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Impact of electron heating on the equilibration between quantum Hall edge channels
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When two separately contacted quantum Hall (QH) edge channels are brought into interaction, they can
equilibrate their imbalance via scattering processes. In this work, we use a tunable QH circuit to implement a
junction between copropagating edge channels, the length of which can be controlled with continuity. Such a
variable device allows us to investigate how current-voltage characteristics evolve when the junction length d is
changed. Recent experiments with fixed geometry reported a significant reduction of the threshold voltage for the
onset of photon emission, the origin of which is still under debate. Our spatially resolved measurements reveal
that this threshold shift depends on the junction length. We discuss this unexpected result on the basis of a model
that demonstrates that a heating of electrons is the dominant process responsible for the observed reduction of
the threshold voltage.
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I. INTRODUCTION

The renewed interest in integer quantum Hall (QH) systems
is principally motivated by the peculiar features of edge
states.1 They give rise to chiral one-dimensional channels
that behave as perfectly collimated beams of electrons,
the trajectory,2 phase,3–7 backscattering probability,8–11 and
energy distribution12 of which can be accurately controlled.
QH circuits are used as flexible building blocks for coherent
transport devices, e.g., the electron analog of the Fabry-Pérot,3

Mach-Zehnder,4–7 or Hanbury-Brown-Twiss13 interferometer.
In recent years, a number of experiments14–16 focused on a par-
ticularly promising scheme: two copropagating edge channels
are imbalanced by means of selector gates,17,18 then brought
into close proximity along a path of finite length, and are finally
separated. The junction so defined allows copropagating edges
to exchange either energy and/or charge. In particular, the
interchannel charge transfer allows equilibrating the initial
electrochemical potential imbalance. The amount of scattered
charge depends on the sample characteristics, on the length of
the interaction path, and on the interchannel bias.16 For small
bias, the relevant equilibration process is elastic scattering
induced by impurities17,18 that provide the required momentum
difference between initial and final edge states. This hypothesis
has been confirmed by spatially resolved measurements16 that
related the local backscattering map to the specific impurity
distribution.

For large bias, when the interchannel imbalance exceeds
the energy difference between Landau levels, also radiative
transitions are observed.19 This effect has been recently
exploited to implement an innovative converter from phase-
coherent electronic states to photons in the THz region.20

While the occurrence of this radiative emission is well
established, the interpretation of the threshold value is ac-
tually not clear. In fact, several papers showed14,17,18,20,21

that the threshold voltage is considerably smaller than the
nominal Landau level gap h̄ωc. Some gap reduction mech-
anisms have been suggested,14 but spectroscopic studies
evidenced no deviation of the photon energy from h̄ωc.22

Thus, a convincing explanation for such a shift is missing so
far.

In this work, we investigate how a finite imbalance is
equilibrated along the junction length d by studying how
current-voltage characteristics change when d is varied. To
this end, we exploited the scanning gate microscopy technique
described in Ref. 16. The spectral analysis reported in Sec. II
reveals that the threshold voltage is lowered when the junction
length increases and, at the same time, the transition is
smoothened. In Sec. III, we analyze the relevant interchannel
scattering processes and develop a simple model, which
accounts for electron heating due to hot carrier injection.
The electron temperature increase produces a reduction of
the threshold value due to thermal broadening of the Fermi
distribution. Finally, in Sec. IV, we quantitatively discuss the
experimental data on the basis of this model and extract the
electron temperature profile along the junction.

II. EXPERIMENTAL RESULTS

The experimental setup is described in detail in
Ref. 16. Devices were realized starting from a high-mobility
AlGaAs/GaAs heterostructure. The two-dimensional electron
gas (2DEG) is confined 55 nm under the sample surface.
By Shubnikov–de Haas measurements, we determined both
the electron sheet density (n = 3.2 × 1015 m−2) and mobility
(μ = 4.2 × 102 m2/V s). A one-dimensional (1D) channel
(6 μm long, 1 μm wide) was defined by two Schottky gates
patterned on the sample. Measurements were performed at
a base temperature of about 300 mK (electron temperature
of about 400 mK) and bulk 2DEG filling factor νb = 4 at
B = 3.32 T, which corresponds to a cyclotron gap h̄ωc = 5.74
meV. Figure 1 schematically illustrates our experiment: two
cyclotron-split edge channels originate from two distinct
voltage contacts at potential V1 and 0, respectively. The
channels meet at the entrance of the 1D channel and travel
in close proximity for a distance d before they are separated
by the action of the electrostatic potential induced by the
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FIG. 1. (Color online) Scheme of the experimental setup.

biased tip of a scanning gate microscope (SGM), as shown
in detail in Ref. 16. We label the two channels as inner (i)
and outer (o) channel with chemical potential μi = eV1 and
μo = 0, respectively. After being separated by the SGM tip,
the outgoing channels are guided to two detector contacts IA

and IB .
For any value of the interaction distance d compatible

with device dimensions, i.e., from 0 to 6 μm, we can
measure the current-voltage (IB-V1) characteristics of the
interchannel charge transfer. Experimental data are shown
in Fig. 2. The first relevant feature concerns the zero-bias
differential conductance, which monotonically increases with
the interaction length d. This is consistent with the differential
conductance SGM plots reported in Ref. 16. The curves are
asymmetric around zero. While the scattered current displays
a nonlinear but featureless dependence on V1 for positive
bias,23 we will focus on the analysis of the negative bias range
(V1 < 0, i.e., μi > μo), where a clear transition between two
distinct linear regimes occurs. Two linear curve sections with
different slope are separated by a kink, which occurs at a certain
threshold voltage Vth. We evaluate Vth for each individual curve
by extrapolating straight lines for both the small bias and the
saturation regime and taking the abscissa of the intersection

FIG. 2. (Color online) Current-voltage characteristics for differ-
ent values of the junction length d . The threshold points Vth (colored
dots) have been determined by extrapolating both the zero-bias and
the saturation linear behavior (explicitly shown for d = 1.5 μm) and
taking the intersection point. The inset shows the dependence of the
threshold voltage on d .

point, as explicitly shown in Fig. 2 for the d = 1.5 μm curve.
For bias smaller than |Vth|, the current-voltage characteristics
are linear. The junction resistance between the two channels in-
creases when d is lowered. On the other hand, for |V1| > |Vth|,
the differential conductance saturates to G0 ≡ e2/h, i.e., half
of the total conductance, so that an increase δV1 of the input
bias produces a voltage increase δV1/2 in both output edges. In
fact, the resulting output current is δIB = G0δV1, and therefore
δVB = (h/2e2)δIB = δV1/2. Thus, beyond the threshold, any
excess of imbalance between the two edges is perfectly
equilibrated.

The most interesting feature in Fig. 2 concerns the detail
of the transition between the two regimes, the position and
shape of which clearly depends on the interaction path length
d. The dependence of the actual threshold voltage |Vth| on the
junction length d is shown in the inset of Fig. 2. It is always
smaller than h̄ωc and is consistently reduced by increasing d.
At the same time, the transition becomes smoother, as shown
in Fig. 2. This is the main experimental finding of this paper.
It crucially depends on the opportunity, given by the SGM
technique, to tune the junction length, keeping all the other
parameters constant.

III. MODEL FOR THE INTERCHANNEL SCATTERING

To discuss our model, we will refer to the scheme shown
in Fig. 1. The two edge channels meet at x = 0 with an
imbalance μi(0) − μo(0) = eV1. Along the junction length
d, the imbalance �μ(x) ≡ μi(x) − μo(x) ≡ e�V (x) will
decrease due to scattering events. In the model, we assume
an immediate intraedge relaxation, so that both the chemical
potential and the electron temperature T (x) are well defined
for each position x. In general, in each junction interval dx,
the scattered current is given by

dI = �[�V (x),T (x)]dx, (1)

where � is a general function of �V (x) and T (x) depending
on the details of the equilibration model (edge dispersion, scat-
tering mechanisms, electron heating, etc.). The corresponding
changes in the edge potentials are

Vi(x + dx) = Vi(x) − h

2e2
dI,

Vo(x + dx) = Vo(x) + h

2e2
dI,

(2)

where the factor 2 accounts for the spin degeneracy. From
Eqs. (1) and (2), we obtain

dI

dx
= −e2

h

d

dx
�V (x) = �[�V (x),T (x)]. (3)

The output edge currents are

IA = 2e2

h

V1 + �V (d)

2
,

IB = 2e2

h

V1 − �V (d)

2
,

(4)

the sum of which equals the total input current Itot = IA +
IB = 2(e2/h)V1.
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FIG. 3. (Color online) (a) Scheme of the impurity-induced elastic
scattering for a noninteracting electron system. (b) When the chemical
potential of the inner edge becomes higher than the outer one by at
least the cyclotron gap h̄ωc, vertical radiative transitions can occur.
Notice that for opposite polarity, vertical transitions are suppressed.

Interchannel scattering can originate from several pro-
cesses. For low bias, the interedge electron transfer can be
either induced by impurity or phonon scattering.17,18 The
latter, however, was shown17,18 to be less important when
the base temperature is smaller than 1 K. The relevant
process [sketched in Fig. 3(a)] is thus the elastic scattering
induced by sharp impurity potentials, which provide the
change in momentum needed for the interchannel transition.
The infinitesimal scattered current in the interval dx is

dI =
∫ ∞

−∞
eD(ε)T (ε)

[
fμi,T (ε) − fμo,T (ε)

]
dε, (5)

where D(ε) is the density of states around the energy ε and
T (ε) is the elastic scattering probability per unit time.

In order to estimate expressions as the one on the right-hand
side of Eq. (5), a model for the edge dispersion is needed.
In this paper, we will assume the simplest case, i.e., a linear
dispersion, a choice that will be justified in Sec. IV on the basis
of the observed temperature effects. In this approximation, we
can assume both D and T as constant in the energy window
e�V . In this case, the density of states is D(ε) = 2dx/(hvd ),
where vd is the drift velocity. Thus (see Appendix A),

dI = dx
2eT0

hvd

∫ ∞

−∞

[
fμi,T (ε) − fμo,T (ε)

]
dε

= dx
2e2T0

hvd

�V (x), (6)

where T0 is the constant transmission probability. For this
process, � is linear in �V (x) and does not depend on T .
IB-V1 curves can thus be calculated by solving the ordinary
differential Eq. (3) for �V (x) with boundary condition
�V (0) = V1, which gives an exponential decay of the edge
imbalance

�V (x) = V1e
− 2T0

vd
x
. (7)

This exponential behavior was assumed in literature17,18,24 to
describe the zero-bias interchannel scattering in the limit of a
uniform distribution of scattering centers. The characteristic
length in this case is �eq = vd/(2T0), i.e., the average distance
between two scattering events. We experimentally verified this
exponential decay in our previous work.16 Furthermore, the

output current IB is linear in V1 (Ohmic behavior):

IB = 2e2

h

V1 − �V (d)

2
= V1

2e2

h

1 − e
− d

�eq

2
. (8)

At higher imbalance, comparable to the Landau level gap
h̄ωc, other equilibration processes become possible. When
μi > μo, vertical radiative transitions from the inner edge
to the outer one are enabled, as depicted in Fig. 3(b).
Nonvertical relaxation could in principle occur via phonon-
assisted transitions. However, this is a second-order effect
that can in first approximation be disregarded, at least for
low temperatures. The infinitesimal scattered current due to
vertical transitions is then given by

dI =
∫ ∞

−∞
eD(ε)T1(ε)

{
fμi,T (ε)

[
1 − fμo,T (ε − h̄ωc)

]}
dε,

(9)

where T1 is the probability per unit time for the transition
ε → ε − h̄ωc. Since the Landau level bands are parallel, the
transition probability is constant in energy. Therefore, we can
simplify Eq. (9):

dI = dx
2eT1

hvd

∫ ∞

−∞

{
fμi,T (ε)

[
1 − fμo,T (ε − h̄ωc)

]}
dε

= dx
2eT1

hvd

(
e�V (x) − h̄ωc

1 − e
h̄ωc−e�V (x)

kB T (x)

)
, (10)

where the integration is explicitly shown in Appendix A. In
the � function, we also have a nonlinear addendum, thus the
integration of Eq. (3) has to be performed numerically. At low
temperature, due to the exponential term, the effect of the term
in Eq. (10) is negligible for �V (x) below the threshold h̄ωc.
For �V (x) > h̄ωc, the availability of empty states in the lower
Landau level gives rise to a strong radiative relaxation. As
shown in recent experiments,20 the photons emitted in this pro-
cess can be collected with a suitable waveguide and detected.

So far, we completely neglected the effect of the electron
heating due to the injection of hot carriers. In order to obtain
a quantitative estimate of the amount of energy transferred to
the electron system, we need to first estimate the total energy
increase of an edge channel when we increase its chemical
potential from the ground level μ = μ0 to μ = μj and its
temperature from T = 0 to T = Tj :

Ej =
∫ ∞

−∞

2d

hvd

(ε − μ0)
[
fμj ,T (ε) − fμ0,0(ε)

]
dε

≈ 1

2

2τ

h
(μj − μ0)2 + 2τ

h

π2

6
k2
BT 2

j , (11)

where in the second line we approximated the integral with
the first-order Sommerfeld expansion (as shown in detail in
Appendix B) and τ ≡ d/vd .

To calculate explicitly the output temperature T (x), we will
assume energy conservation in each infinitesimal element dx:

Ei(x) + Eo(x) = Ei(x + dx) + Eo(x + dx) (12)

together with three additional approximations: (i) the two
edges immediately restore the thermal equilibrium after each
scattering event; (ii) the temperature is approximately the same
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in both edges Ti(x) = To(x) = T (x), with T (0) = Tin, where
Tin is the bulk electron temperature; (iii) in each element dx,
only the Ohmic part of the scattered current dI contributes to
the electron heating. In fact, only the elastic process transfers
hot carriers between the two edges, while the radiative term
allows electrons to relax by photon emission. With these
assumptions, after substituting the expression in Eq. (11) into
Eq. (12) as shown in Appendix C, we can deduce an equation
that relates the change in temperature with the local imbalance

d

dx
T (x) = 3e2

4π2k2
B�eq

�V 2(x)

T (x)
. (13)

Thus, Eq. (3) must be solved together with Eq. (13) to extract
both T (x) and V (x). Due to the electron heating, the onset of
radiative transitions is shifted below the cyclotron gap value
h̄ωc since thermally excited electrons leave available states in
a range of about kBT around the chemical potential of the
lower level. The transition itself becomes smoother since the
expression in Eq. (10) is less steep at higher temperatures.

IV. DISCUSSION

Figure 4(a) shows the IB -V1 characteristics (red dots) for the
d = 2.4 μm case. The behavior is clearly Ohmic, as confirmed
by a linear fit (blue line, adjusted R2 = 0.997). This agrees
with the predictions of our model for low bias, when radiative
emission is negligible and Eq. (8) applies. The zero-bias dif-
ferential conductance depends on the distribution of scattering
centers inside the constriction. Equation (8) allows us to obtain
the equilibration length �eq by fitting the IB-V1 curves in the
linear region. Figure 4(b) displays the different �eq values
obtained for each junction length d. The average �eq value
(21 μm) is consistent with the one reported in Ref. 16 (15 μm),
considering that those results were obtained from different
samples. The graph evidences that �eq depends on d. As shown
in Ref. 16, the actual impurity density is highly sample depen-
dent and can fluctuate along the interchannel junction. The
monotonical decrease observed in Fig. 4(b) could, however,
indicate that for short d, the scattering centers are somewhat
less effective due to the fact that the edges are smoothly brought
into interaction and separated. Therefore, the interchannel
separation is larger at the constriction ends than at the
inner points. These boundary effects are more important for
smaller d.

The previous results provide the first of the two free
parameters of our model, namely, �eq and T1. Therefore, we fit
the experimental curves in Fig. 2 with the functions obtained
solving Eqs. (3) and (13), with the only free parameter T1. The
fit for d = 2.4 μm is displayed in Fig. 5(a), together with the
experimental data. The agreement between the two curves is
remarkable: our simple model reproduces both the shift and the
smoothing at the threshold, i.e., the two main features observed
in Fig. 2. The threshold shift can be better seen in Fig. 5(b),
where we plot the fits for all experimental curves of Fig. 2
(solid lines), together with the corresponding experimental
data (dotted lines). In the inset, we show a comparison between
the threshold voltage values extracted from the fitting curves
and those directly obtained from the IB-V1 characteristics.
This graph clearly indicates that the present model suitably
describes the observed threshold reduction. The value for the

(a)

(b)

FIG. 4. (Color online) (a) Detail of the IB -V1 characteristics in
the range −2 mV< V1 < 0, for d = 2.4 μm (red dots). The behavior
is Ohmic as evidenced by the linear fit (blue line). (b) Plot of �eq for
different junction lengths d .

Landau level gap (h̄ωc = 5.74 meV) was kept constant in these
fits. This value turns out to be optimal once both �eq and T1

have been determined because then a further adjustment of the
gap only decreases the fit quality.

This result explains the reduction of the threshold for photon
emission observed in several experiments.14,20 The significant
deviation from h̄ωc/e is an effect due to the electron heating
induced by the injection of hot carriers in the outer edge via
elastic scattering.

To quantitatively estimate the electron temperature in-
crease, we solved Eq. (13), using the parameters �eq and
T1 provided by the previous fits with the initial condition
Tin = 400 mK. Figure 6 shows the solutions for the d values
corresponding to the experimental data in Fig. 2. For very
small bias, the temperature increases almost quadratically
with imbalance, while for intermediate values, the behavior is
approximatively linear, with a slope proportional to d. Finally,
the temperature tends to saturate at the onset of radiative
emission, which suppresses further injection of hot electrons
into the outer edge. At saturation, the output edge temperatures
are by far larger than the base temperature.
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(a)

(b)

FIG. 5. (Color online) (a) Fit (blue line) of the IB -V1 curve for
d = 2.4 μm (red dots) using solutions of Eqs. (3) and (13), with the
parameter �eq obtained from the previous linear fits. (b) Complete set
of fitting curves (solid lines) for all measured d values, together with
the corresponding experimental data of Fig. 2 (dotted lines). (Inset)
Threshold voltages plotted as a function of d as deduced from the
fitting curves (red dots), together with the values directly extracted
from Fig. 2 (black squares).

In Sec. III, we considered a linear edge dispersion, which
neglects effects of edge reconstruction due to electron-electron
interaction.25 We have also developed alternative models,
which take into account the effect of the compressible and
incompressible stripes at the sample edge. While such more
complex analysis correctly predicts the linear behavior at low
bias, it is less satisfactory in describing the threshold evolution,
although it contains more adjustable parameters (as the com-
pressible and incompressible stripe widths). We interpreted
such discrepancy as the effect of the high electron temperature
induced by the elastic scattering processes and present on most
part of the edge junction. As edge reconstruction is known to be
quickly washed out by temperature,21,26,27 we have therefore
rather chosen a simple model with a linear edge dispersion,
which indeed captures the relevant features observed in the
experiment.

FIG. 6. (Color online) Bias dependence of the outgoing electron
temperature plotted for different d values. The curves are obtained
from Eq. (13), with the initial condition T (0) = 400 mK. The
parameters �eq and T1 are obtained from the previous fits of the
experimental data.

V. CONCLUSION

We demonstrated a tunable-length junction between highly
imbalanced edge channels in the quantum Hall regime. The
measurements of its current-voltage characteristics clearly
evidence that the threshold voltage for the onset of radiative
emission depends on the junction length d. We show how this
behavior can be explained by a simple model accounting for
the heating effect due to the elastic scattering of hot carriers.
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APPENDIX A: INTEGRATION OF EXPRESSIONS
CONTAINING FERMI FUNCTIONS

In Eq. (6), we evaluated the integral∫ ∞

−∞

[
fμi,T (ε) − fμo,T (ε)

]
dε

=
∫ ∞

−∞

(
1

1 + e
ε−μi
kB T

− 1

1 + e
ε−μo
kB T

)
dε. (A1)

Defining x ≡ ε/kBT , xi ≡ μi/kBT , and xo ≡ μo/kBT , we
have ∫ ∞

−∞

(
1

1 + ex−xi
− 1

1 + ex−xo

)
kBT dx. (A2)

A primitive of the expression in brackets is

− ln(1 + ex−xi ) + ln(1 + ex−xo ), (A3)
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thus, ∫ ∞

−∞

(
1

1 + ex−xi
− 1

1 + ex−xo

)
kBT dx

= lim
x→+∞ kBT [− ln(1 + ex−xi ) + ln(1 + ex−xo )]

− lim
x→−∞ kBT [− ln(1 + ex−xi ) + ln(1 + ex−xo )]

= kBT (xi − xo) − 0 = μi − μo = e�V. (A4)

In Eq. (10), we evaluated the integral∫ ∞

−∞

{
fμi,T (ε)

[
1 − fμo,T (ε − h̄ωc)

]}
dε. (A5)

Defining x ≡ ε/kBT , xi ≡ μi/kBT , and xo ≡ (h̄ωc + μo)/
kBT , we have∫ ∞

−∞

[
1

1 + ex−xi

(
1 − 1

1 + ex−xo

)]
kBT dx. (A6)

A primitive of the expression in square brackets is

exi

exi − exo
ln

(
exo + ex

exi + ex

)
, (A7)

thus, ∫ ∞

−∞

[
1

1 + ex−xi

(
1 − 1

1 + ex−xo

)]
kBT dx

= lim
x→+∞ kBT

[
exi

exi − exo
ln

(
exo + ex

exi + ex

)]

− lim
x→−∞ kBT

[
exi

exi − exo
ln

(
exo + ex

exi + ex

)]

= kBT

[
0 − exi

exi − exo
(xo − xi)

]

= kBT
xi − xo

1 − exo−xi
= e�V − h̄ωc

1 − e
h̄ωc−e�V

kB T

. (A8)

APPENDIX B: FIRST-ORDER APPROXIMATION
TO THE EDGE ENERGY

In order to evaluate the first line of Eq. (11), we exploit the
Sommerfeld expansion∫ ∞

−∞

g(ε)

1 + e
ε−μ

kB T

dε =
∫ μ

−∞
g(ε)dε + π2

6
k2
BT 2g′(μ)

+O

(
kBT

μ

)4

, (B1)

where g(ε) is a generic function of ε and g′(μ) is its first
derivative evaluated at ε = μ. By applying this relation to
Eq. (11), we obtain∫ ∞

−∞

2d

hvd

ε − μ0

1 + e
ε−μ

kB T

dε −
∫ μ0

−∞

2d

hvd

(ε − μ0)dε

≈
∫ μj

μ0

2d

hvd

(ε − μ0)dε + 2d

hvd

π2

6
k2
BT 2

j

= 1

2

(
2τ

h

)
(μj − μ0)2 +

(
2τ

h

)
π2

6
k2
BT 2

j . (B2)

APPENDIX C: DETERMINATION OF T (x)

When the electron temperature is nonzero, the expression
for the total edge energy has an extra term proportional to T 2,
as seen in Eq. (B2). We can thus define the electrostatic and
the thermal components of the total edge energy:

Eel ≡ 1

2

(
2τ

h

)
(μj − μ0)2 = 1

2

(
2τ

h

)
e2V 2

j ,

Eth ≡
(

2τ

h

)
π2

6
k2
BT 2

j ,

(C1)

where Vj is the edge voltage referred to the ground.
Equation (C1) allows us to evaluate Eq. (12). As already

explained in the paper, only elastic scattering processes
transfer hot carriers between the edges, while the radiative
term allows electrons to relax by photon emission. Thus, we
modify Eqs. (2) as follows:

Vi(x + dx) = Vi(x) − h

2e2
dI elast

= Vi(x) − h

2e2

e2

h

1

�eq
�V (x)dx,

Vo(x + dx) = Vo(x) + h

2e2
dI elast

= Vo(x) + h

2e2

e2

h

1

�eq
�V (x)dx. (C2)

After evaluating Eq. (12) with Eq. (C1), using the substitu-
tions (C2), we obtain

2π2

3
k2
BT (x)dT = e2

2

1

�eq
�V 2(x)dx (C3)

[where Ti(x) = To(x) = T (x)] from which Eq. (13) easily
follows.
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