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Molecular Mie model for second harmonic generation and sum frequency generation
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A theoretical model to simulate second harmonic and sum frequency generation from stratified spherical
particles of arbitrary material is presented and compared with the widely used Rayleigh-Gans-Debye
approximation and to experimental results from polystyrene particles with adsorbed malachite green molecules.
In this model, the nonlinear polarization is caused by individual dipoles placed in the vicinity of the sphere and
is simulated on a molecular basis. This offers greater flexibility to model more sophisticated systems.
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I. INTRODUCTION

Nonlinear light scattering, especially second harmonic
generation, has been used from the 1980s on to study planar
surfaces.1,2 Second harmonic generation from the surface of
nanospheres in suspension was first reported about a decade
ago.3,4 In the dipole approximation, second harmonic and
sum-frequency generation are forbidden in the bulk of spheres
of centrosymmetric materials as well as in the solvent itself
making the method highly surface sensitive. It has been used
in a wide range of applications to study the surface structure,
adsorption and orientation of molecules to the surface of
nanoparticles3,5–14 or to determine the buried microstructure
of particles,15 to determine the size of particle clusters,16 or in
biophysical experiments as sensitive probing technique.17–20

The first theoretical model to calculate the second harmonic
scattering from the surface of a metallic sphere was published
by Agarwal and Jha.21 for the limiting case of small particles.
An exact solution in the Rayleigh limit (R � λ) has also
been proposed by Dadap et al., who calculated the vector
potential from the current density source and expanded it in
the small-particle limit into electric dipole and quadrupole and
magnetic dipole moments. The first model took into account
only the surface term and three χ (2) components22 but was
soon expanded to all four χ (2) components and a nonlocal
bulk contribution.23 This model was also used to model the
nonlinear response of a sphere close to a surface,24 of an array
or composite of nanoparticles25,26 or of particles interacting
with focused beams.27

An exact solution for arbitrary particle sizes, based on Mie
theory, was already proposed by Agarwal and Jha.21 Östling
et al.28,29 published the first nonlinear Mie model for metallic
spheres. They used an anharmonic oscillator model, which
takes only the χ (2)

zzz component into account, to calculate the
second harmonic response.

Pavlyukh and Hübner30 refined the nonlinear Mie model
without restriction to an anharmonic oscillator model; instead
the nonlinear polarization is calculated directly from χ (2) and
from the scattered electric fields at the surface of the sphere.
The boundary conditions used to correlate the nonlinear
polarization �P2ω, or the surface current �js, to the second
harmonic fields �E and �H are (with �n being the surface normal)

�n × ( �Eout − �Ein) = 0,

�n × ( �Hout − �Hin) = �js = −2iδω�n × ( �P2ω × �n).

They recognized three independent χ (2) components at the
surface, but restricted their solution to χ (2)

zzz.
De Beer and Roke31 finally found the exact solution for four

χ (2) components. Using a reciprocity theorem, the problem
of calculating the sum-frequency fields from the nonlinear
polarization is traced back to the problem of calculating the
fields inside the particle illuminated by a plane wave,32 so that
standard Mie scattering can be applied.

Gonella and Dai33 expanded the exact solutions of Dadap
and Shan23 for a small particle size to a full Mie model. They
used

� �E‖(2ω) = − 4π

ε′(2ω)
�∇‖P⊥(2ω),

� �H‖(2ω) = 4πi
2ω

c
�n × �P (2ω)

as boundary conditions.
The Rayleigh-Gans-Debye (RGD) or first Born approxi-

mation is quite likely the most common model to simulate
the nonlinear response of nanoparticles because it requires
less computational effort than all other known models. Here
the refractive index of the sphere is assumed to be equal to
that of the surrounding, so that the field of the fundamental
harmonics is not influenced by the sphere and can be assumed
to be a plane wave. The nonlinear polarization �P , oscillating
at the sum frequency, which is driven by two fundamental
harmonic fields (index 1 and 2), can then be determined in a
straightforward way as

�P (�r) ∝
3∑

i,j,k=1

�eiχ
(2)
ijkEFH,1e

i�kFH,1�r (�eFH,1 · �ej )

×EFH,2e
i�kFH,2�r (�eFH,2 · ek),

where �kFH,1/2 and �eFH,1/2 are the wave vectors and polarization
vectors of the two interacting fundamental harmonic (FH)
fields, respectively. This polarization now itself induces an
electric field at the sum frequency of the two fundamentals,
which is radiated away as (compare to Brown,34 where a
different system of units is used)

�E(�r) = c2

4πε
�∇ × �∇ ×

∫
d�r ′ e

ikSH|�r−�r ′|

|�r − �r ′|
�P (�r ′).
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Again this approximation is only valid if the spheres do
not influence the field propagation either due to index
matching or due to a size, which is small compared with
the wavelength ( 2πR

λ
| nsph.

nsurr.
− 1| � 1). Usually the medium is

additionally assumed to show no dispersion so that |�kSH| =
2|�kFH|. While Martorell et al. restricted their calculations to
the χ (2)

zzz component,35 Roke, deBeer, and co-workers expanded
the model to all relevant χ (2) components36,37 and also to
nonspherical particles of arbitrary shape.38 Viarbitskaya39 even
went a step further by developing a generalized nonlinear RGD
theory, where also dispersion is taken into account.

Finally Roke32 and Viarbitskaya39 extended their simu-
lation by applying the nonlinear Wentzel-Kramers-Brillouin
model. Here the fundamental harmonic waves are still assumed
to propagate without refraction but a phase factor proportional
to the index contrast is taken into account. Still all these models
lack a consistent description of the linear field propagation
around the spheres.

Here, we report on a nonlinear Mie model, which correctly
describes the field distributions both at the FH and SH fre-
quencies. In contrast to previous Mie models, the polarization
is directly modeled as a surface dipole density, applying the
boundary conditions of Mie theory to the fields radiated from
individual dipoles placed at the surface of the sphere. Our
model does not rely on a homogeneous distribution of the
nonlinear polarization at the surface of the sphere, which
allows for situations where the polarization is not symmetric
or not restricted to the surface of the sphere as might be the
case for layers of molecules or for domains of molecules with
varying orientation at the surface.

II. THEORY

A. System

We consider a sphere of radius R of a material with
refractive index n1 placed at the origin in a surrounding
medium of refractive index n2 (see Fig. 1).

The incident fundamental harmonic wave �EFH,1 is propa-
gating along the Z axis of the global coordinate system, the
second fundamental harmonic wave �EFH,2 in the X-Z plane
with an angle θFH with respect to the Z axis. In the experiment
the incident beam is usually polarized either parallel (p) or
perpendicular (s) to the X-Z plane and the signal is detected
in the X-Z plane as a function of the scattering angle θ with
respect to the Z axis.

FIG. 1. Sphere with local coordinate system, global coordinate
system at the surface of the sphere, and the wave vectors �kFH,1 and
�kFH,2 of the incident beams.

The local coordinate system at the surface of the sphere
is given by the spherical coordinate system, with �ex = �er ,
�ey = �eθ , and �ey = �eφ .

B. Linear Mie scattering

Scattering of the fundamental harmonic and sum frequency
waves is calculated using Mie theory.40,41 Mie theory requires
that the tangential components of the electric and magnetic
fields are continuous at the interface. The scattered and the
incident field outside the sphere have to add up to match the
scattered field inside the sphere:

E
sc,i
θ,φ = E

sc,o
θ,φ + Einc

θ,φ,
(1)

H
sc,i
θ,φ = H

sc,o
θ,φ + H inc

θ,φ.

This set of equations simplifies drastically when all fields are
expanded into a set of vector spherical harmonics,

{ �E
�H

}
(�r) =

{ 1

− ik
ωμ

} ∞∑
n=0

n∑
m=−n

{
ainc

m,n

binc
m,n

}
�N (jinc)

m,n (�r)

+
{

binc
m,n

ainc
m,n

}
�M (jinc)

m,n (�r), (2)

where the vector spherical harmonics �N (j )
mn(r,θ,φ) and

�M (j )
mn(r,θ,φ) are known to satisfy the wave equation. They

depend on exp(iφ), associated Legendre functions P m
n (cos θ )

and spherical Riccati-Bessel functions ψ
(j )
n (kr) of kind j .

Thus Eq. (1) reduces to a linear equation for the expansion
coefficients am,n and bm,n, which makes Mie theory an efficient
way to calculate scattering from a sphere,

ainc
m,n

(
ψ

(jinc)
n (Rko)

1
Rko

ψ
(jinc)
n (Rko)

′

)

=
(

ψ
(jsc,i)
n (Rki) −ψ

(jsc,o)
n (Rko)

1
Rki

ψ
(jsc,i)
n (Rki)

′ − 1
Rko

ψ
(jsc,i)
n (Rko)

′

) (
asc,i

m,n

asc,o
m,n

)
,

binc
m,n

(
1

Rko
ψ

(jinc)
n (Rko)

ψ
(jinc)
n (Rko)

′

)

=
(

1
Rki

ψ
(jsc,i)
n (Rki) − 1

Rko
ξ

(jsc,o)
n (Rko)

ψ
(jsc,i)
n (Rki)

′ −ψ
(jsc,o)
n (Rko)

′

)(
bsc,i

m,n

bsc,o
m,n

)
. (3)

The above formulation of the matrix becomes numerically
unstable for either larger spheres or spheres of high refractive
index or spheres consisting of an absorbing material. The equa-
tions have to be reformulated to overcome this problem.42–45

Additionally, the Mie method can be expanded to core-shell
particles: Instead of applying the continuity condition to only
one interface it is applied to every interface between the core of
the particle, its various shells, and the surrounding,46 resulting
again in a linear equation for the expansion coefficients inside
and outside the sphere.

In classical Mie theory, the incident electric and mag-
netic fields are assumed to be plane waves. The expansion
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coefficients for a plane wave, polarized parallel to the X axis
[ �EFH,1 = �E1 exp (ik1r cos θ )], are47

am,n = −in+1 2n + 1

2n(n + 1)
(δm,1 + δm,−1), (4)

bm,n = −in+1 2n + 1

2n(n + 1)
(δm,1 − δm,−1). (5)

However, arbitrary incident fields can be expanded into vector
spherical harmonics, which leads to a generalized Mie theory48

with respective expansion coefficients ainc
m,n and binc

m,n as input
parameters in Eq. (3). It is therefore possible to calculate the
resulting field of a dipole placed anywhere near a spherical
particle.

C. Nonlinear polarization

The scattered fundamental harmonic fields give rise to a
nonlinear polarization �P (2), that describes the surface density
of oscillating electric dipoles (SI unit Cm/m2). In the case of
a pure χ (2) effect, �P (2) is given by

P
(2)
i =

3∑
j=1

3∑
k=1

χ
(2)
ijkE

FH,1
j E

FH,2
k . (6)

Additionally, χ (3) effects can lead to second harmonic gener-
ation when a static electric field is present, e.g., a radially
polarized electric field  from the surface charge of the
sphere:49

P
(2)
i =

3∑
j=1

3∑
k=1

χ
(3)
ijk3E

FH,1
j E

FH,2
k 3. (7)

This nonlinear polarization �P (2) gives rise to an electro-
magnetic sum frequency field:

�E(2)(�r) ∝
∫

d�r ′ �P (2)(�r ′). (8)

The nonlinear surface susceptibility χ
(2)
ijk is a property of the

surface material (gold, polystyrene) or of molecules that are
adsorbed to the surface or oriented close to the surface due to
electric fields.

In the case of molecules, χ
(2)
ijk (SI unit m2/V) can be

calculated from the molecular hyperpolarizability βijk (SI
unit C3 m3/J2), the molecular orientation with respect to the
macroscopic coordinate frame and additional fields due to the
presence of surrounding molecules,50

χ
(2)
ijk =

3∑
l,m,n=1

fil(ω1 + ω2)fjm(ω1)fkn(ω2)

×
∫

dα

∫
dβ

∫
dγ ρ(α,β,γ )

×
3∑

o,p,q=1

Mlo(α,β,γ )Mmp(α,β,γ )Mnq(α,β,γ )βopq,

(9)

where ρ(α,β,γ ) denotes the orientational density distribution
of the molecules. The rotation from the molecular coordinate
frame with respect to the local coordinate frame of the surface
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FIG. 2. (Color online) χ
(2)
ijk calculated from a single βi′j ′k′ com-

ponent for an increasing inclination angle β of the molecular z′

axis with respect to the surface normal (z axis). In all plots a
uniform distribution of the molecule axis is assumed and respective
coefficients of the molecular susceptibility are kept constant.

of the sphere is given by the Euler angles α,β,γ and the
respective rotation matrix M(α,β,γ ). At optical frequencies
and isotropy of the interface the local field correction factors
can be found from the Lorentz local field fij (ω) = ε(ω)+2

3 .
If there is no global order we can assume that the molecules

are rotated arbitrarily around the surface normal (γ = [0,2π ])
so that from 27/18 independent components of β in the
case of SFG/SHG, only 7/4 independent components of χ (2)

remain. If the molecules are also rotated arbitrarily around
their molecular axis (α = [0,2π ]) and are all inclined by the
same fixed angle β, Eq. (9) can be simplified. For example,
χ (2)

zzz in the case of SHG is given by

χ (2)
zzz ∝ sin β sin 2β

βxxz + βyyz

2

+ sin2 β cos β
βzxx + βzyy

2
+ βzzz cos3 β. (10)

From Eq. (9) the susceptibilities of a given angular distri-
bution and hyperpolarizability can be calculated (see Fig. 2).

The chiral component βxyz does not mix with the other
three independent components. When the molecular βijk is
known and the relevant χ (2)

ijk components are extracted from the
measurement, the surface coverage and the average inclination
angle β can be calculated.

D. Nonlinear dipoles

The action of the nonlinear surface polarization �P (2) is
modeled directly by placing elementary electric dipoles at
positions �ri at the surface of the sphere, where the density
of dipoles is chosen sufficiently high to achieve convergence
of the far field but calculation time is kept short. We used
typically several hundred of dipoles, depending on the radius
of the sphere.

At each position the polarization �P (2) is calculated in a
coordinate frame with its z axis normal to the surface of the
sphere and the x axis pointing to the pole (see Fig. 1). Px , Py ,
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and Pz indicate the intensity of dipoles with axis parallel to
the x, y, and z axis, respectively.

To calculate scattering of these elementary dipoles at the
sphere the dipole fields are expressed by vector spherical
harmonics. Electric dipoles located at the origin are given by

�EDipole,z = �N (3)
0,1, (11)

�EDipole,x/y = �N (3)
1,1 ± 2 �N (3)

−1,1. (12)

Contrary to a plane wave, bessel functions of third kind
(Hankel functions) are needed, denoted by j = 3.

The dipole is then shifted to the surface of the sphere using
an addition theorem for translation.51 Whereas only one order
of expansion (n = 1,m = ±1,0) is needed for a dipole placed
at the origin, the expansion of a dipole that is shifted about a
distance d converges pointwise in space. Only a small number
of orders is needed for convergences close to the origin or for a
point with |�r| 
 d. As |�r| → d, the number of orders needed
for convergence goes to infinity. In our simulation, the number
of orders is chosen so that at the distance of detection the scat-
tered fields converge. Depending on the radius of the sphere
and the refractive index, typically 5 to 20 orders are needed.

In a second step, the expansion coefficients a
(Dipole, sc, z/x/y)
m,n

and b
(Dipole, sc, z/x/y)
m,n for the scattered dipole fields are calculated

using linear Mie theory with expansion coefficients for
the translated dipoles a

(Dipole, tr, z/x/y)
m,n and b

(Dipole, tr, z/x/y)
m,n as

expansion coefficients for the incident field. The same linear
boundary conditions (continuity of the tangential fields) are
used as for scattering of a plane wave. Back action of the
second harmonic fields onto the fundamental harmonic fields
is not considered. The latter assumption is valid as long as the
second harmonic fields remain weak so that down conversion
can be neglected. This is extremely well justified for all
realistic situations, where nanoparticles are involved. Due to
this approximation the system becomes effectively linear and
Mie theory can be applied.

The scattered fields have to be calculated only for one dipole
position, as the expansion coefficients of the scattered fields
can be rotated to the positions of other dipoles using a rotation
addition theorem.52 The expansion coefficients of all fields
emitted by dipoles with magnitudes P

(2)
i and scattered at the

sphere, are added to give the expansion coefficients of the total
second harmonic field.

To summarize, the simulation steps are given for second
harmonic generation. a is always meant to represent both
expansion coefficients am,n and bm,n.

(1) As a preparation the linear scattering of the plane wave
and the three dipoles (x/y/z) is calculated:

(a) Scattering of a plane wave:
aFH = planeWave(λFH),
aFH,sc = MieScattering(aFH).

(b) Scattering of the three dipoles parallel to x, y, and z:
aD,

x
y
z

= dipole( 1
2λFH,

x
y
z

),
aD,tr,

x
y
z

= translation(aD,
x
y
z

,|�ri |),
aD,sc,

x
y
z

= MieScattering(aD,tr,
x
y
z

).
(2) Discrete positions �ri at the surface of the sphere, where

P (2) �= 0, are chosen. For every �ri , the scattered dipoles are
rotated to �ri :

aD,sc,
x
y
z

,i = rotation(aD,sc,
x
y
z

,�ri).

(3) The actual fundamental harmonic field �E(�ri) at each
position �ri is calculated from aFH,sc and used to determine the
polarization �P (2):

P x
y
z

(2)(�ri) = ∑
j,k χ x

y
z

(2),j,kEj (�ri)Ek(�ri).
(4) The expansion coefficients for the second harmonic field

is calculated as a sum over all �ri :
aSH = ∑

i[aD,sc,x,i · P (2)
x (�ri) + aD,sc,y,i · P (2)

y (�ri) +
aD,sc,z,i · P (2)

z (�ri)].
(5) Finally, the SH intensities are calculated from aSH:

ESH = ∑
m,n aSH

m,n
�N (3)

m,n + bSH
m,n

�M (3)
m,n.

In contrast to other nonlinear Mie models,28–31,33 the
nonlinear polarization is not restricted to a homogeneous layer
at the surface of the sphere. Thus our method allows for the
simulation of complex systems with several molecular layers,
with inhomogeneous coverage of the sphere or with domains
of oriented molecules.

III. RESULTS

A. Angular profile of different χ components

The angular distribution of the emitted SH field generally
shows distinct peaks for specific polarization combinations
(see Fig. 3). We have to keep in mind that the polarization
of the exiting as well as that of the generated field can be
either parallel or perpendicular to the scattering plane (X-Z
plane in Fig. 1) in the experiment. The polarization of the
respective FH and SH fields is denoted by indices s or p.
For sum frequency scattering, the notation ISF, FH1, FH2 is used,
for second harmonic scattering the polarization combinations
are named IFH,SH. SH scattering is symmetric with respect
to the propagation direction of the fundamental harmonic.
For nonchiral susceptibilities (χ (2)

zzz, χ (2)
zxx , χ (2)

xxz, and χ (2)
xzx) all

intensities with an even number of s-polarized waves [Ippp

(= Ipp), Ipss (= Isp), Isps, and Issp] remain.32,37 The case of
chiral susceptibilities (χ (2)

xyz, χ (2)
xzy , χ (2)

zxy) was not considered.
Here exactly the complementary intensities Ipps, Ipsp, Ispp, and
Isss are nonzero. In contrast to the RGD theory,37 Isss is nonzero
when a refractive index contrast is present. Note that chiral β

components only contribute to chiral χ (2) components and vice
versa.

−150 −75 0 75 150
0

50

scattering angle θ (deg)

in
te

ns
ity

 (
co

un
ts

/0
.2

s)

I
pp

I
sp

θ
pp

θ
sp

I
pp

I
sp

FIG. 3. (Color online) Simulated angular scattering pattern (535-
nm diameter polystyrene sphere with χ (2)

zxx as only nonzero compo-
nent). The positions of the first maximum in sp and pp polarization
(θsp, θpp) as well as the maximum intensities in Isp and Ipp are
indicated. These values are used to scan for matching χ (2) components
(compare Fig. 4).
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We have already shown that the angular position of the first
maximum in both polarizations (θpp, θsp) as well as the intensity
ratio Ipp/Isp of these maxima are good experimental quantities
that can be used to determine the relative magnitude of the χ

(2)
ijk

components.53,54 Here we aim for a systematic evaluation of
the effect of χ

(2)
ijk on θpp, θsp, and Ipp/Isp.

As chiral β components are rare, we restrict our evaluation
to the three independent components χ (2)

zzz, χ (2)
zxx , and χ (2)

xxz for
SH scattering. The absolute magnitude of χ

(2)
ijk only affects the

absolute intensity of the SH light, but not its angular shape. θpp,
θsp, and Ipp/Isp only depend on the relative magnitude of χ (2)

zzz,
χ (2)

zxx , and χ (2)
xxz, which can be negative or positive, displaying

the arbitrarity when choosing the direction of a positive x, y, or
z axis. As (χ (2)

zzz,χ
(2)
zxx,χ

(2)
xxz) = (+1, − 1, − 1) is equivalent to

(χ (2)
zzz,χ

(2)
zxx,χ

(2)
xxz) = (−1, + 1, + 1) we consider the four cases,

where either all three independent χ (2) components are positive
or only one of them is negative.

The dependence of a function on the relative magnitude
of three variables f (a,b,c) can be displayed, similar to the
color triangle of the Commission Internationale de l’Éclairage
(CIE)55 or a ternary phase diagram, by converting (a,b,c) to a
two-dimensional coordinate (x,y) = ( a+0.5b

a+b+c
, b
a+b+c

) (a,b,c >

0). This results in a triangle with corners (x,y) = (0,0) corre-
sponding to (a,b,c) = A(0,0,1), (x,y) = (1,0) corresponding
to (a,b,c) = A(1,0,0) and (x,y) = (0.5,1) corresponding to
(a,b,c) = A(0,1,0), where A is an arbitrary factor. To account
for negative a, b, or c, triangles calculated using the absolute
values for a, b, and c can be mirrored at the respective edge
of the triangle. The result is a large triangle, consisting of four
small triangles.

In that way, it is possible to display θpp, θsp, and Ipp/Isp as
a function of all possible combinations of (χ (2)

zzz,χ
(2)
zxx,χ

(2)
xxz)

in three single color map plots (see Fig. 4). We find that
the intensity ratio varies at least by five orders of magnitude
(10−2 to 103 for a R = 100-nm polystyrene sphere in water)
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FIG. 4. (Color online) Position of the first maximum in sp and pp

polarization (θpp,θsp) and ratio of peak intensity of the first maxima
(Ipp/Isp) for various values of (χ (2)

zzz,χ
(2)
zxx,χ

(2)
xxz) and a polystyrene

sphere of 100 nm radius in water. At the corners of the inner and
the three outer triangles, only one component of χ (2) is nonzero. The
respective component is indicated in the graph.
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FIG. 5. (Color online) Effect of refractive index contrast between
sphere and solvent on the SH light and for χ (2)

zzz being the only
nonvanishing coefficient. The material of the sphere and surrounding
are indicated on the x axis, ranging from a water sphere emersed
in water (H2O:H2O, RGD limit), via a polystyrene sphere in water
(PS:H2O), to a polystyrene sphere immersed in polystyrene (PS:PS,
RGD limit).

and is therefore an especially significant parameter when
comparing experimental results to the simulation in order to
find a matching χ

(2)
ijk .

B. Comparison with Rayleigh-Gans-Debye theory

To study the effect of a refractive index contrast and
to check the numerical stability of our code, we compare
it to the analytical RGD theory.11 For vanishing refractive
index contrast and dispersion, the results of our model and
the analytical solution of the RGD theory11 coincide for all
nonchiral components of χ (2), with βccc = χ (2)

zzz, βaac = βaca =
χ (2)

xxz, βcaa = χ (2)
zxx (φ = 0).

Figure 5 shows the effect of an increasing refractive index
constrast, for which the system starts to deviate from the RGD
limit. Starting from the RGD limit of a water sphere in water
(nsurr. = nsphere = 1.3), the refractive index of the sphere is
increased to nsphere = 1.6 (polystyrene sphere in water). Then
the refractive index of the surrounding is also increased to
nsurr. = 1.6 (polystyrene sphere in polystyrene, RGD limit).
As already shown by Jen et al.56 even in RGD theory, the
refractive index has a significant impact on the scattering
angles of secondary maxima (PS:PS vs H2O:H2O limits in
Fig. 5). But even for small spheres ( 2πR

λ
| n1
n2

− 1| = 0.074 for
the R = 50-nm sphere), the intensity ratio depends noticeably
on the changing refractive index ratio, an effect, which is not
accounted for in RGD theory.

Figure 6 shows a systematic comparison of our results for a
polystyrene sphere in water compared to the RGD theory with
the refractive index of water for all possible combinations
of (χ (2)

zzz,χ
(2)
zxx,χ

(2)
xxz). We find that for pure χ (2)

zzz, χ (2)
zxx , or χ (2)

xxz

(corners of the inner triangle), the difference |XRGD−XMie|
(XRGD+XMie)/2 is

negligible. However, for certain values for χ
(2)
ijk , the difference

between both methods is as large as |XRGD−XMie|
(XRGD+XMie)/2 = 200%.

The angular scattering profile for two χ
(2)
ijk combinations are

given in Fig. 7. This is particularly surprising because this
comparison was performed for polystyrene spheres suspended
in water where the index contrast is moderate. In that case one
would have expected RGD theory to be completely valid. For
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FIG. 6. (Color online) Difference |XRGD−XMie|
(XRGD+XMie)/2 between the re-

sults from RGD (XRGD) and Mie (XMie) theory for a R = 100-nm
polystyrene sphere in water. Coordinates (x,y) = (0, − 0.36) and
(0.16,0.68) are indicated by a + ; the corresponding angular scattering
profiles are shown in Fig. 7.

higher values of the index contrast as they occur for metallic
particles the differences between the RGD and the Mie theory
become even more pronounced.

C. Size dependence

For increasing sphere radius the scattered field transforms
from a more uniform angular distribution into a radiation pat-
tern with pronounced lobes pointing in the forward direction
as already shown by Jen et al.57 In Fig. 8 the simulated signals
from a polystyrene and gold sphere, both suspended in water,
are shown.

A strong resonance with signal enhancement by one order of
magnitude is observed for the metallic sphere for R = 100 nm
and for χ (2)

zzz being the only nonvanishing coefficient (as only Ipp

is increased, the intensity ratio displays this resonance). Mie
resonances for metallic particle have already been observed by
Östling et al.28
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FIG. 8. (Color online) SH signal for varying radius of a
polystyrene or gold sphere in water and for χ (2)

zzz being the only
nonvanishing coefficient.

D. Dipoles protruding the surface of the sphere

Larger, chainlike molecules cannot be assumed to be
situated just on the surface of a nanosphere. We model such a
situation by placing several dipoles with different distance to
the surface of the sphere. This approach has been used to study
the shell layer of spherical polyelectrolyte brushes, particles
consisting of a polystyrene core and a shell of highly charged
linear polyelectrolyte chains.54

Figure 9 (left) displays the dependence of θpp, θsp, and
Ipp/Isp on the distance (ranging from 0 to 200 nm) of a thin
monolayer of dipoles from the surface of the sphere. The right-
hand side of Fig. 9 shows the dependence of θpp, θsp, and
Ipp/Isp on the thickness (ranging from 0 to 200 nm) of a layer
of dipoles placed with a distance of 100 nm to the surface
of the sphere, thus being the coherent sum of various thin
monolayers of the left-hand side.

With increasing distance, the scattering becomes more
pronounced in the forward direction, similar to the nonlinear
scattering from a sphere of larger radius. But the intensity ratio
behaves differently so that a system where the polarization is
not concentrated at the surface of the sphere can, at least in
theory, be distinguished from the case where just the radius of
the sphere is increased (compare to Fig. 8). The length of a
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FIG. 9. (Color online) SH signal from a R = 100-nm polystyrene
sphere in water with χ (2)

zzz. Left: The distance d between the dipoles
and the surface of the sphere was varied. Right: The length b of
a chain of ten equally spaced dipoles with center-of-mass distance
d = 100 nm was varied.
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FIG. 10. (Color online) Scattering profile of a R = 100-nm
sphere that is only half covered with molecules (left) in comparison
to a fully covered sphere (right).

chain of dipoles with center-of-mass distance d = 100 nm to
the surface of the sphere on the other hand hardly affects the
position of the first maxima and the intensity ratio. However,
it has an impact on the scattering profile.54

E. Partly covered sphere

A unique feature of the presented model is its ability
to simulate systems with an inhomogeneous distribution of
χ (2)-active molecules around the sphere, a model applicable
to certain seeded growth processes. Of course we have to
assume that the inhomogeneous coverage does not affect linear
scattering processes. In Fig. 10 we show the SH scattering
profile of a polystyrene sphere in water that is only half covered
with molecules.

One hemisphere of a polystyrene sphere in water (n ≈
1.3/1.6) with R = 100 nm radius was covered with nonlinear
dipoles (pure χ (2)

zzz) and the second harmonic fields were
calculated. This process was repeated for various arbitrary
orientations of the hemisphere with respect to the propagation
direction of the fundamental harmonic laser (z axis) and all
intensities are averaged incoherently.

Whereas for completely covered spheres, the intensities
Ips and Iss are zero for all scattering angles, due to broken
symmetry in the case of a partly covered sphere, these
intensities do not vanish anymore and the minima no longer
drop to zero intensity.

F. Comparison with experimental results for malachite green
adsorbed to polystyrene spheres

We have already shown, that our model is able to determine
the ratio of the local surface susceptibility elements.53,54

Here we use the nonlinear Mie model to investigate the
surface susceptibility of malachite green molecules adsorbed
to polystyrene spheres. Malachite green on a nonmetallic
surface has already been studied by others,33,56,58,59 but their
findings are inconsistent.

For a planar fused silica-air interface with adsorbed
malachite green molecules, Kikteva58 found a dominant χ (2)

zxx

component at λFH = 800 nm, which agrees with the electronic
structure of malachite green, where the S2 ← S0 transition is
resonant at 410 nm.

Yang et al.59 performed the first angle-resolved scattering
experiment for polystyrene spheres with diameters 980, 700,
and 510 nm and adsorbed malachite green. The measured
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FIG. 11. (Color online) Corrected SH scattering profiles in pp

and sp polarization configuration from 200-nm (top), 535-nm (mid-
dle), and 989-nm (bottom) polystyrene particles with malachite green.
The simulated scattering profiles (solid lines) for χ (2)

zzz/χ
(2)
zxx = 0.14

and χ (2)
xxz/χ

(2)
zxx = −0.027 are scaled to fit the experimental data.

Dashed lines show simulations for χ (2)
zzz/χ

(2)
zxx = 0.43 and χ (2)

xxz/χ
(2)
zxx =

−0.23, according to the results of Gonella and Dai (Ref. 33).

Ipp(θ ) agreed well with their RGD simulations using a pure χ (2)
zzz

component. However, they did not consider the ratio Ipp/Isp

or Isp(θ ) in their analysis.
Jen et al.56 used polystyrene particles with diameters

ranging from 56 to 1053 nm, λ = 840 nm, and a RGD model to
fit Ipp and Isp. Using the refractive index of water, they found
χ (2)

zxx as dominating component for small particles (diameter
202, 88, and 56 nm), but argue that due to the small particle
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size, they could not determine the exact ratio of the χ (2)

components. For particles of 1053 nm diameter, however, the
best fit was achieved using a dominant χ (2)

zzz (χ (2)
zzz/χ

(2)
zxx = −2.2,

χ (2)
xxz/χ

(2)
zxx = −0.5) and an refractive index matching that of

the particle. Recently they also analyzed the experimental data
using a nonlinear Mie model.33 For all particle sizes they found
χ

(2)
⊥⊥⊥/χ

(2)
⊥‖‖ = 0.43 and χ

(2)
‖⊥‖/χ

(2)
⊥‖‖ = −0.23, however, their

experimental data end between θ = 85◦ and θ = 120◦ and
are displayed as an angular plot, which makes it difficult to
compare the experimental and the simulated SH profiles in
detail.

Here, we present measurements of the second harmonic
light scattering from polystyrene particles (Polysciences,
plain surface functionalization) with diameter 200, 535, and
989 nm with adsorbed malachite green at pH 4 and 800-nm
fundamental harmonic wavelength. The experimental setup
and the correction procedure for hyper-Rayleigh scattering
from the background solution are described in detail in Ref. 53.
The angular scattering profiles are shown in Fig. 11. We used
the position of the first maximum in pp and sp polarization
(θpp, θsp) and the ratio of the peak intensities Ipp/Isp to
limit the range of possible ratios χ (2)

zzz/χ
(2)
zxx and χ (2)

xxz/χ
(2)
zxx

for positive and negative χ (2) components. Even though the
position of the maximum for small spheres does not vary
much for different χ (2) components, as already described by
Jen et al.,56 the intensity ratio Ipp/Isp = 0.6 for R = 100 nm
limits the range of possible χ (2) components and does not
allow for a dominating χ (2)

zzz component, where Ipp/Isp > 1
(compare Fig. 4). We limited the range of χ (2) components
that fulfill Ipp/Isp, θpp, and θsp by checking the position and
intensities of additional maxima at higher scattering angles. In
agreement with Kikteva et al.,58 we found a susceptibility with
dominating χ (2)

zxx . Independent of the sphere diameter, the ratio
of the susceptibility components, used to fit the experimental
data, are χ (2)

zzz/χ
(2)
zxx = 0.14 and χ (2)

xxz/χ
(2)
zxx = −0.027. The

susceptibility χ (2)
zzz/χ

(2)
zxx = 0.43 and χ (2)

xxz/χ
(2)
zxx = −0.23 as

found by Gonella and Dai33 for λ = 840 nm did not fit to
the position and intensity of the secondary maxima observed
in our experiment. Apart from the different wavelength, also
the surface properties of the particles used could have been
different, thus resulting in a different χ (2).

IV. CONCLUSION

In conclusion, we have developed a model for second
harmonic and sum frequency scattering from centrosymmetric
spherical particles of arbitrary size and material composition.
By modeling the nonlinear polarization directly as an ensemble
of individual dipoles the theory offers great flexibility that
can be used to simulate the SH signal from large molecules
adsorbed to spheres or from particles generated in seeded-
growth processes resulting in inhomogeneous covered spheres.

We have compared the full Mie solution to the widely
used Rayleigh-Gans-Debye approximation for the case of a
polystyrene sphere of 100 nm radius in water and found
significant deviations especially for the ratio of the signal
intensities in different polarization combinations, even for
systems with moderate index contrast. Experimental scattering
profiles for polystyrene spheres with adsorbed malachite green
could be fitted using the nonlinear Mie model. We were able
to determine the surface susceptibility of the system to be
χ (2)

zzz/χ
(2)
zxx = 0.14 and χ (2)

xxz/χ
(2)
zxx = −0.027, independent of

sphere diameter.
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