from the quantum capacitance,1,2

which is proportional to dn/dμ ∝ K . A scanning single
electron transistor has also been used to directly measure the
density-dependent chemical potential4 and, hence, dμ/dn or
dn/dμ. We will mostly discuss in this work the behavior of
K0/K , where K0 is the noninteracting compressibility, and
K0/K ∝ dμ/dn. We note that sometimes dn/dμ is referred
to as the thermodynamic density of states since at T = 0 and
for noninteracting system dn/dμ ≡ D0, the noninteracting
density of states.

In this paper, we refer to K and K−1 as compressibility and
incompressibility (i.e., inverse compressibility), respectively,
and also discuss results for dμ/dn, which is sometimes
directly measured experimentally, remembering that this quan-
tity is directly proportional to the incompressibility. A part
of our theoretical motivation for exploring the temperature
dependence of compressibility in 2D semiconductor systems
arises from recent experiments conducted on GaAs-based
2D systems.11 In addition, there has been substantial exper-
imental interest in the temperature dependence of graphene
compressibility.12 We find that the calculated temperature-
dependent compressibility including exchange energy is non-
monotonic in temperature in both graphene and 2D semicon-
ductor systems. However, their temperature behaviors appear
to be reversed, i.e., the inverse compressibility in graphene
K−1 ∝ dμ/dn increases first with increasing temperature
and then decreases at high temperatures, while the inverse
compressibility in 2D semiconductor systems decreases with
temperature first and then increases at higher temperatures.
We find that the leading-order temperature correction to 2D
K−1 within Hartree-Fock approximation (HFA) is t2 ln t at low
temperatures for both systems (t ≡ T/TF ). We also find that
the bilayer graphene (BLG) compressibility has very weak
temperature dependence because the noninteracting kinetic
energy is independent of temperature.

To calculate the compressibility, we use Seitz’s theorem,
which is given by10

1

K
= n2∂μ(T )/∂n, (1)

where μ(T ) is the finite-temperature chemical potential and
n the free carrier density. In general, the direct measure-
ment of ∂μ/∂n provides information on the thermodynamic
many-body renormalization (for example, Fermi velocity)
arising from electron-electron interaction effects.12,14 Our goal
here is to theoretically calculate the renormalized ∂μ/∂n in
graphene and 2DEG including exchange interaction effects,
or equivalently in the HFA, which should be an excellent
quantitative approximation for compressibility in 2D systems.

Our calculated carrier density and temperature dependence of
compressibility (or ∂μ/∂n) can be directly compared to ex-
perimental measurements in 2D systems including graphene.

The rest of the paper is organized as follows. In Sec. II,
we introduce the formalism that will be used in calculating
compressibility in 2D semiconductor systems, which includes
the model describing the Coulomb system, the procedure
of calculation, and the numerical and analytical results of
compressibility in 2D semiconductor systems. In Secs. III and
IV, we present the theoretical formalism and our analytical and
numerical results of compressibility in monolayer graphene
(MLG) and BLG, respectively. Section V contains discussions
and conclusions.

II. COMPRESSIBILITY IN 2D SEMICONDUCTOR
SYSTEMS

In this section, we present the compressibility of 2D
semiconductor systems (2DS) such as Si inversion layers in
MOSFETs, 2D GaAs heterostructures, or quantum wells. In
some of our numerical calculations, we use the parameters
corresponding to the n-GaAs or p-GaAs system since these
are the most-studied 2D system in the literature. Whenever
possible, we provide our results in dimensionless units for
universal applicability.

In the absence of interaction, the noninteracting finite-
temperature chemical potential μ0(T ) is calculated through
the conservation of the total electron density, i.e.,

n(T ) = n0 =
∫

dε D(ε)nF (ε), (2)

where n0 = n(T = 0), D(ε) = gm/2π is the density of states
with g being a degeneracy factor including both spin and
possible valley degeneracy, and nF (ε) = [eβ(ε−μ0) + 1]−1 is
the Fermi distribution function. We take h̄ = 1 throughout.
By solving Eq. (2) self-consistently, we have the 2D chemical
potential at finite temperatures

μ0(T )/EF = t ln(e1/t − 1), (3)

where EF = k2
F /2m = 2πn0/gm is the Fermi energy at T = 0

and t ≡ T/TF with TF = EF /kB .
To include interaction effects in the chemical potential, we

calculate the exchange self-energy contribution within HFA.
We then have the interacting chemical potential as

μ = μ0 + �(kF ,EF ), (4)

where �(kF ,EF ) is the HF exchange self-energy calculated
at Fermi momentum kF . The HF exchange energy with the
electron-electron Coulomb interaction is given by10

�ex(k) = −
∫

d2k′

(2π )2
V (|k − k′|)nF (εk′) (5)

with V (|k − k′|) = 2πe2/κ|k − k′| the 2D bare Coulomb
interaction in the momentum space (κ is the background lattice
dielectric constant), and εk = k2/2m is the single-particle
energy (m is the effective mass of the particle). In the following,
we calculate the compressibility of 2D semiconductor systems
for both zero temperature and finite temperatures by finding
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the total chemical potential including exchange effects as a
function of density and temperature.

A. Zero-temperature compressibility

At zero temperature (T = 0), the noninteracting part of the
chemical potential is just the Fermi energy EF . Then, ∂μ/∂n

becomes the inverse of the noninteracting single-particle
density of states at the Fermi level: (∂n/∂μ) = D0(EF ) =
gm/2π , which is a density-independent constant for 2D.
From Eq. (1), we have the zero-temperature compressibility
of noninteracting 2D systems K0:

1

K0
= n2 ∂μ

∂n
= n2/D0. (6)

The noninteracting compressibility K0 is a positive quantity
and is inversely proportional to the square of particle density
K0 ∝ n−2.

For interacting 2D systems, the exchange self-energy can
be calculated at T = 0 from Eq. (5):

�ex(k) = −2e2

πκ
kF E

(
k

kF

)
, (7)

where E(x) is the the complete elliptic integral of the
second kind. The total chemical potential within HFA can
be calculated by setting k = kF , i.e.,

μ = μ0 + �(kF ) = EF

(
1 − 2

√
g

π
rs

)
, (8)

where g = gvgs (gs , gv are the spin and valley degeneracy,
respectively) and the dimensionless coupling constant rs =
2e2m/(

√
gκkF ) is the ratio of the average Coulomb potential

energy U to the average T = 0 kinetic energy. The rs parameter
as defined above is the dimensionless interaction parameter
for a 2D electron liquid. We show most (except for Sec. II D)
of our results in the dimensionless units of t ≡ T/TF and
rs , which would apply to any 2D semiconductor system. By
differentiating Eq. (8) with respect to n and making use of
the relation k2

F = 4πn/g, we get the zero-temperature inverse
compressibility within HFA

K0

K
= 1 −

√
grs

π
. (9)

The interacting inverse compressibility K0/K monotonically
decreases as rs increases (or density decreases) and changes
its sign from positive to negative at a coupling strength rs =
π/

√
g. This behavior has been observed in experiments1,2 and

has been much discussed in the literature. Generally, negative
compressibility leads to a thermodynamic instability of a
system. However, the compressibility we have discussed in this
paper applies only for the electronic part, i.e., the quantity is not
actually the compressibility of the whole system, including the
positive background charge, which is necessary for neutrality.
The interaction between the electrons and their associated
positive neutralizing background has been ignored. In fact,
a system with the negative electronic compressibility can be
stabilized by the positive background, which gives rise to a
positive compressibility for the whole system. The negative
electronic compressibility of the 2DEG has been directly
measured in experiments1–5 that probe only the electronic part

of the compressibility; obviously, the total compressibility of
such a system would still be positive in order to maintain
thermodynamic stability of the whole system. Results given in
Eqs. (6)–(9) are, of course, well known2 and are given here only
for the sake of completeness and for the sake of comparison
with our finite-T results discussed below.

B. Finite-temperature compressibility

At finite temperatures, the chemical potential with exchange
self-energy can be calculated from Eq. (4), and the normalized
chemical potential μ̃ = μ/EF is expressed as

μ̃(T ) = μ̃0(T ) − 2
√

g

π
rs

∫ 1

0
dx K1(x)

×
[

x

e(x2−μ̃0)/t + 1
+ 1/x2

e(1/x2−μ̃0)/t + 1

]
,

(10)

where μ̃0(T ) = μ0/EF is the noninteracting chemical poten-
tial given in Eq. (3), t = T/TF , and K1(x) is the complete
elliptic integral of the first kind.

In the absence of exchange interaction, we obtain the
noninteracting inverse compressibility at finite temperatures

1

Kni(T )
= n2 ∂μ0

∂n
= h(t)

K0
, (11)

where h(t) = 1
1−e−1/t and Kni is the finite-temperature

noninteracting compressibility. For T � TF , h(t) ∼ 1 +
exp(−1/t). Thus, we have Kni(T ) ∼ K0(1 − e−1/t ). The
leading-order correction to Kni(T ) at low temperatures is
exponentially suppressed. For T � TF , h(t) ∼ t . Thus, the
noninteracting inverse compressibility increases linearly in the
high-temperature limit K−1

ni (T � TF ) ∼ t/K0.
Including exchange effects, the finite-temperature inverse

compressibility K0/K(T ) can be obtained from Eq. (10):

K0

K(T )
= h(t) −

√
grs

π

∫ 1

0
dx K1(x)

×
[

x

e(x2−μ̃0)/t + 1
+ 1/x2

e(1/x2−μ̃0)/t + 1

]
+

√
grs

2πt

×
∫ 1

0
dx K1(x)

[
x[x2 − h(t)]

cosh2 (x2−μ̃0)
2t

+
1
x2

[
1
x2 − h(t)

]
cosh2 (1/x2−μ̃0)

2t

]
.

(12)

The full numerical results of the compressibility are given in
Sec. II C. We first consider the asymptotic behavior of the
temperature dependence both at high temperatures (T � TF )
and at low temperatures (T � TF ).

In the low-temperature limit (t � 1), the integrand in
the temperature-dependent term is only appreciable near the
divergent regime of the first elliptic function K1(x) (x ≈ 1).
We could get the asymptotic form by expanding the elliptic
integrals about that point, i.e.,

K1(x → 1) ≈ ln

(
4√

1 − x2

)

+ (1 − x2)

4

[
ln

(
4√

1 − x2

)
− 1

]
. (13)
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Replacing K1(x) with Eq. (13) in the integrand of Eq. (10), the
chemical potential in the low-temperature limit T/TF � 1 is
given by

μ̃ = μ̃0 − 2
√

g

π
rs

[
1 + t2

8

(
2A + B − A ln

16

t

)]
, (14)

where A = π2/12, B = π2

12 [ln(4π ) + 12ζ ′(−1)] ≈ 0.449, and
ζ ′(−1) is the derivative of zeta function. By differentiating the
asymptotic formula of the many-body chemical potential, we
obtain the inverse compressibility for t � 1:

K0

K(T )

∣∣∣∣
T �TF

� h(t) −
√

g

π
rs

[
1 − 0.136t2 − π2

32
t2 ln t

]
.

(15)

Since h(t) ∼ 1 for t � 1, the leading-order correction to the
inverse compressibility K−1(T ) comes from the exchange
energy term, i.e., t2 ln t , which gives rise to the decrease of
K0/K at low T with increasing temperature as shown in
Fig. 1(a). The asymptotic formula given in Eq. (15) agrees
well with our numerical calculation at low temperatures as
shown in Fig. 1(a). The low-temperature behavior of K−1(T )
is dominated by the t2 ln t term, which produces the shallow
minimum in K0/K as a function of t = T/TF with the size
of the minimum increasing with increasing (decreasing) rs

(density). This interesting low-temperature nonmonotonicity
in the temperature-dependent 2D compressibility is entirely an
exchange effect. We emphasize, however, that this exchange-
induced minimum is very shallow in K0/K(T ), and never
exceeds 10% of its T = 0 value (often it is much less).

The asymptotic behavior of high-temperature compressibil-
ity is obtained by approximating the Fermi-Dirac distribution
by the classical Boltzmann distribution. For t → ∞, the
normalized chemical potential with exchange energy is given
by

μ̃(T ) = μ̃0 −
√

gπ

2
√

t
rs . (16)

The corresponding asymptotic formula for the high-
temperature inverse compressibility is given by

K0

K(T )

∣∣∣∣
T �TF

≈ h(t) −
√

π

2t
rs . (17)

For t � 1, the exchange-energy contribution to the inverse
compressibility decreases as t−1/2, while the kinetic energy
contribution increases lineally since h(t) ∼ t . Thus, the kinetic
term dominates in the high-temperature limit, and the com-
bined compressibility approaches the noninteracting result as
it should at very high temperatures. At high temperatures, the
role of the exchange-correlation effects is diminished due to the
increase of the thermal kinetic energy. As a consequence, the
negative compressibility at low densities becomes positive at
a high enough temperature T = TF (πr2

s /2)1/3. This behavior
(reversing sign due to increasing temperature) was observed in
high-mobility p-GaAs systems.15 We have explicitly verified
that our numerical HFA results agree precisely with the
asymptotic high-temperature result of Eq. (17) for t � 1. We
note that the exchange correction to K0/K falls off very slowly
only as rs/

√
t for t � 1 and, as such, quantum effects are quite

FIG. 1. (Color online) (a) Calculated K0/K in 2DEG as a function
of rescaled temperature t for different values of rs . The inset presents
K0/K in the low-temperature regime. The dashed and solid lines
are corresponding to the analytical results [given in Eq. (15)] and
the numerical results, respectively. (b) The inverse compressibility
K0/K in 2DEG as a function of rs for different values of rescaled
temperature t . (c) Calculated tm, where the minimum of K0/K occurs,
as a function of rs .

large at large rs even for T � TF . In fact, the classical regime
in compressibility is approached only for T � r2

s TF .

C. Numerical results of compressibility in 2D semiconductors

In Fig. 1(a), we show the calculated inverse compress-
ibility K0/K as a function of rescaled temperature t for six
different values of rs . The red solid line corresponds to the
noninteracting case (Kni) without the exchange interaction. As
shown in Sec. II B, K−1

ni (T ) ∼ h(t) ∼ t for t → ∞ increases
linearly in the high-temperature classical limit. For finite
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rs , the zero-temperature inverse compressibility decreases
with rs and eventually becomes negative (if rs > π/

√
2) due

to the exchange energy. As shown in Fig. 1(a), K0/K is
not a monotonic function of rescaled temperature t . As t

increases from zero, K−1(t) initially decreases since the kinetic
energy term is exponentially suppressed due to the Fermi-
surface restriction, but the exchange term keeps decreasing as
t2 ln t . After reaching the minimum value at an rs-dependent
characteristic temperature tm, K−1 increases linearly at high
temperatures. This nonmonotonic behavior becomes stronger
at higher rs . More interestingly, the negative value of K−1 at
low temperature and high rs reverses its sign as the temperature
increases. At high enough temperatures, where the kinetic
energy dominates over the interaction energy, the system
always has a positive compressibility, but typically strongly
suppressed in magnitude from K−1

ni except for t → ∞. Thus,
many-body effects manifest strongly in the compressibility
even for T > TF in most situations.

In Fig. 1(b), we show our numerically calculated inverse
compressibility K0/K as a function of rs for different values of
the rescaled temperature t . It is clear that the interacting K0/K

manifests monotonically stronger many-body effects with
increasing rs . The curves for t = 0 and 0.8 cross each other
at a finite value of rs , which corresponds to the nonmonotonic
temperature dependence of inverse compressibility K0/K in
the low-temperature regime. As an inset in Fig. 1(a), we
explicitly show a quantitative comparison between our derived
low-T asymptotic formula [Eq. (15)] and the exact numerical
HFA results verifying the presence of the t2 ln t term, which
leads to the low-t minimum, in the HF K0/K . In Fig. 1(c), we
show as a function of rs our numerically calculated value of t(≡
T/TF ) = tm where the low-t minimum of K0/K occurs. We
note that, although tm increases monotonically with increasing
(decreasing) rs (density), this increase is sublinear, implying
that the actual temperature (in Kelvin) Tm, where the minimum
occurs, decreases (increases) with decreasing (increasing)
carrier density n since TF ∝ n and rs ∝ n−1/2. This means
that the experimental observation of this nonmonotonicity of
K0/K as a function of temperature may be extremely difficult,
if not impossible, with the experimental K0/K manifesting
only a monotonic increase with increasing temperature at all
densities. The experimental observation is further hampered
by two additional complications: (1) the actual decrease in the
magnitude of K0/K associated with the shallow minimum is
rather small (<10%); (2) the low-density, large-rs regime of
the 2D system often develops strong disorder-driven density
inhomogeneity.

In Fig. 2, we compare our numerical results with our
high-temperature analytic theory as given in Eq. (17). The
purely classical compressibility Kc(T ) is given by K0/Kc = t ,
which is the t(=T/TF ) → ∞ limit of K0/Kni ≡ h(t) =
(1 − e−1/t )−1, as given in Eq. (11). We note that the exchange
correction to the noninteracting result, as given in Eq. (17),
falls off very slowly as rst

−1/2 ∼ 1/
√

T . In Fig. 2(a), we
show calculated K0/K in the t = 0–20 range for rs =
1,4,8, comparing the HF result with the noninteracting result
K0/Kni = h(t) as in Eq. (11) and the pure classical result
K0/Kc = t . For the sake of comparison, we also show (for
rs = 8) the corresponding high-temperature HFA result as in
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FIG. 2. (Color online) (a) Calculated K0/K as a function of t

for rs = 1,4,8 comparing the HF result with the noninteracting result
K0/Kni = h(t) as in Eq. (11) and the pure classical result K0/Kc = t .
Inset shows the HF result and the asymptotic form for the high
temperature K0/K as in Eq. (17) with rs = 8. (b) and (c) show
Kni/KHF for rs = 0.5, 1.0, 10, 20 for t = 0 ∼ 20.

Eq. (17). The interesting point to note here is that, as can
be seen from Eq. (17), the quantum exchange correction is
quantitatively substantial even at a temperature T � TF for
large rs with the HFA results being quantitatively well below
(by ∼20%) the classical result even for T = 20TF . Although
this appears somewhat counterintuitive, the importance of
quantum interaction persisting to high temperatures (T � TF )
for large rs can be understood by considering the relative
magnitudes of the three dimensionless energy parameters
rs ≡ U/EF , t ≡ T/TF , and 	 ≡ U/kBT that control the
physics of an interacting quantum system; we note that rs ,
t , and 	 are not independent parameters since t ≡ rs/	.
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The classical noninteracting limit requires both t , 	−1 � 1,
which necessitates t � rs as well. Thus, one condition for the
classical limit is t � rs when rs > 1 (and t � 1 for rs < 1),
which is much stronger than t � 1 when rs is large! In
Figs. 2(b) and 2(c), we show Kni/KHF for rs = 0.5, 1.0, 10,
20 for t = 0 ∼ 20 to emphasize that the exchange correction
to the inverse compressibility is substantial in magnitude even
for T � TF .

D. Results for 2D GaAs systems

Since there has been considerable experimental
activity1,2,15,16 in measuring the 2D compressibility of both
electrons1,2,16 and holes15 in GaAs-based two-dimensional
semiconductor systems, we provide in this section a set of
numerical results for the HF compressibility of 2D GaAs
systems (electrons and holes) as a function of carrier density
(n in the unit of cm−2) and temperature (T in K). The
parameters used in these numerical calculations are for
electrons (holes): m = 0.07(0.4)me; g = 2 (i.e., gs = 2,
gv = 1); κ = 13, where me is the free electron mass in
vacuum and κ is the background lattice dielectric constant of
GaAs-AlGaAs heterostructure. There is no valley degeneracy
(gv = 1) in GaAs, and we consider the spin-degenerate
(gs = 2) zero-magnetic field situation.

In Figs. 3(a) and 3(b), we show our calculated dμ/dn ≡
(Kn2)−1 in the HFA for 2D GaAs electrons and holes,
respectively, for T = 0,0.1,0.2,0.5,1,2,5,10,20,50,100 K.
The corresponding noninteracting T = 0 result, dμ/dn ≡
[D0(EF )]−1 = 0.24(me/m)10−11 meV cm2, is also shown
as a constant horizontal line in each figure. The calculated
temperature dependence is stronger for the holes than the
electrons in Fig. 3 since the scale for the T dependence, TF ,
is much smaller (almost by a factor of 6 for the same density)
for the holes compared with the electrons because of the large
difference in the two effective masses (0.07 versus 0.4). For
n = 2 × 1010 cm−2: T e

F = 8.3 K, T h
F = 1.5 K. Of course, the

qualitative behavior of K(n,T ) is the same for both electrons
and holes; it is only that the temperature scale for the holes is
lower.

The qualitative behavior of dμ/dn as a function density
(n) and temperature (T ) as shown in Fig. 3 is in very
good agreement with experimental results,15 showing that the
temperature dependence of compressibility can indeed be very
important in samples with low densities (and consequently
with low TF ), particularly for holes because of their large
effective mass. We note that TF = 41.5 K (electrons) and 7.3 K
(holes) for a density of n = 1011 cm−2 (and TF ∝ n).

A particular qualitative feature of Fig. 3 deserves special
attention: dμ/dn(∝ K−1) as a function of n for a fixed
temperature shows a very sharp upward turn with well-defined
minimum at low densities, particularly for the low-T results.
This striking low-n (and low-T ) nonmonotonicity arises from
a quantum-classical crossover effect, which turns on when
TF (n) < T from being TF > T at some density and can
therefore only be seen for low-T and low-n results. The
minimum occurs at a density nm, which we plot as a function
of temperature T in the inset showing that nm increases with
increasing T . To further emphasize this interesting behavior,
we show in Figs. 3(c) and 3(d) the low-density parts of

FIG. 3. (Color online) (a), (b) Calculated dμ/dn ≡ (Kn2)−1 in
the HFA for 2D GaAs electrons (m = 0.07me) and holes (m =
0.4me), respectively, for T = 0,0.1,0.2,0.5,1,2,5,10,20,50,100 K
(from bottom to top). The solid horizontal line corresponds to the
noninteracting T = 0 result dμ/dn ≡ [D0(EF )]−1. Insets of (a) and
(b): Calculated nm, where the minimum of dμ/dn occurs, as a
function of T for electrons and holes, respectively. (c), (d) Zoom-in
figures for the low-density parts of dμ/dn versus n for 2D GaAs
electrons and holes, respectively.

dμ/dn versus n for a few low-T values where the minimum
is clearly visible. This sharp increase of K−1 or dμ/dn for
low density (and low temperature) has been experimentally
observed in 2D GaAs systems, and has often been associated
with the 2D metal-insulator transition driven by disorder. By
contrast, our theory does not include disorder effects; we
only include finite-temperature effects, which are, of course,
very strong at low densities where TF (n) < T . The intuition
based on the T = 0 theory of compressibility clearly must
fail at some low density [i.e., for TF (n) � T ] since the T = 0
limit of K−1 becomes large (in magnitude) and negative at
very low n, whereas the finite-T theory (for any finite T )
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FIG. 4. (Color online) (a), (b) Calculated K0/K as a function of
carrier density in the HFA for electrons (m = 0.07me) and holes (m =
0.4me), respectively, over a wide range of temperature T = 0–10 K.
Parts (c) and (d) show the high-T behavior (T = 20–100 K) of K0/K

for electrons and holes, respectively. The temperature increases from
bottom to top in each figure.

predicts that at the lowest densities, where TF (n) < T , K−1

must become large and positive (i.e., the classical behavior for
T � TF ), in fact, eventually diverging as T/TF for T � TF !
We believe, based on the results presented in Fig. 3, that
experimentalists should reinvestigate the older data for K−1 at
low densities where finite-temperature effects may be playing
a significant role. There are some recent experimental results
(see Ref. 11) supporting our finding, but more experimental
data are necessary in the interacting low-density and low-
temperature regime to settle this question definitively.

Given the possible qualitative importance of finite-
temperature corrections to the 2D compressibility as discussed
above (and shown in Fig. 3), we provide in Fig. 4 the calculated
K0/K in the HFA for both electrons [Fig. 4(a)] and holes
[Fig. 4(b)] over a wide range of density and temperature. The
nonmonotonicity apparent for higher-T results in Figs. 4(a)
and 4(b), particularly for the hole data, is actually present in
all the curves except that the nonmonotonicity manifests itself
at much lower density than the range covered in Fig. 4 for the
curves that simply look like K0/K keeps on decreasing with
density monotonically. In Figs. 4(c) and 4(d), we show the
high-T behavior (T = 20–100 K) of K0/K .

In Fig. 5, we show our calculated compressibility for 2D
GaAs electrons and holes as a function of temperature for a
few densities. Figures 5(a) and 5(b) correspond to electrons
showing K0/K as a function of temperature, respectively,
over a wide T = 0–100 K range [5(a)] and a narrow low-
temperature range T = 0–5 K [5(b)], whereas Figs. 5(c) and
5(d) show the same for 2D holes in GaAs. In Figs. 5(b) and
5(d), we show a comparison between our low-T analytical and
numerical results also. The important point to note in Fig. 5
is that the low-temperature minimum should be observable in
2D semiconductor systems in careful measurements of K0/K
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FIG. 5. (Color online) Calculated K0/K in the HFA as a function
of temperature for various densities. Parts (a) and (b) are for electrons
(m = 0.07me), (c) and (d) are for holes (m = 0.4me). Parts (a) and
(c) show K0/K in the HFA for a wide range of temperature (T =
0–100 K) for various densities n = 2, 4, 6, 8, 10, 12, 14 × 1010 cm−2

(from top to bottom). Parts (b) and (d) show K0/K at low temperatures
(T = 0–5 K) for various densities n = 2, 4, 6, 8, 10, 12, 14 × 1010

cm−2 (from bottom to top) and compare the low-T analytical results
(dashed lines) and numerical results (solid lines).

as a function of temperature provided disorder effects are
unimportant, i.e., highest-mobility samples are used for the
study. Lower-density samples would typically manifest deeper
minima as can be seen in Fig. 5.

III. COMPRESSIBILITY IN GRAPHENE

In this section, we theoretically calculate the finite-
temperature compressibility of monolayer graphene including
exchange-interaction effects. It has been shown that the HFA
is an excellent quantitative approximation due to the small
contribution of the correlation energy in graphene.13 We focus
on extrinsic graphene, i.e., gated or doped graphene with
a tunable 2D free carrier density n of electrons (holes) in
the conduction (valence) band, i.e., the chemical potential μ

being positive (negative). For undoped (intrinsic) graphene,
the chemical potential is zero even at finite temperatures,
which gives rise to a logarithmically divergent compressibility
if disorder effects are neglected.12,17 The basic feature of
graphene compressibility and its functional dependence on
density has been well studied in the literature at T = 0.13,17

We use the same definition for the compressibility given
in Sec. II. However, there are two main differences between
the usual 2D semiconductor and graphene. The first one
is the difference between their energy dispersion relation:
2D semiconductor has parabolic dispersion relation, while
graphene has linear dispersion. The kinetic energy in graphene
is given by εk,s = svF |k|, where |k| is the wave vector with
respect to the Dirac point, vF is the Fermi velocity with the
value of vF ∼ 108 cm/s, and s = ±1 for the conduction and
valence bands, respectively. The second difference is that we
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need to consider the contribution from valence-band electrons
in graphene because graphene is a gapless semiconductor, so
that the valence band and the conduction band touch each
other at the Dirac point. In graphene, the total degeneracy
g = 4 (from spin degeneracy gs = 2 and valley degeneracy
gv = 2).

Since the noninteracting chemical potential of graphene
is μ0 = EF = h̄vF kF at zero temperature, the corresponding
noninteracting inverse compressibility is given by

K−1
0 = n2πh̄vF /(2kF ), (18)

where we use g = 4 and the electron density is related
to the Fermi wave vector as k2

F = πn. Unlike the regular
2D systems, noninteracting dμ/dn in graphene is density
dependent (i.e., dμ/dn ∝ n−1/2) due to the linear energy
dispersion of graphene.

The chemical potential within HFA is the sum of the
noninteracting kinetic energy part and the exchange self-
energy part. The exchange self-energy for graphene is given
as13

�x,s(k) = −
∑
s ′

∫
d2k′

(2π )2
V (|k − k′|)nF (ξk′,s′ )Fs,s ′ (k,k′),

(19)

where s,s ′ = ±1 indicates the band indices, V (q) =
2πe2/(κq) is the bare Coulomb interaction (κ is the
background dielectric constant), and Fss ′ (k,k′) = (1 +
ss ′ cos θkk′)/2 arises from the wave-function overlap factor
where θkk′ is the angle between k and k′. In regular (i.e.,
nonchiral) 2D systems, F ≡ 1, but in graphene, which is
a chiral material, the chiral factor F is important due to
the underlying pseudospin dynamics. With Eq. (19), we
calculate the interacting compressibility of graphene at fi-
nite temperatures. Since the zero-temperature exchange self-
energy can be calculated analytically,13 we first consider the
zero-temperature compressibility as the starting point of our
discussion.

A. Zero-temperature compressibility

At T = 0, the Fermi distribution function in Eq. (19)
becomes nF (ξ ) = θ (EF − ξ ). We divide the exchange self-
energy into two parts:13 one from the intraband transition
�int

x , and the other from the interband transition �ext
x . That

is, �x,s(k) = �int
x,s(k) + �ext

x,s(k), where

�int
x,s(k) = −

∫
dq

(2π )2
Vc(q) Fs,−(k,k − q),

(20)

�ext
x,s(k) = −

∑
s ′

∫
dq

(2π )2
δnF (ξk−q,s′ )Vc(q) Fss′ (k,k − q),

where δnF (ξk−q,s′ ) = nF (ξk−q,s′) − 1
2 (1 − s ′) is the difference

in the electron occupation from the intrinsic T = 0 case.
After some algebra (the detail of the derivation is given in

Ref. 13), we find the density-dependent exchange contribution
to the inverse compressibility K0/K at zero temperature

K0

K
= 1 + rs

[
1

4
ln

(
4

y

)
− 3

8
− 1

2π
− C

π

]
, (21)

where y = kF /kc with a momentum cutoff kc ∼ a−1 (where
a is a lattice constant of graphene), C ≈ 0.916 is Catalan’s
constant, and rs = e2

h̄vF κ
is the graphene coupling constant

(or fine-structure constant). We note that the ln y ≡ ln(kF /kc)
term takes care of the divergent compressibility of intrinsic
graphene, which does not enter our discussion in any signif-
icant manner. Unlike in 2D systems, where the interaction
parameter rs ∼ n−1/2, for graphene, rs is a constant in density
due to its linear energy dispersion. However, by adjusting the
background dielectric constant (κ), we can vary the rs value
from rs = 2.2 (for κ = 1, graphene suspended in vacuum) to
very small rs by making κ very large. For graphene on SiO2,
rs = 0.8. Note that, unlike ordinary 2D systems, the calculated
graphene compressibility with the exchange correction is
always positive, which has recently been measured by several
different techniques.1,2

B. Finite-temperature compressibility

In this section, we present the theoretical formalism of
the finite temperature K0/K and its asymptotic analytical
formula at low temperatures (t � 1). We consider extrinsic
graphene with EF > 0 and concentrate on the situation with
the chemical potential lying in the conduction band with no
loss of generality.

The finite-temperature chemical potential (without ex-
change energy) μ0 must be calculated by the conservation
of the total electron density, i.e., n(T ) = n(T = 0) + p(T ),
where n(T ) and p(T ) are the electron and hole density at T ,
respectively. They are given by

n(T ) = g

∫
d2p

(2π )2

1

exp[β(εp − μ)] + 1
(22)

and

p(T ) = g

∫
d2p

(2π )2

1

exp[−β(εp − μ)] + 1
, (23)

where g is the total degeneracy and β = 1/kBT . Thus, we
have the self-consistent equation for μ as

1

2

(
TF

T

)2

= F1(βμ) − F1(−βμ), (24)

where Fn(x) is given by

Fn(x) =
∫ ∞

0

tndt

1 + exp(t − x)
. (25)

Then, we obtain the noninteracting chemical potential for both
low- and high-temperature limits for graphene as

μ0(T ) ≈ EF

[
1 − π2

6

(
T

TF

)2
]

for T/TF � 1, (26)

μ0(T ) ≈ EF

4 ln 2

TF

T
for T/TF � 1. (27)

With Eqs. (26) and (27), we can find the noninteracting
graphene compressibility at low and high temperatures,
respectively. Let μ0/EF ≡ μ̃0 and t = T/TF , then the
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noninteracting part of the inverse compressibility can be
written as

K0

Kni(T )
= 1 + π2t2

6
for t � 1, (28)

K0

Kni(T )
= 1

2 ln 2

1

t
for t � 1. (29)

Thus, the leading-order correction to the inverse compressibil-
ity Kni(T )−1 increases quadratically at low temperatures and
then it decreases inverse linearly at high temperatures. This fact
indicates that the graphene compressibility shows the opposite
behavior to the ordinary 2D systems as shown in Sec. II,
where the inverse compressibility of 2D systems decreases
first and then increases as the temperature increases. We
emphasize that this qualitative difference in the noninteracting
finite-T compressibility between 2D systems and monolayer
graphene arises both from the linear, chiral energy dispersion
of graphene and from its gaplessness, allowing for thermal
excitations of conduction valence-band electron-hole pairs at
finite T .

Now, we calculate the full compressibility at low tem-
peratures, including the exchange energy. As done for the
zero-temperature case, the exchange self-energy of graphene
can be separated into contributions from the intrinsic part �int

x

and the extrinsic part �ext
x .18 We can see that the first term

in Eq. (30) is �int
x , while the second term is �ext

x . For μ > 0,
the Hartree-Fock self-energy in graphene at finite temperature
becomes

�int
x (k,T ) = − e2

2πκ

∫ ∫
q dq dθ

|k − q|
1

exp[β(−h̄vF q − μ)] + 1

× 1 − cosθ

2
,

�ext
x (k,T ) = − e2

2πκ

∫ ∫
q dq dθ

|k − q|
1

exp[β(h̄vF q − μ0)] + 1

× 1 + cosθ

2
. (30)

The intrinsic exchange self-energy �int
x in Eq. (30) can be

derived by using the fact that the exponential term in �int
x is

exponentially suppressed and almost equal to 1 in the low-
temperature limit. Then, we have13

�int
x (T ) = e2kF

πκ

[
−E(y)

y
+ π

4
ln

(
4

y

)
− π

8

−
∫ y

0

dx

x3

(
K1(x) − E(x) − π

4
x2

)]
+ O(e−β),

(31)

where y = kF /kc � 1, and K1(x) and E(x) are the complete
elliptic integral of the first and second kinds, respectively. Note
that the leading-order temperature correction of the intrinsic
exchange self-energy at low temperatures is exponentially
suppressed. On the other hand, the extrinsic part of the
exchange self-energy becomes

�ext
x (T ) = −e2kF

πκ

[
C + 1

2
− Bg

12
π2t2 + 1

12
π2t2 ln t

]
,

(32)
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FIG. 6. (Color online) (a) Calculated K0/K in graphene as a
function of temperature t for three different values of density in the
units of 1012 cm−2. (b) Calculated K0/K in graphene as a function
of carrier density n for six different values of rescaled temperature
t . In this calculation, the momentum cutoff kc = 1/a (a = 2.46 Å)
and κ = 2.5 are used. (c) The semilog plot of K0/K versus carrier
density with different temperatures T for κ = 1 and (d) for κ = 2.5.

where C ≈ 0.916 is Catalan’s constant, Bg = −1 + 2γ −
12 ln(G) + ln( 128

π
) ≈ 0.877, where G � 1.282 is Glaisher’s

constant and γ � 0.577 is Euler’s constant. By differentiating
the total chemical potential with respect to the density, we
have the asymptotic form of inverse compressibility in the
low-temperature limit

K0

K(T )
= f (t) + rs

[
1

4
ln

(
4

y

)
− 3

8
− C

π
− 1

2π

− πt2

12
(Bg − 1) + π

12
t2 ln t

]
, (33)

where f (t) ≡ 1 + π2t2

6 is the noninteracting part of the inverse
compressibility given in Eq. (28). In the low-temperature limit,
the leading-order temperature correction to the total inverse
compressibility is the same as that in the 2D semiconductor
system due to the exchange energy, i.e., t2 ln t . However,
the logarithmic correction can be detected only at very low
temperatures (t < 0.01). In general, the t2 correction from the
noninteracting part dominates at low temperatures (t > 0.01)
and the positive coefficient of t2 term gives rise to increasing
behavior of K−1 with temperature. Our asymptotic results
at low temperatures agree very well with the full numerical
results shown in Fig. 6(a). The results provided in this section
generalize the existing graphene literature on compressibility13

to finite temperatures.

C. Numerical results of graphene compressibility

In this section, we present our numerical results of finite-
temperature compressibility in graphene. Throughout this
section, we use vF = 108 cm/s and the wave-vector cutoff
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FIG. 7. (Color online) (a) Calculated K0/K in monolayer
graphene as a function of temperature t for three different values
of background dielectric constant within HFA for carrier density n =
1012 cm−2. The dotted-dashed (orange) line presents the temperature
dependence of the noninteracting K0/K . (b) Calculated K0/K in
monolayer graphene as a function of the background dielectric
constant κ for a few fixed values of t . kc = 1/a (a = 2.46 Å).

kc = 1/a (a = 2.46 Å). We show results for suspended
graphene (κ ∼ 1.0) and for graphene on SiO2 (κ ∼ 2.5).
In Fig. 6(a), we show the temperature dependence of the
total inverse compressibility K0/K for three different values
of carrier density n = 0.1 × 1012 cm−2, n = 1 × 1012 cm−2,
n = 10.0 × 1012 cm−2 with dielectric constant κ = 2.5 (corre-
sponding to graphene on the Si/SiO2 substrate). We can clearly
see that the temperature dependence is nonmonotonic, and this
nonmonotonic behavior mostly comes from the noninteracting
compressibility, which is different from the 2D semiconductor
case. Unlike the 2D parabolic-band case, the compressibility in
graphene does not change sign in the range of experimentally
relevant parameters and, typically, exchange corrections are
always quantitatively small (�20%). We show the carrier
density dependence of K0/K in Fig. 6(b), where the K0/K is a
monotonically decreasing function of carrier density for small
values of t (T � 400 K for t = 1 and n = 0.1 × 1012 cm−2).
In Figs. 6(c) and 6(d), we present the calculated K0/K as a
function of carrier density for different temperatures. For fixed
temperatures, K0/K is a decreasing function of n at higher
carrier density, which corresponds to the low-temperature limit
manifesting n−1 density dependence. On the other hand, at
lower carrier density, K0/K has n1/2 density dependence,
which corresponds to the high-temperature limit, and the main
contribution to K0/K comes from the noninteracting part [see
Eq. (29)].

In Fig. 7, we compare the temperature dependence for
different values of background dielectric constant κ = 1 (i.e.,
graphene in vacuum), κ = 2.5 (graphene on Si/SiO2), and
κ = 15 (graphene on hafnium oxide HfO2), respectively. The
value of rs represents the fine-structure constant of graphene,
which depends only on κ and does not depend on the carrier
density because of the linear energy dispersion. The larger
dielectric constant corresponds to smaller values of rs , which
indicates a weak-coupling system in terms of electron-electron
interaction.18 Note that the trends of K0/K among different
values of dielectric constant are similar. The larger the value of
dielectric constant (the smaller the value of rs), the less strong
is the density dependence of K0/K . We also show in this figure
our calculated K0/K in HFA compared with the noninteracting
K0/K as a function of the background dielectric constant κ

for a few fixed values of t . We could see that the inverse

compressibility K0/K first increases as the temperature t

increases, reaches a maximum, and then decreases as the
temperature t further goes up. This nonmonotonic behavior
of K0/K dependence on the temperature is mainly due to
the noninteracting part of the chemical potential, which is
consistent with the calculation of the noninteracting part of the
chemical potential [Eq. (27)]. From Eq. (27), we know that the
temperature dependence of the chemical potential is t2 (with
a positive slope) at low temperatures, while the temperature
dependence of the chemical potential approximates as 1/t

(with a negative slope) at higher temperatures. There must be
an intermediate point at which the chemical potential changes
its sign of slope and so does the compressibility K . Since
K−1 is the derivative of chemical potential with respect to
n, it has similar temperature dependence as the chemical
potential. Therefore, the noninteracting part of K0/K behaves
as t2 at low temperatures and then changes to 1/t behavior.
The domination of graphene compressibility by noninteracting
effects is just a direct manifestation of the weakness of
electron-electron interaction in graphene compared with the
2D semiconductor case.

IV. COMPRESSIBILITY OF BLG

In this section, we calculate the BLG compressibility within
the HF approximation. There is some related theoretical work
in the literature dealing with the problem of compressibility
in BLG,17,19–21 but the specific and detailed temperature-
dependent compressibility presented in this work is not
available in the literature. To calculate BLG compressibility
at finite temperatures, we use the two-band approximation,
which is valid for the low-density limit. At high density,
BLG dispersion approaches the linear energy dispersion of
monolayer graphene as the Fermi energy becomes large8

and, therefore, the high-density BLG compressibility be-
haves similar to the MLG compressibility studied in the
last section. It has been shown that the two-band model
presents the most important qualitative signatures of the BLG
compressibility.17,19,20,22 For low-density bilayer graphene
within the two-band model, the quadratic approximation is
commonly used, i.e., ξk = h̄2v2

F k2/γ1 = h̄2k2/(2m), where γ1

is the interlayer hopping parameter from the tight-binding
approximation and m = γ1/(2v2

F ) is the effective mass of the
electrons. This dispersion comes from a low-energy effective
theory of bilayer graphene,8 which essentially discards the
two split bands and confines electrons to those lattice sites
not involved in the interlayer coupling. While the quadratic
dispersion is relevant at low energies, the actual dispersion
of the bands is hyperbolic. At large wave vectors, relevant
at large densities, the dispersion is effectively linear and the
system should behave like single-layer graphene. Thus, our
results obtained in the previous section should be applicable
to the high-density BLG.

The exchange self-energy of BLG is given by

�x,s(k) = −
∑
s ′

∑
k′

Vk−k′nF (ξk′,s ′ )Fs,s ′ (k,k′), (34)

where Vk−k′ = 2πe2/κ|k − k′| is the Coulomb potential,
ξk = k2/2m, nF (x) is the Fermi distribution function,
and Fs,s ′ (k,k′) = [1 + ss ′ cos(2θkk′)]/2 is the wave-function
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overlap factor and θkk′ is the angle between k and k′. To get
the explicit temperature dependence, we rewrite Eq. (34) as

�x(k) = �2D(k) + �int
x (k)

+ 1

2

∑
k′

Vk−k′[f (ξk′) + g(ξk′)][1 − cos(2θ )], (35)

where f (x) = 1/(eβ(x−μ) + 1) and g(x) = 1/(eβ(x+μ) + 1),
�2D(k) is the ordinary 2D self-energy given in Eq. (5), and
�int

x is given by

�int
x (k) = −

∫
d2k′

(2π )2
Vk−k′

1 − cos(2θ )

2

= 2e2k

3πκ

[
π

2
− p(z) + q(z)

]
, (36)

where

p(z) =
{

(1+7z2)E(z)
3z3 , z � 1

(1+7z2)E(1/z)
3z2 , z > 1

(37)

and

q(z) =
{

(1+2z2−3z4)K1(z)
3z3 , z � 1

4(z2−1)K1(1/z)
3z2 , z > 1.

(38)

Here, z = k/kc, kc ∼ 1/a is the momentum cutoff (similar to
the MLG situation) with a lattice constant a. K1(x) and E(x)
are the complete elliptic integral of the first and the second
kinds, respectively. Since we have studied �2D in Sec. II
and �int

x is independent of temperature, the new feature of
temperature-dependent compressibility of BLG arises from
the third term in Eq. (35), i.e.,

�(3)
x (k) = 1

2

∑
k′

Vk−k′[f (ξk′) + g(ξk′)][1 − cos(2θ )]. (39)

Then, the total temperature-dependent HFA chemical potential
of BLG can be calculated to be

μ(T ) = EF + �(kF ,T ). (40)

A. Zero-temperature BLG compressibility

At T = 0, using f (x) = θ (1 − x) and g(x) = 0 in Eq. (39),
the exchange self-energy can be calculated as

�x(k) = −2e2kF

πκ
E

(
k

kF

)
+ 2e2k

3πκ

[
p

(
k

kF

)
− q

(
k

kF

)

−p

(
k

kc

)
+ q

(
k

kc

) ]
. (41)

Then, the exchange self-energy at k = kF is given by

�x(kF ) = −2e2kF

πκ
+ 2e2kF

3πκ

[
8

3
− p(y) + q(y)

]
, (42)

where y = kF /kc. The total chemical potential for BLG within
HFA is then written as

μ = EF

[
1 − rs

π

(
2

9
+ 2

3
[p(y) − q(y)]

)]
, (43)

where rs = 2e2m/(κkF ) is the dimensionless BLG coupling.
In the following numerical calculation, we use the the value of

dielectric constant κ = 2.5 and effective mass m = 0.03me.8

By differentiating Eq. (43) with respect to n and making use
of the relation k2

F = πn, we get the zero-temperature BLG
inverse compressibility within HFA:

K0

K
= 1 − rs

π

(
1

9
+ 1

3
[p(y) − q(y)]

)
+ rs

π
w(y), (44)

where K0 is the noninteracting compressibility of BLG given
by

1

K0
= πn2

2m
(45)

and

w(y) =
{

1+y2

3y3 E(y) + y2−1
3y3 K1(y), y � 1

1+y2

3y2 E(1/y) + 1−y2

3y2 K1(1/y), y > 1.
(46)

At low enough densities, the zero-temperature compressibility
within HF approximation becomes negative similar to the
corresponding 2D semiconductor system. The corresponding
density is nc ∼ 1010 cm−2 or rs ∼ 27, for which the negative
compressibility manifests itself. This is a very small (large)
value of density (rs) compared with the ordinary 2D case where
the negative compressibility shows up for rs > 2.2. However,
the negative compressibility obtained in HFA has not been
experimentally observed in bilayer graphene systems.23–25 The
non-negative compressibility may be attributed to correlation
effects. It is shown that the contributions from exchange
and correlation almost cancel each other out in BLG at low
density, leaving a small positive compressibility at all densities
in contrast to the corresponding 2DEG systems1–5 where
the electronic compressibility can become negative at low
densities.20,22 The nonquadratic band structure also gives rise
to significant effects on the compressibility, as has recently
been discussed in the literature.17

B. Finite-temperature BLG compressibility

At finite temperatures, the noninteracting chemical poten-
tial is temperature independent in BLG, i.e.,

μ0(T ) = EF . (47)

Then, the noninteracting compressibility of BLG is also tem-
perature independent and is the same as the zero-temperature
compressibility given in Eq. (45):

Kni(T ) = K0. (48)

At finite temperatures, the temperature dependence of BLG
compressibility comes from the exchange contribution. This
is very intriguing because the noninteracting kinetic energy
dominates exchange self-energy at high temperatures for both
ordinary 2D systems and MLG. But, in BLG, the entire
temperature dependence arises from the exchange energy!
Thus, any experimentally observed temperature dependence
in the BLG compressibility must entirely be a many-body
effect, at least within the two-band approximation (i.e., at
not-too-high carrier densities).

Let us consider the exchange self-energy, Eq. (35), at finite
temperatures. The first term in Eq. (35) has been calculated
in Sec. II [see Eq. (14)] and the second term is temperature
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independent. The third term [Eq. (39)] becomes, in the low-
temperature limit t = T/TF � 1,

�(3)
x (kF ) � 2e2kF

3πκ

(
8

3
− π

2
− π2

24
t2

)
+ O(t4). (49)

Thus, we have the total HFA chemical potential in the low-
temperature limit

μ(T ) = EF

[
1 − rs

π

(
2

9
+ 2

3
[p(y) − q(y)]

)]

−EF

rs

π

[
Bt2

4
+ 5π2t2

72
− 1

48
π2t2ln

16

t

]
, (50)

where B = π2

12 [ln(4π ) + 12ζ ′(−1)] ≈ 0.449 and ζ ′(−1) is
the derivative of the zeta function. By differentiating the
asymptotic formula of chemical potential with respect to the
density, we have the BLG K0/K for t � 1:

K0

K(T )
� K0

K(T = 0)
+ rs

π

[
0.55t2 + π2

32
t2lnt

]
, (51)

where K0/K(T = 0) has been derived in Eq. (44). We
have the same leading-order term t2 ln t arising from the
exchange self-energy as the ordinary 2D system. Thus, at low
temperatures, the calculated inverse compressibility decreases
as the temperature increases.

In the high-temperature limit T � TF , the chemical poten-
tial can be calculated to be

μ(T ) = EF

[
1 − rs

π

(
B1√

t
+ 2

3
[p(y) − q(y)]

)]
, (52)

where B1 = [−3
√

2π2 + 8(−1 + 2
√

2)
√

πζ ( 3
2 )]/64 ≈ 0.4

and ζ (x) is the zeta function. Then, the inverse compressibility
is given by

K0

K(T )
= 1 − rs

π

(
B1√

t
+ p(y) − q(y)

3
− w(y)

)
. (53)

In the high-temperature limit (t � 1), the inverse compress-
ibility of the ordinary 2D systems increases linearly with tem-
perature and approaches the noninteracting value. However,
since the noninteracting compressibility of BLG is temperature
independent and the most dominant exchange term decreases
as t−1/2, the high-temperature inverse compressibility of BLG
approaches the following high-temperature limit:

K0

K(T )

∣∣∣∣
T →∞

= 1 − 1

8

a

aB

, (54)

where aB = h̄2κ/(me2) is the BLG effective Bohr radius.
Since a/aB < 1, the negative inverse compressibility reverses
its sign to the positive values at high temperatures and
asymptotically approaches a smaller value than the zero-
temperature inverse compressibility. This intriguing result is
purely a high-temperature manifestation of exchange effect
within the two-band BLG approximation.

In Fig. 8, we present our numerical results of temperature-
dependent inverse compressibility in BLG systems. In the
calculation, we use kc = 1/a (a = 2.46 Å) and κ = 2.5. As
shown in Fig. 8, the calculated BLG inverse compressibility
shows very weak temperature dependence. The weak non-
monotonic behavior of temperature-dependent inverse com-
pressibility is shown in the inset of Fig. 8(a). In Fig. 8(b), we
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FIG. 8. (Color online) (a) Calculated K0/K in BLG as a function
of temperature t = T/TF for different values of rs . The inset presents
K0/K for rs = 2.0 showing the nonmonotonic behavior. kc = 1/a

(a = 2.46 Å) and κ = 2.5 are used. (b) The inverse compressibility
K0/K in BLG as a function of rs for different values of temperature t .
(c) ∂μ/∂n in BLG versus carrier density n for various temperatures.
Inset shows the details in the low-density limit in the semilog scale.

present the inverse compressibility versus rs . K−1 decreases
monotonically with rs and becomes negative at rs ∼ 27. In
Fig. 8(c), we show ∂μ/∂n as a function of density, and
the inset shows the same figure in the semilogarithm scale
to show clearly the behavior at low densities. At densities
n � 1010 cm−2, the zero temperature ∂μ/∂n is negative, but as
temperature increases, it reverses its sign at t ≈ [0.4/(π/rs −
a/8aB )]2. As temperature increases further, it approaches
(h̄2π/2m)(1 − a/8aB ) regardless of density.
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FIG. 9. (Color online) Calculated K0/K for the 2D, MLG, and
BLG systems as a function of t for a few values of rs .

In Fig. 9, we show, for the purpose of comparison, the
calculated K0/K for the 2D, MLG, and BLG systems as
functions of rs and t in order to demonstrate the qualitative
difference between the results.

V. DISCUSSION AND CONCLUSION

In this work, we have calculated the finite-temperature
compressibility of graphene and ordinary 2D semiconductor
systems within the Hartree-Fock approximation. We present
both analytical and numerical results of K0/K as a function of
temperature, the dimensionless interaction parameter rs , and
density. We find that the calculated temperature-dependent
compressibility is nonmonotonic in both graphene and 2D
semiconductor systems. In monolayer graphene, the inverse
compressibility K−1 increases with temperature at low tem-
peratures and decreases at high temperatures, reaching a max-

imum value at an intermediate temperature. This nonmono-
tonicity arises entirely from the behavior of the noninteracting
graphene compressibility. The temperature-dependent inverse
compressibility in 2D semiconductor systems decreases with
temperature at low temperatures and increases at high tem-
peratures. In BLG, the inverse compressibility decreases as
temperature increases at low temperatures, but it approaches
a value that is less than the noninteracting value at high
temperatures. The leading-order temperature correction to the
inverse compressibility K−1 in HFA for both graphene and
2D semiconductor systems is t2 ln t . Our analytic results are in
agreement with our numerical results both at low and at high
temperatures.

Our use of the Hartree-Fock approximation is not a particu-
larly restrictive approximation for the theory of the electronic
compressibility since it is well known that Hartree-Fock theory
works well for the calculation of the compressibility and
its density dependence, at least at T = 0. The Hartree-Fock
approximation gives results numerically very close to the full
dynamical random phase approximation (RPA) for the 2D
compressibility at T = 0,26 and the Hartree-Fock compress-
ibility results are in good agreement with the compressibility
measurements for 2D semiconductors2 and graphene.13 In fact,
the Hartree-Fock approximation for 2D semiconductors is in
better quantitative agreement with the density dependence of
the measured compressibility2 than the corresponding RPA
theory as long as the strict 2D approximation is used since the
finite-width corrections for the realistic 2D semiconductors
tend to cancel out the correlation corrections neglected in
the HFA. In any case, we consider the HFA as the first
step necessary for understanding the temperature-dependent
2D compressibility in interacting electron systems, and only
future work, particularly experiments comparing with our
predictions, can establish the necessity of improved theoretical
treatments involving dynamical correlations neglected in the
HFA.

Our main finding that the temperature dependence of com-
pressibility is much stronger in 2D systems than in graphene
is consistent with existing experimental results. In particular,
our results of Sec. II agree well with the experimental study of
Shapira et al.15 on 2D GaAs holes, who discovered substantial
temperature dependence in the 2D hole compressibility in
the 1–100 K temperature regime with the experimental data
showing reasonable qualitative agreement with our theoretical
HFA results presented in Sec. II D. Detailed quantitative
comparison with the experimental data of Shapira et al.15 is
not particularly meaningful (and is not attempted) because of
a number of reasons, including our use of the exchange-only
Hartree-Fock approximation, our neglect of the finite thickness
of the 2D semiconductor structures (which is often important
for quantitative considerations), our neglect of disorder effects
(which are certainly important at lower carrier densities), and
the lack of information about some essential experimental
parameters (e.g., depletion charge density).

In addition to the experimental study of the temperature-
dependent 2D hole compressibility by Shapira et al.15 dis-
cussed above, there have been several low-density studies
of the temperature dependence of the compressibility in
both electron and hole 2D systems1,2,15 carried out in the
context of 2D MIT (i.e., disorder-induced density-tuned
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localization of 2D semiconductor systems). As we discussed in
Sec. II, these low-density experimental investigations should
be revisited in light of our current work demonstrating the
importance of the temperature dependence of K0/K in the
low-carrier-density regime by virtue of the dimensionless
temperature T/TF being large precisely in the low-density
regime (where disorder effects are also strong) since TF ∝ n

in 2D systems. Unfortunately, temperature, disorder, and
interaction effects are all strong in the low-density regime,
making any quantitatively reliable theoretical work essentially
impossible in the low-carrier-density regime, and our work
establishes the importance of finite-temperature effects on the
compressibility in the low-carrier-density regime. In particular,
the density inhomogeneity and puddle formation that happens
at low carrier density27,28 due to the failure of screening
would very much complicate the observation of the low-
density (and low-temperature) features in the compressibility
predicted in our theory unless one uses extremely high-quality
samples with very low disorder. Recently, there has been
a theoretical investigation17 of the effect of disorder on
low-density graphene compressibility, clearly establishing the
importance of disorder in low-density compressibility.

Since the Fermi temperature TF goes as TF (in K) =
4.2ñ (2D GaAs electrons); 0.74ñ (2D GaAs holes); 136

√
ñ

(monolayer graphene); 4.2ñ (bilayer graphene), where ñ ≡
n/1010 is the carrier density measured in the units of 1010 cm−2,
it is obvious that the quantitative effect of finite temperature,
even at low carrier densities, is by far the strongest (weakest)
in 2D GaAs holes (monolayer graphene), which is consistent
with experimental observations. Since disorder effects become
important for n � ni , where ni is the background random
charged impurity density in the environment, the low-density
regime associated with large T/TF values becomes even
more challenging to achieve in the laboratory experiments on
graphene. We expect our predicted temperature dependence
to manifest in graphene compressibility in room-temperature
experiments in very high-mobility samples, where T/TF ∼ 1
values may be achievable.

An important relevant question for our theory is as follows:
What is the most suitable system for the experimental obser-
vation of our theoretical predictions? Obviously, our predicted
high-temperature behavior, where the theory is in very firm
ground since the exchange energy is likely to be the exact
leading-order many-body correction to the noninteracting
compressibility in the high-temperature limit, should be valid
for all systems and should be observable in 2D semiconductors
(both electrons and holes) rather easily by measuring the
compressibility for T = 10–200 K for electron (hole) densities
∼1010–1011 cm−2 so that T > r2

s TF condition is satisfied.
Given that T h

F < T e
F at the same density, the high-temperature

behavior is much more easily observable in 2D GaAs holes and
has, in fact, already been observed at least in one experimental
study in 2D holes.15 While 2D GaAs holes are the obvious
ideal candidates for observing our predicted high-temperature
compressibility behavior, monolayer graphene may turn out to
be not particularly well suited for the temperature-dependent
compressibility studies because of its very high relative
Fermi temperature (T MLG

F ∼ 1350 K for a doping density of
1012 cm−2) and its relatively weak temperature dependence.
Obviously, the condition for observing the high-temperature

behavior of compressibility is the ability to reach T � TF ,
which necessitates lower Fermi temperatures. By contrast,
the low-T behavior associated with the T 2 ln T term in the
compressibility may be better observed in a system with a
relatively high value of TF so that the regime T/TF < 1
can be explored over a fairly broad range of temperature
with the temperature tm not being too low. Thus, very high
mobility n-GaAs heterostructures or quantum wells with
n ∼ 2 × 1010 cm−2 so that TF ∼ 8.3 K (and Tm ∼ 3 K) may be
the ideal system to search for our predicted shallow minimum
in K0/K . One serious problem is that the minimum may be
too shallow to be uniquely determined experimentally.

Finally, we discuss our very interesting analytical finding
of the nonmonotonicity in graphene inverse compressibility
associated with the T 2 ln T correction we obtain analytically
(and verify numerically). Although this would not be an easy
effect to detect experimentally because of its quantitative
weakness [and because the subleading correction goes as
T 2 and thus the ratio of the two, ln(T/TF ), is always
challenging to observe in experiments even under the best
of circumstances], it is nevertheless interesting to discuss its
origin and its robustness beyond our approximation scheme.
Our results are exact within the Hartree-Fock approximation
scheme, and there is no doubt that the exchange self-energy
contributes a T 2 ln T leading-order contribution to the inverse
compressibility. The first question is whether this is intrinsi-
cally a dimensionality effect occurring only in two dimensions.
We have therefore carried out the corresponding analytical
calculations for the 3D temperature-dependent compressibility
(presented in Appendix A of this paper), finding that K0/K

has a T 2 ln T contribution in three dimensions also. Thus,
it appears that the interesting nonmonotonicity associated
with the T 2 ln T correction is a result of the Hartree-Fock
approximation arising from the exchange self-energy diagram,
and is not intrinsically a two-dimensional effect.

We have investigated this question by calculating the
interacting compressibility in the screened Hartree-Fock ap-
proximation (sometimes also called static RPA) for the 2D
system, where the bare Coulomb interaction “V ” appearing
in the exchange self-energy is screened by the static RPA
dielectric function. (These results are shown in Appendix B.)
The screened HFA (Appendix B) or static RPA does not
contain the T 2 ln T term in the finite-temperature inverse
compressibility, but is not a reliable approximation at all since,
at T = 0, it predicts that K0/K should be always positive
for all values of rs , in clear disagreement with experimental
finding.1,2 Thus, the absence of the T 2 ln T term in the screened
HF approximation can not be taken seriously since the
corresponding T = 0 result is in qualitative disagreement with
experimental results. It is interesting to speculate whether the
T 2 ln T term survives higher-order diagrams associated with
dynamical correlation effects, and this remains a challenge for
the future. Although it is fairly straightforward to calculate
the compressibility including correlation effects at T = 0 (for
example, the ring-diagram contributions to the compressibility
can be exactly calculated at T = 0),26 it is a formidable
challenge, both numerically and analytically, to extend to
the corresponding ring-diagram calculations of interacting
compressibility to finite temperatures. We have studied this
question carefully and have been able to show that there is
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definitely a T 2 term in K0/K arising from the infinite series
of the ring diagrams, but we still do not know whether the
T 2 ln T term of the exchange self-energy is exactly canceled
by the dynamical effects arising from the infinite ring-diagram
series. Although the effect of the (T/TF )2 ln(T/TF ) term
matters only at low temperatures and low densities, where
disorder effects dominate, making it difficult to observe the log
term experimentally, it is nevertheless important to establish
whether this nonmonotonicity associated with T 2 ln T survives
higher-order correlation terms in the theory. We leave this
as an unanswered theoretical question for the future. A
direct experimental observation of the T 2 ln T term in the
low-temperature inverse compressibility of 2D electrons or
holes will go a long way in settling this important question.

To summarize, our goal of this paper is to understand the
temperature dependence of compressibility in a high-density
homogeneous system where the interaction effect is not too
strong and HFA is valid. At very low density, disorder
effects are of particular importance, and the system may be
highly inhomogeneous due to the formation of electron-hole
puddles,4,5,7,8,11,17,21,27–31 which are not included in our theory.
Our main result is that temperature effects in the compress-
ibility could be quite important at higher temperatures.
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APPENDIX A: HARTREE-FOCK COMPRESSIBILITY
IN 3DEG

In this Appendix, we provide the corresponding finite-
temperature Hartree-Fock compressibility for a standard
three-dimensional electron gas (3DEG). For 3DEG, the bare
Coulomb interaction V (q) = 4πe2

κq2 , where κ is the background
dielectric constant. We assume the total degeneracy g = 2 in
the calculation.

The finite-temperature exchange energy of 3DEG is given
by

�ex(k) = −
∫

d3k′

(2π )3
V (|k − k′|)nF (ξk′)

= −e2k

πκ

∫ 1

0
dx ln

(
1 + x

1 − x

)[
x

eβ(εkx2−μ0) + 1

+ 1/x3

eβ(εk/x2−μ0) + 1

]
, (A1)

where β = 1/kBT , εk = k2/2m, m is the effective mass,
and μ0 is the finite-temperature chemical potential without
exchange energy. The noninteracting chemical potential μ0 is
obtained by solving the following self-consistent equation:

n = k3
F

π2

∫ ∞

0
dx

x2

exp
(

x2−μ̃0

t

) + 1
, (A2)

where μ̃0 = μ0/EF , t = T/TF , and n = k3
F

3π2 for 3DEG. There
is no explicit analytical formula for the finite-temperature
chemical potential in 3DEG. But, at very low temperatures

(t � 1), the asymptotic form of the noninteracting chemical
potential is given by

μ0 ≈ EF

(
1 − π2t2

12

)
. (A3)

The HFA chemical potential μ can be calculated by
including the exchange energy for k = kF , i.e.,

μ = μ0(T ) + �ex(kF ,T ). (A4)

Then, the normalized chemical potential μ̃ = μ/EF can be
expressed as

μ̃ = μ̃0 − 2α

π

∫ 1

0
dx ln

(
1 + x

1 − x

) [
x

e(x2−μ̃0)/t + 1

+ 1/x3

e(1/x2−μ̃0)/t + 1

]
, (A5)

where α = (4/9π )1/3rs with the dimensionless parameter rs =
(3/4πn)1/3(me2/κ), and

μ̃0 = 1 − π2t2

12
. (A6)

By differentiating Eq. (A4) with respect to n and using
k3
F = 3π2n, the corresponding noninteracting compressibility

of 3DEG is given by

1

n2K0
= dEF

dn
= π2

mkF

, (A7)

1

n2Kni

= dμ0

dn
= h3(t)

K0
, (A8)

where K0 and Kni are the zero-temperature and the finite-
temperature noninteracting compressibility, respectively, and
h3(t) = 1 + π2t2

12 .
The finite-temperature inverse compressibility K0/K

within HFA is given by

K0

K
= h3(t) − α

π

∫ 1

0
dx ln

(
1 + x

1 − x

)

×
[

x

e(x2−μ̃0)/t + 1
+ 1/x3

e(1/x2−μ̃0)/t + 1

]

+ α

2πt

∫ 1

0
dx ln

(
1 + x

1 − x

)

×
[

x[x2 − h(t)]

cosh2 (x2−μ̃0)
2t

+
1
x3

[
1
x2 − h(t)

]
cosh2 (1/x2−μ̃0)

2t

]
. (A9)

At zero temperature T = 0, we have

K0

K
= 1 − α

π
= 1 − 1

π

3

√
4

9π
rs. (A10)

The HF chemical potential and the compressibility in the low-
temperature limit t � 1 can be calculated by expanding the
logarithmic function near x = 1. Then, the chemical potential
in Eq. (A5) becomes

μ̃ = μ̃0 − 2

π

3

√
4

9π
rs

[
1 + π2t2

24
(A3 + lnt)

]
, (A11)
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where A3 = 1 − γ + ln(π
8 ) (where γ is Euler’s constant, with

numerical value �0.577 216.). Finally, we find that the low-
temperature 3D inverse compressibility within HFA as

K0

K

∣∣∣∣
t→0

= 1 + π2t2

12
− 3

√
4

9π4
rs

×
[

1 + 0.136π2t2 + 1

8
π2t2 ln

(
πt

8

) ]
. (A12)

The asymptotic behavior of high-temperature compressibility
is obtained by approximating the Fermi-Dirac distribution
function by the classical Boltzmann function. In the high-
temperature regime t → ∞, the normalized chemical potential
within HFA becomes

μ̃|t→∞ = t ln

(
4

3
√

πt3/2

)
− 8

3t

3

√
4

9π4
rs, (A13)

and the corresponding high-temperature inverse compressibil-
ity is calculated as

K0

K

∣∣∣∣
t→∞

= 3t

2
− 4

t

3

√
4

9π4
rs, (A14)

which agrees with the noninteracting high-temperature classi-
cal result.

APPENDIX B: SCREENED 2D HARTREE-FOCK
COMPRESSIBILITY

We provide the screened Hartree-Fock compressibility
(sometimes also called static RPA) for the 2D system, where
the bare Coulomb interaction V appearing in the exchange
self-energy is screened by the static RPA dielectric function.

The self-energy with the finite-temperature static RPA
dielectric function is given by

�self(kF ) = −
∫

d2q

(2π )2

V (q)

ε(q,T )
nF (ξq−kF

), (B1)

where V (q) = 2πe2

κq
and nF

(
ξq−kF

)
is the Fermi distribution

function. The static RPA dielectric function ε (q,T ) is given
by8

ε(q,T ) = 1 + V (q)�(q,T ) = 1 + qs(q,T )

q
, (B2)

where �(q,T ) is the finite-temperature static polariza-
tion function and qs = 2πe2�(q,T )/κ is the momentum-
dependent screening wave vector.8 At low temperatures

(T � TF ), the 2D polarizability becomes8

�(q,T ) ≈ m

π
(1 − e−TF /T ), (B3)

and its asymptotic form at high temperatures (T � TF )
becomes8

�(q,T ) ≈ m

π

TF

T
. (B4)

The finite-temperature chemical potential within static
RPA, μ(T ), can be calculated by including the self-energy
of Eq. (B1), i.e.,

μ(T ) = μ0(T ) + �self(kF ,T ). (B5)

At zero temperature (T = 0), the noninteracting part of chem-
ical potential is the Fermi energy μ = EF . For rs � 1, the
chemical potential approaches the noninteracting value, which
has been discussed in Sec. II. For interacting 2D systems,
the self-energy within screened HFA has the asymptotic form
(with gs = 2 and gv = 1), for rs � 1,

�self(kF ,T = 0)|rs�1 = −πn

2m
. (B6)

By differentiating Eq. (B6) with respect to n and using
the relation k2

F = 2πn, we get the zero-temperature inverse
compressibility, within the screened HFA,

K0

K(T = 0)

∣∣∣∣
rs�1

= 1

2
. (B7)

Since K0 is a positive value, we have the positive compress-
ibility even for rs � 1, which clearly disagrees with both the
HF results and experiments.1,2

With Eqs. (B1)–(B3), we find the asymptotic form of the
self-energy at low temperatures (T � TF ) and for rs � 1:

�self(kF ,T )|rs�1 = −πn

2m
+ O(e−TF /T ). (B8)

We find that the leading-order temperature-dependent term
in the self-energy is exponentially suppressed. Consequently,
the temperature-dependent inverse compressibility at low
temperatures becomes

K0

K(T � TF )

∣∣∣∣
rs�1

≈ 1

2
+ O(e−TF /T ). (B9)

At high temperatures (T � TF ), the inverse compressibility
calculated within the static RPA approaches the HFA results
given in Eq. (17) because the noninteracting kinetic energy
dominates.
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