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Screening of charged impurities with multielectron singlet-triplet spin qubits in quantum dots
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Charged impurities in semiconductor quantum dots comprise one of the main obstacles to achieving scalable
fabrication and manipulation of singlet-triplet spin qubits. We theoretically show that using dots that contain
several electrons each can help to overcome this problem through the screening of the rough and noisy impurity
potential by the excess electrons. We demonstrate how the desired screening properties turn on as the number of
electrons is increased, and we characterize the properties of a double quantum dot singlet-triplet qubit for small
odd numbers of electrons per dot. We show that the sensitivity of the multielectron qubit to charge noise may be
an order of magnitude smaller than that of the two-electron qubit.
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One of the most promising paths to scalable quantum
computation is to use laterally defined double quantum
dots (DQDs) in semiconductor heterostructures. The qubit is
formed by the spin states of the two-electron DQD with total
spin projection zero along the z axis.1,2 Such a qubit is in-
sensitive to spatially uniform magnetic field fluctuations, and,
most importantly, amenable to fast electrical manipulation.2,3

Recent experiments have made tremendous advances along
these lines, demonstrating single-qubit initialization, arbitrary
manipulation, and single-shot readout, all within a fraction
of the coherence time of the qubit.3–7 Preliminary steps
toward an entangling two-qubit gate have also been reported.8

In principle, successful completion of that program leaves
the (admittedly enormous) challenge of scaling up to large
numbers of qubits as the last remaining hurdle in the fabrication
of a practical quantum computer.

However, a practical issue has emerged which threatens
to be a crippling impediment to continued rapid progress.
The semiconductor samples used to create quantum dots
invariably contain a number of charged impurity centers,
perhaps 1010 cm−2 in GaAs systems.9 Even if the charge
on these centers can be frozen to avoid switching noise,
their presence inhibits access to the one-electron-per-dot
regime since the lowest energy states of the dot may be
fragmented due to the roughened potential landscape.10–13

This makes it difficult to find samples suitable for spin qubit
realization. Furthermore, typically the impurities do introduce
some switching noise,14–17 so that even in samples in which the
impurities are all far enough from the DQD that a two-electron
singlet-triplet qubit can be accessed, the interdot exchange
energy is still subject to random fluctuation, leading to gate
errors and decoherence.18–20 This necessitates operating in a
parameter regime such that the sensitivity of the exchange
energy to the charge noise is minimized, a so-called “sweet
spot.”21 In general, the charge noise problem is even more
pernicious when performing two-qubit operations directly
mediated by the Coulomb interaction, and one must again
seek a sweet spot.22,23 However, in practice, this strategy may
not be sufficient since one typically cannot optimize over all
noise channels simultaneously.24

An alternative approach to overcoming the charge noise
problem is to define qubits with several electrons per dot,
such that the “core” electrons (electrons paired up into singlets

and filling up the lowest single-particle states comprising the
multielectron ground state) serve to screen out the charged
impurities, while each dot contributes the spin of a lone
“valence” electron to form the qubit. Experimental studies
of spin blockade25,26 and excitation spectra27 have already
been performed in multielectron DQDs. On the theoretical
side, early work analyzed some of the subtleties involved with
qubit manipulation in the context of multielectron dots,28,29

highlighting, for example, the need for an external magnetic
field in the case of singlet-triplet qubits in order to ensure
that the qubit is well defined. We shall see that the use of
multielectron dots for spin-based quantum computation merits
further consideration because of the favorable behavior of such
qubits in the presence of charged impurities.

In this work, we demonstrate the effectiveness of multiple
electrons per dot in screening a single charged impurity. We
do this by performing a detailed numerical analysis employing
the configuration interaction method with up to ten electrons
in the single-dot case and up to 14 electrons in the case of
DQDs. In the case of a single quantum dot, we compute
the ground-state energy twice: once for a multielectron state
which takes into account interactions between the electrons
and the impurity, and a second time for a multielectron state
which ignores these interactions. This yields two ground-state
energies whose difference constitutes a clear and convenient
measure of the screening mechanism since it is directly related
to the readjustment of the multielectron wave function in
response to the impurity. We find that the effect of the screening
grows quickly as the number of electrons in the dot is increased.

In the case of DQDs, we calculate the exchange energy
of a singlet-triplet qubit with three to seven electrons per dot
and analyze its sensitivity to the charged impurity. To properly
compare exchange energies obtained for different numbers of
electrons, we first define a valence electron tunneling rate,
and as we change the number of electrons, we tune the DQD
potential to keep this tunneling rate invariant. This helps to
isolate true multielectron physics from other effects which
occur as a byproduct of adding electrons to the system. We
find that as the number of electrons is increased, the exchange
energy becomes significantly less sensitive to the impurity.
With five electrons per dot, for example, the sensitivity can
be reduced by nearly an order of magnitude relative to the
one-electron-per-dot case. Having five electrons per dot also
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appears substantially better than having three; this is due at
least in part to the fact that, in a magnetic field (though not
the high fields considered in Ref. 30), there occurs some
anomalous behavior arising from the spatial dependence of
the phase of the relevant valence orbital.31

In contrast to previous theoretical studies of multielectron
DQDs32–34 or multielectron qubits,28,29,35 our focus is on
how charge noise affects singlet-triplet qubits in a DQD.
However, our results also give some new insights pertaining
to the multielectron quantum dot system in the absence of
charged impurities, and so has some direct bearing on these
earlier works. In particular, some of these works28,29 made
use of the so-called “frozen-core” approximation, which is
an approximation often employed in the context of numerical
solutions (particularly the configuration interaction method) to
multielectron quantum dot problems. In this approximation,
one keeps the core electrons frozen in the lowest non-
interacting states of the dot(s) and only allows configurations
where the valence electrons are free to occupy higher energy
levels. In the course of our analysis of the charged impurity
screening effect, we will implement a more sophisticated ap-
proximation scheme wherein excitations of the core electrons
are also taken into account, allowing us to test the accuracy of
the frozen-core approximation. We find that the frozen-core
approximation becomes significantly worse as the number
of electrons is increased. Although the method we employ
constitutes a marked improvement over previous approaches,
we focus on qualitative results and general trends since the
microscopic details of the actual experimental potential and
noise are not precisely known.

The structure of the paper is as follows: In Sec. I, we
explain our numerical methods and examine the validity of
the approximations employed. In Sec. II, we show the onset
of screening effects in a multielectron single quantum dot.
In Sec. III, we characterize multielectron singlet-triplet qubits
in DQDs and their sensitivity to charge noise. Finally, we
conclude in Sec. IV. In Appendix A, we review Fock-Darwin
states to keep the paper self-contained and to fix conventions.
Appendices B and C contain technical details that facilitate the
numerical computations of the multielectron spectra.

I. NUMERICAL METHODS

A. Basis states

All of our results are obtained in a configuration-interaction
(CI) approach using molecular orbitals. The Hamiltonian for
N electrons in confining potential V (r), in the presence of M

static charged impurities located at positions Rj , and with a
perpendicular magnetic field B=B ẑ=∇ × A, is

H =
N∑

i=1

[
(−ih̄∇i + eA/c)2

2m∗ + V (ri) +
M∑

j=1

Zimpe
2

ε|ri − Rj |
]

+
∑
i<j

e2

ε|ri − rj | + g∗μBB · S, (1)

where m∗ is the effective mass of the electrons, Zimp is
the impurity strength, ε is the dielectric constant of the
semiconductor, g∗ is the effective electron g factor, μB is
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FIG. 1. Model double-well potential along the interdot axis.
There is also a harmonic potential along y with frequency ω0. We
have schematically shown 10 electrons filling the lowest Fock-Darwin
orbitals in a finite magnetic field.

the Bohr magneton, and S is the total electronic spin. In
this work we will take parameters relevant to GaAs systems:
m∗ =0.067me, g∗ =−0.44, ε=13.1. We neglect perturbative
corrections to the Hamiltonian such as spin-orbit coupling.
When including the effects of an impurity, we will consistently
take Zimp =1.

We will assume tight confinement along the z direction in
the depletion layer of a heterostructure interface and consider
the resulting two-dimensional electron gas. For simplicity, we
will use a (bi)quadratic in-plane potential to model the lateral
gate-defined confinement of a (double) quantum dot,

V (x,y) = 1
2m∗ω2

0Min{(x − x0)2 + y2,(x + x0)2 + y2}, (2)

as shown in Fig. 1. We have checked that, as expected, the
discontinuity in the derivative of the potential does not have any
qualitative effect. Although the actual confinement potential
depends on the experimental details of the gate geometry and
voltage, the biquadratic approximation has been justified by
comparing to an exact numerical solution of Poisson’s equation
for a realistic setup.24 The appropriate single-particle orbitals
are then the Fock-Darwin states centered at the minima of
each well, r=∓x0x̂, labeled with a ± sign, respectively, and
carrying principal quantum number n=0,1,2,... and magnetic
quantum number m=−n, − n + 2,...,n − 2,n,

φ±
nm(x,y) = 1

�0

√√√√ (
n−|m|

2

)
!

π
(

n+|m|
2

)
!

(
x ± x0 + iy sgn m

�0

)|m|

× e
− (x±x0)2+y2

2�2
0

±i
x0y

2�2
B L

|m|
n−|m|

2

(
(x ± x0)2 + y2

�2
0

)
, (3)

where �0 =�B/(1/4 + ω2
0/ω

2
c )1/4, �B =√

h̄c/eB, ωc =eB/

m∗c, Lm
n (x) is an associated Laguerre polynomial, and we

have taken the symmetric gauge, A=B/2 (−yx̂ + xŷ). The
associated single-particle energies are

En,m = (n + 1)

√
1

4
+ ω2

0

ω2
c

h̄ωc + m

2
h̄ωc. (4)

The derivation of the Fock-Darwin states and spectrum is
reviewed in Appendix A. In analogy with the hydrogen atom,
we refer to the (n,m)= (0,0) state as the “S” orbital, the
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(n,m)= (1, ± 1) state as the “P±” orbital, and so on. We will
similarly refer to groups of states with the same n as “shells.”

The basis states used to expand the many-electron wave
function are Slater determinants formed from the single-
particle orbitals,

�
{si }
{nimi }({xi},{yi},{σi}) = P

{
N∏

i=1

φsi

nimi
(xi,yi)χi(σi)

}
, (5)

where σ is the electronic spin variable, χ (σ ) is the associated
spin wave function, and P is the antisymmetrization operator.
See the appendices for a complete presentation of the basis
states and useful matrix elements between them.

B. Truncation and convergence

While the exact ground state can be built from the complete
set of configurations using all combinations of Fock-Darwin
single-particle states, obviously in practice one must truncate
the space of possible configurations. The analogy with the
hydrogen atom spectrum naturally leads one to the idea that
perhaps, in dealing with multi-particle states, one can treat
the core electrons as being effectively inert. In other words,
one can consider the “frozen-core” approximation in which
one keeps only multiparticle states for which all but two
of the electrons fill up the Fock-Darwin states below the
valence orbital.28 Another technique is to simply neglect all
configurations involving single-particle orbitals above some
cutoff level. This is referred to as “full CI” within the orbital
cutoff. A more efficient method is to neglect all configurations
whose noninteracting energy is higher than the noninteracting
ground state by some cutoff energy. We have used each of these
approximations in our numerical calculations for comparison.
Particularly for several electrons and in the presence of an
impurity, the frozen-core approximation may not allow enough
flexibility in the multielectron wave function to accurately
represent the ground state.

In a single dot with typical radius on the order of
100 nm,3–5 the on-site Coulomb energy is much greater than
the noninteracting level spacing, so using the basis built
from noninteracting Fock-Darwin orbitals requires a very
large number of excited configurations to be kept in the
CI calculation. Since the ratio of Coulomb energy to level
spacing is proportional to dot size, we take a relatively tight
confinement potential with oscillator length between 6 and
10 nm to aid convergence. Even for these strongly confined
electrons, though, the interaction energy scale is comparable to
the confinement energy scale and we must keep many excited
configurations. Experimental dot radii are usually considerably
larger,3–5 but we expect that the features will be qualitatively
similar.

In Fig. 2, we show the convergence of the ground-state
energy for three and five electrons in the absence of impurities
within a full CI calculation as the number of shells kept
increases. For five electrons, keeping six shells amounts to
keeping nearly 20 000 configurations. We have chosen values
of the magnetic field such that ωc =2ω0/

√
99, which, although

it corresponds to a ∼3 T field for our unusually small dots,
for a typical dot size corresponds to a field of only tens or
hundreds of mT. (The convergence results are specific to the

FIG. 2. (Color online) Ground-state energy vs number of shells
kept in the full CI calculation for three (a) and five (b) electrons
in a harmonic trap with frequency h̄ω0 =24.26 meV (a) and h̄ω0 =
21.79 meV (b) and perpendicular magnetic field B =2.8 T (a) and
B =2.5T (b) such that ωc =2ω0/

√
99.

choice of parameters. The particular set of parameters taken
here is in analogy to the DQD potential discussed in Sec. III B.)
Also shown are the energies obtained using a frozen-core
approximation in which only the outermost electron is free
to occupy the excited shells. Clearly the frozen-core results
are significantly improved upon by allowing configurations
with excited core electrons. Again, this is due to the strong
electron-electron interactions.

In Fig. 3, we keep all configurations with noninteracting
energy within a given cutoff excitation energy, Ec, from
the noninteracting ground-state energy. For example, when
Ec =0, only the ground-state configuration is kept. We show
the convergence of the ground-state energy versus cutoff for
three and five electrons. We use h̄ωc/2 as a natural unit because
that is the smallest increment by which the single-particle
energies of Eq. (4) can change. The steplike behavior is due
to the discreteness of the spectrum and the fact that angular
momentum is a good quantum number: Increasing the cutoff
energy only increases the basis size at a discrete set of points,
and a new configuration with the correct angular momentum is
added to the basis only when the cutoff permits configurations
with an even increment in the total principal quantum number,∑

i ni . For the parameters chosen, this occurs every 20h̄ωc/2.
We see that taking an excitation cutoff of Ec ∼80h̄ωc/2 gives
the same energy as a full CI approach with six shells, while
only keeping about a tenth of the number of configurations.
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FIG. 3. Ground-state energy vs cutoff in the energetically trun-
cated CI calculation for three (a) and five (b) electrons in a harmonic
trap with parameters as in Fig. 2.

However, even a cutoff of Ec ∼20h̄ωc/2 already captures the
dominant corrections to the noninteracting state. Somewhat
similar convergence properties were noted in Ref. 36.

Similar calculations for the tunnel-coupled DQD system
(with twice as many electrons) become computationally
demanding at high cutoffs, but from the above results for a
single dot (or equivalently, for well separated DQDs) we expect
reasonable convergence is attained already for full CI up to the
F orbitals or for a cutoff of Ec ∼20h̄ωc/2. Since full CI up to
F orbitals quickly becomes unwieldy for several electrons,
we shall primarily use the cutoff approach for the DQD
calculations. For five electrons per dot, taking numerically
tractable cutoffs on the order of 20h̄ωc/2 corresponds to
keeping roughly the lowest thousand noninteracting DQD
configurations, which we note to be a significant improvement
on the common approximation of keeping only S, P , and
sometimes D shells with a frozen core. We will discuss DQD
convergence further in Sec. III C.

II. ONSET OF SCREENING FOR MULTIELECTRON DOTS

We now consider the multielectron single quantum dot in
the presence of a single charged impurity. Upon turning on
the impurity potential, the electrons redistribute themselves to
minimize their total energy. The amount by which the energy
in the presence of the impurity changes due the rearrangement
of the multielectron wave function is


 = 〈�|H |�〉 − 〈�0|H |�0〉, (6)

FIG. 4. Rearrangement energy 
 (see text) vs number of electrons
for an impurity on the z axis. Here the impurity is repulsive and is
located 17 nm (top) or 34 nm (bottom) from the dot center. There
is a perpendicular field B =2.8T and the trap frequency is h̄ω0 =
24.26 meV.

where |�〉 and |�0〉 are the ground states with and without
an impurity present, respectively, and H is the Hamiltonian
with an impurity. This quantity is plotted in Figs. 4 and
5 for different positions of the impurity. The calculation
is performed with cutoffs in the range Ec =45h̄ωc/2 to
Ec =110h̄ωc/2, with lower cutoffs used for higher electron
numbers. For Fig. 4, the minima of the combined impurity
plus harmonic potential remains at the origin, and 
 may be
thought of as a measure of the change in the shape of the wave
function. For Fig. 5, the minima of the potential shifts, and 


is much larger due to a trivial contribution coming from the
translation of the wave function.

In both cases, the linear part of the curves may be under-
stood as arising from the impurity pushing the electrons away
from the center of the harmonic potential. However, note that
one begins to see marked deviations from linearity already at
six or seven electrons.37 This implies that nontrivial screening
effects are already setting in whereby the first few electrons
form a screening core which rearranges to partially shield
any additional outer electrons from the impurity potential. In
other words, defining a multielectron spin qubit using even
a small number of electrons per dot is advantageous since
screening reduces the effect of the impurity. This is consistent
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FIG. 5. (Color online) Rearrangement energy 
 (see text) vs
number of electrons for an impurity on the x axis. Parameters are
the same as in Fig. 4.

with previous qualitative predictions of screening effects in
the optical absorption of few-electron dots38 and in the high
magnetic field limit of a six-electron dot with a repulsive
impurity.39 We shall see in Sec. III D that possible advantages
are not limited to qubit fabrication in the presence of static
impurities, but also apply to qubit operation in the presence of
fluctuating impurities.

III. MULTIELECTRON SINGLET-TRIPLET QUBIT IN THE
PRESENCE OF CHARGE NOISE

The screening discussed in the previous section may aid the
fabrication of multielectron quantum dot systems in disordered
background potential landscapes that would fragment or
destroy single-electron dots. For the purposes of quantum
computation, we now wish to discuss the properties of a
multielectron singlet-triplet qubit that can take advantage of
this screening.

A. Qubit definition

Consider a DQD with an odd number of electrons in
each dot. In the absence of impurities and without the
Coulomb interaction between electrons, the electrons forming
the ground state will pair up into singlets and inhabit the lowest
Fock-Darwin states. If the tower of Fock-Darwin states in

each dot is nondegenerate (which requires a nonzero magnetic
field), then for odd numbers of electrons in each dot it will
always be the case that there is exactly one highest occupied
valence state in each dot, and the valence state in each
dot contains only one “valence” electron. For N =2,6,10,14
electrons (N is the total number of electrons in both dots), the
valence state is the S (n=0, m=0), P− (n=1, m=−1), P+
(n=1, m=1), and D− (n=2, m=−2) orbital, respectively.
The spins of the valence electrons can then be used to
define a singlet-triplet qubit in exact analogy to the standard
two-electron case.2 Even when the intuitive picture of an inert
core breaks down, so that there is no sharp distinction between
valence and core electrons, the qubit is still defined in terms of
the lowest two many-body energy levels and the low-energy
spectrum of the DQD retains a good qubit subspace as will be
shown below.

B. Parameter choices

As mentioned previously, for better convergence we take
small dots with characteristic radius between 6 and 10 nm.
We choose the interdot distance to be 40 nm in order to have
distinct dots that still have appreciable tunnel coupling and
exchange. This is a smaller inter-dot distance than is typical for
experiments,3–5 but that is simply because the dots themselves
are smaller here. The qualitative behavior should be similar.

When comparing cases with different electron numbers,
one should first isolate the intrinsic multielectron effects from
trivial filling effects. For example, for a given double-well
potential, a six-electron singlet-triplet qubit will trivially have a
larger exchange energy than a two-electron one simply because
the valence electrons lie higher in the well and thus see a lower
barrier to tunneling. This hardly makes for an enlightening
comparison between the two- and six-electron cases, since the
dominant effect of naively adding more electrons is effectively
nothing more than a change in the central barrier height. We
will instead compare different fillings on a more nuanced
and consistent basis by adjusting the magnetic field and the
confinement potential such that the tunneling between valence
shells and the ratio of orbital-level spacings remain constant
as the filling is varied.

More precisely, we define the valence tunnel coupling for N

electrons in two dots to be the energy splitting in the frozen-
core approximation between the two lowest states for N−
1 interacting electrons in two dots, the idea being that this
energy splitting characterizes the tunneling of an electron in
the valence state of one dot to the valence state of the other. This
tunneling incorporates the Coulomb interactions with all core
electrons, but does not include interactions with impurities. By
adjusting the confinement strength and the magnetic field, we
fixed the value of this tunneling to be 0.2 meV for all cases.
This particular value was chosen to achieve good numerical
convergence while remaining in the window of experimentally
relevant exchange energies, which are typically on the order
of a few μeV;3 in our setup, this corresponds to tunneling rates
on the order of hundreds of μeV.

Before quoting the parameters needed to obtain this tunnel-
ing for the cases of N =2,6,10,14 electrons, we first need to
say a few words about the spectrum. We mentioned above that
we need an external magnetic field to obtain a nondegenerate
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TABLE I. Energies of low-lying Fock-Darwin shells for ωc/ω0 =
2/

√
99.

S P− P+ D− D0 D+ F−− F− F+ F++ G−−

E/ (h̄ωc/2) 10 19 21 28 30 32 37 39 41 43 46

spectrum in each dot. However, we did not specify precisely
what value this B field should take. We want the B field to
be large enough to avoid possible near-degeneracy effects, but
at the same time, we do not want it too large because then
different shells would start to overlap in energy. Of course, the
latter effect happens for any finite B field at sufficiently large
n. In practice though, very high shells should not be relevant,
and for the most part we will only keep states up through the
n=3 shell. (For some of the N = 14 results, we will find it
necessary to also include some of the n=4 states, but this
has little bearing on the present considerations and will be
further clarified below in the context of the particular results
in question.) It then suffices to make the B field small enough
so as to avoid any overlap between the n=3 “F ” shell and
the n=4 “G” shell. We can satisfy all the above criteria by
choosing the cyclotron frequency

ωc = 2√
99

ω0, (7)

leading to the Fock-Darwin spectrum of Table I and noninter-
acting multiparticle energies

Enon-int
{ni },{mi } =

N∑
i=1

Eni,mi
=

N∑
i=1

(10ni + 10 + mi)
h̄ωc

2
. (8)

For this choice of parameters, the spacings between states of
the same shell are smaller than the spacings between shells,
but not drastically so. Also notice that we are tying the B field
to the size of the wells. This means that when we change the
number of electrons, we will simultaneously change both the
B field and well size in such a way that the valence tunneling
(as defined above) remains constant at 0.2 meV.

With these considerations, we calculated the frozen-core
spectrum of 1, 5, 9, and 13 electrons in a double well
with interdot spacing of 40 nm to obtain the characteristic
tunneling energies shown in Fig. 6 as a function of confinement
strength. Note that the unphysical behavior of the tunneling for

0 meV

t
m

eV

13eSPDFfc
9eSPDFfc
5eSPDFfc
1eSPDFfc

10 15 20 25 30 35 40
0.0

0.2
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0.6
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FIG. 6. (Color online) Tunnel coupling vs well depth for 1, 5, 9,
and 13 electrons in two dots in the frozen-core approximation.

TABLE II. Parameters for which the valence tunneling is t =
0.2 meV with interdot distance fixed at 40 nm.

N h̄ω0 (meV) B (T )

2 14.78 1.7
6 24.26 2.8
10 21.79 2.5
14 25.71 3.0

small ω0 is an artifact of the truncation of the configuration
space, an approximation which clearly breaks down for weak
confinement. From Fig. 6 we obtain the parameters (listed
in Table II) necessary to equalize the valence tunneling at
0.2 meV for the 2-, 6-, 10-, and 14-electron singlet-triplet
qubits we wish to consider.

Note also from Fig. 6 that the valence tunneling is actually
smaller for nine electrons, where the valence orbital is P+, than
for five electrons, where the valence orbital is P−. It is rather
unusual and counterintuitive that a higher energy orbital has a
smaller tunneling rate. We interpret this as a consequence of
the phase e±ix0y/(2�2

B ) appearing in the n=1 shell hopping-type
integrals,

∫
dr(∂xφ

+
1,±1)∗∂xφ

−
1,±1, due to the magnetic field [see

Eq. (3)]. This allows contributions from the prefactor in the
integrand which is an odd function of y. Since, for x0 > �0,
the odd term has a + (−) sign for m<0 (m>0), the
magnetic field diminishes the tunneling of the higher P

orbital and enhances that of the lower one. Somewhat similar
considerations have been noted in recent experimental work.31

C. Qubit characterization

We characterize these multielectron singlet-triplet qubits
by calculating the energy splitting, J , between the two lowest
levels in the absence of a charged impurity. (These are well
separated from the other levels, as shown below, and form a
good qubit subspace.) Previous studies considered this split-
ting, which is an effective exchange energy, for six electrons
using a frozen-core approximation.28 We will improve upon
these early results both by increasing the number of electrons
to include the N =10 and N =14 cases and by relaxing the
assumption that the core electrons are frozen. In order to
both test and improve upon the frozen-core approximation,
we will use the cutoff approximation as in Sec. I B, keeping all
multiparticle states that have a noninteracting energy below a
certain cutoff excitation energy, Ec, from the noninteracting
ground state. When Ec =0, we obviously have only the four
multiparticle states which correspond to the four ways of
distributing the two valence electrons among the two valence
orbitals. As the cutoff is increased, the number of states
included quickly increases at a rate which grows with N .

In Fig. 7 we show the convergence of the lowest two
eigenenergies, and in Fig. 8 we show their difference, J . In the
two-electron case it appears that J is well converged for cutoffs
larger than Ec =20h̄ωc/2, in agreement with our expectations
from the single-dot results of Sec. I B. It is also apparent in
Figs. 7 and 8 that a substantial jump occurs at Ec =20h̄ωc/2
for all numbers of electrons. The significance of this special
cutoff value (which depends on our choice of parameters)
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FIG. 7. (Color online) Ground- and first-excited-state energies
(left) for 2, 6, 10, and 14 (top to bottom) electrons and the difference
between the two (right) vs energy cutoff.

is that it corresponds to the point at which the lowest excited
state with the same magnetic quantum number m as the valence
orbital is included in the cutoff scheme. When the valence
orbital has quantum numbers (n,m), this newly added state
has quantum numbers (n + 2,m). Coulomb matrix elements
involving this state and the valence orbital are quite large
compared with matrix elements between states with different
values of m. The reason can be seen by considering a single
dot (or equivalently, a DQD with infinite interwell separation).
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J
eV
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2 electrons

FIG. 8. (Color online) Splitting between ground- and first-
excited-state energies vs energy cutoff for 2, 6, 10, and 14 electrons.

In that case, angular momentum is a good quantum number.
Thus the ground state must be built from a set of orbitals which
all have the same angular momentum. Thus, if one considers
the convergence of ground-state energy as orbitals are added
to the basis set one-by-one, the energy should only be lowered
when an orbital with magnetic quantum number m is added to
the basis. Now, angular momentum is no longer conserved for
a coupled DQD, and the ground state contains contributions
from all orbitals. However, for the physically relevant interdot
distance we have taken, the ground state still favors the set
of orbitals discussed above. Hence the energy changes more
when we add the (n + 2,m) orbital than when we add others.

These observations highlight the importance of using cutoff
energies above Ec =20h̄ωc/2. As Ec is increased, it eventually
becomes large enough that Fock-Darwin states beyond those
kept in the CI calculations become excited, and it would be
inconsistent to increase Ec any further since we would be
adding higher energy configurations without first including all
configurations with lower energy. For the cases N =2,6,10,
it suffices to keep up through the F shell in order to reach
the Ec >20h̄ωc/2 regime, and the upper bound on Ec arising
from these considerations is fixed by the energy difference
between the valence state and the G−− orbital (and so depends
on the number of electrons). For the N =14 case, however,
it is necessary to include two orbitals from the G shell in
order to achieve Ec >20h̄ωc/2. Thus for N =2,6,10,14 we
must have Ec/ (h̄ωc/2)<36,27,25,22, respectively. Although
it is evident from Figs. 7 and 8 that small fluctuations in the
lowest energies and J continue to arise beyond Ec =20h̄ωc/2,
there are indications that no additional large jumps occur as
Ec is increased further. In particular, we have noticed that such
jumps are also apparent in the single-particle matrix elements.
The angular-momentum considerations above would suggest
that such jumps would occur at integer multiples of 20h̄ωc/2;
however, we have computed single-particle matrix elements
including up through the n = 6 shell and found that no further
jumps arise. Although a similar calculation for multiparticle
matrix elements would be computationally very challenging,
these single-particle results do at least suggest that the curves
in Figs. 7 and 8 are reasonably well converged.

We have used the parameters from the previous subsection
so we can directly compare the exchange energies for different
electron numbers at a fixed tunneling rate, t ∼0.2 meV. We
see from Fig. 8 that, in contrast to the zero magnetic field case
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FIG. 9. (Color online) Spectrum vs trap frequency for 2, 6, 10,
and 14 (top to bottom) electrons. Inset: Exchange energy vs trap
frequency using cutoff energy and frozen-core approximations for
comparison.

within a frozen-core approximation,28 the exchange energy
generally increases for larger numbers of electrons.

Figure 9 shows how the low-lying spectrum behaves as
a function of harmonic well frequency, ω0, with magnetic
field chosen such that ωc/ω0 =2/

√
99 is held constant. We

have subtracted off a trivial linear dependence on ω0 arising
from the noninteracting ground-state energy using Eq. (8).
Only the lowest states are shown; in reality there are of
course many closely spaced excited states in the empty upper
portion of the plots. Note that, as expected, the lowest pair
of states (indistinguishable on the scale shown) are isolated
from the other states by a large energy splitting due to the
tight confinement and strong interactions. The singlet-triplet
splitting, J , is shown in the insets, including results using
the frozen-core approximation for comparison. Generally, the
frozen-core approximation is valid in the limit of very large
trap frequencies such that the Coulomb interactions become
negligible. However, for realistic dot sizes, the frozen-core
restriction underestimates the exchange considerably. The
discrepancy becomes more pronounced as the dot filling is
increased.

D. Qubit operation

Finally, in addition to the benefits in fabrication, we
now show that the screening is likewise beneficial in the
operation of singlet-triplet qubits in the presence of charge
noise. Random telegraph fluctuations in the occupation of
a charged impurity center result in fluctuations, δJ , in the
exchange energy, inducing singlet-triplet decoherence and gate
errors. Recent experiments have made remarkable progress
in countering dephasing due to hyperfine coupling to the
nuclear spin bath, extending the decoherence time to ∼
100 μs,6,7 leaving charge fluctuations as the dominant source
of error. This presents a formidable obstacle to current efforts
to perform high-fidelity logical gates. Although one may be
able to find “sweet spots” where δJ is minimized for a given
noise channel,21 e.g., fluctuation in interwell detuning, one
generally cannot simultaneously protect against fluctuations
in the other model parameters.24 Furthermore, in a large-scale
system, the fine-tuning required to ensure that the whole
ensemble is operating at a sweet spot would seem to be pro-
hibitive. On the other hand, using multielectron DQDs in order
to reduce δJ via screening is a relatively general and straight-
forward approach. It is thus desirable to consider the effective-
ness of the screening in protecting against noise from charge
fluctuators.
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FIG. 10. (Color online) Fractional change in exchange energy due
to impurity vs impurity distance for different numbers of electrons
using the energy-cutoff approximation with Ec =35,26,24,17 for
N =2,6,10,14 electrons, respectively.
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FIG. 11. (Color online) Fractional change in exchange energy due to impurity vs impurity distance for (a) 2, (b) 6, (c) 10, and (d) 14
electrons with various energy cutoffs.

Decoherence from the charge noise is essentially deter-
mined by the average switching time, τ , for all but the most
minute values of δJ on the order of h̄/τ . Gate errors, though,
are dominated by the relative fluctuation in the exchange
energy, δJ/J . We calculate this quantity for a single repulsive
charged impurity center located directly above one of the dots,
neglecting any image charge. This is only meant to give a
qualitative picture of gate errors due to charge noise. Although
it would be no more difficult to perform the calculation
with any given impurity potential, in the absence of direct
knowledge of the impurity positions and switching times
relevant to a specific sample, any choice is purely arbitrary.
As shown in Fig. 10, the relative fluctuation in J for a
multielectron qubit may be reduced by as much as an order
of magnitude compared to the single-electron-per-dot case,
which would result in a dramatic reduction of the charge-
noise-induced infidelity. Figure 10 shows the results of using
the best energy cutoff approximation in each case.

Generally speaking, more electrons correspond to less
sensitivity to the charge fluctuator. In the ten-electron case,
though, the sensitivity appears anomalously small. This may
be due to the valence electrons residing in the P+ orbitals,
which have a suppressed tunneling rate, as discussed above. As
a result of this orbital effect, the trapping frequency, ω0, does
not have to be increased as much to match the two-electron

S orbital tunneling rate. This in turn implies that the core
electrons have more freedom to screen the impurity.

Figure 11 shows the convergence of δJ as the energy cutoff
Ec approaches its maximal value, as well as full CI results
for the two-electron case and frozen-core results for the other
cases. It is not guaranteed that our results for the exchange
energy are fully converged, especially for larger numbers of
electrons, but Fig. 11 demonstrates that the qualitative trends
apparent in Fig. 10 are reliable, most notably the decrease
in sensitivity to the charged impurity for larger numbers
of electrons. These figures also illustrate the worsening of
the frozen-core approximation as electrons are added to the
system.

IV. CONCLUSIONS

The presence of randomly positioned and temporally
fluctuating charged impurity centers in even the cleanest
semiconductor samples is currently the most prominent
roadblock to experimental realization of precisely controlled,
long-lived semiconductor spin qubits. It is an open question
to what extent and in what direction the path to scalable spin
quantum computation will be altered by this roadblock. On
one hand, one could pursue ultraclean samples with impurity
concentration under 1012 cm−3.9 On the other hand, one could
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seek to engineer qubits that are less sensitive to the presence
of charged impurities, as we have discussed in this paper.
However, since the standard two-qubit gate for singlet-triplet
qubits relies on the Coulomb interaction,2,8 engineering a
qubit that is less sensitive to fluctuations in the electrostatic
environment also diminishes the ability to manipulate the
many-qubit state via the standard techniques. This is, of
course, a familiar conundrum in all proposals of quantum
computation. The outlook is nevertheless quite promising,
since random fluctuations in the electrostatic potential can
be suppressed by bias cooling15 or by adding a negatively
biased insulated top gate16 in order to suppress leakage of
electrons from the gates into the two-dimensional electron gas.
Furthermore, intentional changes in the electrostatic potential
for the purposes of two-qubit operations can be enhanced by a
floating interdot capacitive gate.40,41 It is therefore reasonable
to sacrifice a little of the abundance of controllability in order
to gain a measure of immunity to the impurity background.

In this paper, we have explored the ramifications of using
multielectron quantum dots in order to diminish the effect
of the random impurity potential. The numerical calculations
in this work provide qualitative guidance to experiments
regarding the characteristics of a DQD loaded with 2, 6,
10, or 14 electrons and how its behavior depends on dot
size and nearby charged impurity centers. Our method of
approximation consistently accounts for deviations of the
many-body wave function from an effective two-electron,
frozen-core treatment, and our qualitative observations are
shown to be robust and physically sensible. Pursuing quantita-
tively more precise results would be fairly meaningless since
we are using a simplified model of the confinement potential.
A precise calculation would require a fully self-consistent
Schrödinger-Poisson solution for a particular gate geometry
and a specific impurity distribution.42,43 However, the simpler
and more general model potential has previously been found
to be a good approximation to the exact one.24 In any case,
the essential screening physics discussed above is a general
feature which should not depend sensitively on the exact
form of the confinement. A more important issue is the
fact that our calculations were performed in the case of an
unusually tight confinement in order to reduce the relative
strength of the Coulomb interactions and aid convergence.
This precludes a direct connection to recent experiments using
dots several times larger. However, for larger dots the features
we have discussed should become even more pronounced as
the deviations from the frozen-core approximation become
more important.

In this work, we have characterized multielectron qubits in
the presence of a charged impurity. We have not discussed de-
tails of initialization, manipulation, and readout. We envision
these being performed as in the two-electron case3 by tilting
the double well so that the valence electrons begin to shift
onto the same site, resulting in larger overlap and exchange.
These are separate issues which, although not expected to be
problematic, might require some care and could constitute
the subject of future investigation. We have demonstrated
that using multielectron DQDs in a finite magnetic field to
form singlet-triplet qubits is a viable option that does not
suffer from the suppression of the exchange energy that one
might expect based on previous results in a more restricted

approximation.28 Not only are multielectron qubits viable, they
are also an attractive option due to nascent screening of the
rough background by the few “core” electrons in each dot.
This results in reduced sensitivity to random static impurity
potentials, allowing easier fabrication, as well as reduced
sensitivity to fluctuations in the impurity potential, facilitating
more reliable single-qubit manipulation.
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APPENDIX A: FOCK-DARWIN STATES

1. One harmonic well

The Fock-Darwin Hamiltonian has the form

H = 1

2m∗

(
− ih̄∂ + e

c
A

)2

+ 1

2
m∗ω2

0r
2, (A1)

where r =
√

x2 + y2 is the 2D radial coordinate, m∗ is the
effective electron mass, and the vector potential is given by

A = −B

2
yx̂ + B

2
xŷ. (A2)

Introducing the cyclotron frequency,

ωc ≡ eB

m∗c
, (A3)

we can write the Hamiltonian as

H = − h̄2

2m∗ ∇2 + 1

2
m∗(ω2

0 + ω2
c/4

)
r2 + ωc

2
�z, (A4)

where �z is the z component of the angular momentum:

�z = −ih̄(x∂y − y∂x). (A5)

It will be useful to consider the Fock-Darwin Hamiltonian in
dimensionless complex coordinates, defined by

z = x + iy√
2�0

, z̄ = x − iy√
2�0

,

(A6)

∂ = �0√
2

(∂x − i∂y), ∂̄ = �0√
2

(∂x + i∂y),

where the length scale �0 is

�0 ≡ �B

(
1/4 + ω2

0/ω
2
c

)−1/4
, (A7)

and the magnetic length is given by

�B =
√

h̄c

eB
. (A8)

Defining the following set of creation and annihilation opera-
tors,

a = 1√
2

(z̄ + ∂), a† = 1√
2

(z − ∂̄),

(A9)

b = 1√
2

(z + ∂̄), b† = 1√
2

(z̄ − ∂),

which have the commutation relations

[a,a†] = 1, [b,b†] = 1, (A10)
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with all other commutators vanishing, the Hamiltonian
becomes

H = h̄ω+(a†a + 1/2) + h̄ω−(b†b + 1/2), (A11)

with

ω± ≡
√

ω2
0 + ω2

c/4 ± ωc/2. (A12)

The ground state of this Hamiltonian lives in the kernel of both
a and b and so has the (normalized) wave function

ψ0 =
√

2

π
e−zz̄. (A13)

It is trivial to check that aψ0 = bψ0 = 0. The commutation
relations (A10) imply that

a†a(a†)n = n(a†)n + (a†)n+1a,
(A14)

b†b(b†)n = n(b†)n + (b†)n+1b,

so that the class of (normalized) functions

ψn+,n− = 1√
n+!n−!

(a†)n+ (b†)n−ψ0 (A15)

are eigenfunctions of the Hamiltonian with eigenvalues

En+,n− = h̄ω+(n+ + 1/2) + h̄ω−(n− + 1/2). (A16)

The quantum numbers n+ and n− are nonnegative integers. If
we define

n ≡ n+ + n−, m ≡ n+ − n−, (A17)

then n is a nonnegative integer, and m takes values from −n to
n in steps of 2. The spectrum in terms of n (principal quantum
number) and m (magnetic quantum number) is

En,m = (n + 1)h̄
√

ω2
0 + ω2

c/4 + mh̄ωc/2. (A18)

2. Two wells located at (x, y) = (±x0,0)

In the case of two quantum dots, we need to modify slightly
the Fock-Darwin states found above. Obviously, the above
results are valid no matter where the dot is located so long as
our coordinates are defined with respect to the center of the
dot. In the case of two lateral quantum dots, however, we want
to define the coordinates with respect to the point halfway in
between the dots. In these coordinates, the dots are located
at (x,y)= (±x0,0). One might be tempted to implement this
coordinate shift simply by defining new complex coordinates:

z± ≡ x ± x0 + iy, z̄± ≡ x ± x0 − iy. (A19)

However, this redefinition moves not only the location of the
quantum dot but also changes the vector potential A, Eq. (A2).
We can correct this by also performing a gauge transformation
on A:

A → A ∓ B

2
x0ŷ, (A20)

which enables us to keep A fixed to the form in Eq. (A2) while
we move the harmonic well in the x direction. Of course, a
gauge transformation affects not only the vector potential but

also the wave function of the electron, and in particular does
so in such a way that the wave function picks up a phase:

ψ → eiϕψ. (A21)

The phase ϕ can be fixed by going back to Eq. (A1),
implementing the gauge transformation on A, and demanding
that the new wave function still be an eigenfunction of the
Hamiltonian, leading to the condition(

− ih̄∂ ∓ e

c

B

2
x0ŷ

)
eiϕ = 0. (A22)

This condition has the solution

ϕ± = ±eBx0

2h̄c
y, (A23)

where the ± corresponds to the dot at x =∓x0, or in other
words, the right dot has the minus sign in the phase, the left
dot has the plus. Notice that this phase is the same for all states
living in the same dot. The bottom line is that we may continue
to use the same Fock-Darwin states as before, but with z and z̄

now defined according to Eq. (A19) and with the overall phase
factor eiϕ± included, where ϕ± is given in Eq. (A23). Also note
that, when using the raising operators to generate states, the
phase is to be included after the operators have been applied
to the phaseless ψ0:

ψ±
n+,n− =

√
2√

πn+!n−!
eiϕ± (a†

±)n+(b†±)n−e−z± z̄± . (A24)

Here, the + (−) index gives a state in the left (right) dot. We
have taken the liberty of defining the operators a

†
± and b

†
±,

which are just the usual creation operators but with z and z̄

replaced by z± and z̄±. In terms of n and m quantum numbers,
we have

φ±
nm(x,y) ≡ ψ±

n+m
2 , n−m

2
(x,y). (A25)

APPENDIX B: ONE- AND TWO-PARTICLE
MATRIX ELEMENTS

1. Integrals

Matrix elements involving products of Fock-Darwin states
can be simplified by exploiting the fact that all such states
are generated from e−zz̄. (In this section, we suppress the ±
indices indicating to which dot the state belongs.) Since a†

and b† are linear differential operators acting on e−zz̄, the
Fock-Darwin wave functions have the form P (z,z̄)e−zz̄ where
P (z,z̄) is some bivariate polynomial. This in turn means that
we can also generate the states by instead starting from the
generator

φ(z,z̄,c,d) =
√

2

π
e−zz̄+cz+dz̄ (B1)

and differentiating with respect to c and d. The explicit form
of the differential operator which yields the Fock-Darwin
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states is

D
n+,n−
c,d =

⎧⎨
⎩

√
n+!
n−! (−1)n−2(n+−n−)/2∂

n+−n−
c

∑n−
k=0

(
n−
k

) (−2)k

(n+−n−+k)!∂
k
c ∂k

d , n+ � n−,√
n−!
n+! (−1)n+2(n−−n+)/2∂

n−−n+
d

∑n−
k=0

(
n+
k

) (−2)k

(n−−n++k)!∂
k
d ∂k

c , n+ < n−,
(B2)

and in terms of this operator, the states are

ψn+,n− (z,z̄) = D
n+,n−
c,d φ(z,z̄,c,d)| c=α

d=−α

, (B3)

with

α = ϕ±
2y

= ±eBx0

4h̄c
. (B4)

[On the right-hand side of this expression, c is speed of light
and not the parameter appearing in φ(z,z̄).] Now consider
an arbitrary single-particle matrix element composed of some
operator A sandwiched between two Fock-Darwin states:

〈n+,n−|A|n′
+,n′

−〉
=

∫∫
dxdyψ∗

n+,n− (z,z̄)Aψn′+,n′− (z,z̄)

=D
n+,n−
c,d D

n′
+,n′

−
c′,d ′

∫∫
dxdyφ(z̄,z,c,d)Aφ(z,z̄,c′,d ′)

∣∣∣ c=α

d= − α

c′=α′
d ′=−α′

.

(B5)

We see that we can compute all such matrix elements for an
operator A by first computing the object∫ ∫

dxdyφ(z̄,z,c,d)Aφ(z,z̄,c′,d ′), (B6)

applying the differential operators D
n+,n−
c,d and D

n′
+,n′

−
c′,d ′ , and

then finally setting c,d,c′,d ′ appropriately. Note that we have
swapped the z and z̄ in φ(z̄,z,c,d) because this generator
corresponds to the complex-conjugated wave function. Since
the parameters c and d are always real numbers, complex
conjugation is implemented simply by swapping z and z̄ in the
generator φ(z,z̄). The utility of this approach is that we need
only compute the double integral once and for the simplest
possible wave functions—pure Gaussians. We have outlined
the approach for single-particle matrix elements, but the same
procedure also applies to two-particle matrix elements such as
we have for the Coulomb interactions between electrons.

Each term of the double well Hamiltonian can be computed
in the manner outlined above. Fortunately, the integral for
the double harmonic potential can be computed exactly. The
integrals over x and y can also be computed for the impurity
terms once the 1/r Coulomb potential is rewritten as an
exponential using the following identity:

1

r
= 1√

π

∫ ∞

0

ds√
s
e−sr2

. (B7)

This relation also allows the four coordinate integrations to
be performed in the case of the Coulomb-interaction terms.
However, for both the Coulomb terms and the impurity terms,
the remaining integration over s from the above identity must

be done numerically for each set of quantum numbers since
we do not have a closed form expression for this integral as a
function of the parameters c and d.

There are several ways that one could treat the kinetic terms.
In order to compute these terms, we need to first act with
the kinetic operator on φ(z,z̄,c,d) as shown schematically in
Eq. (B5). Since the kinetic operator acts only on φ(z,z̄,c,d),
we can rewrite it as a differential operator acting on c and d

instead of on z and z̄. Explicitly, it has the form

K± = − 2h̄ω+ω−
ω+ + ω−

∂d∂c + h̄ω+

[
c ∓ x0√

2�0

ω+ − ω−
ω+ + ω−

]
∂c

+ h̄ω−

[
d ± x0√

2�0

ω+ − ω−
ω+ + ω−

]
∂d

+ h̄

2
(ω+ + ω−)(1 − cd) + x2

0h̄

4�2
0

(ω+ − ω−)2

ω+ + ω−

∓ x0h̄

2
√

2�0

(ω+ − ω−)(c − d). (B8)

2. Symmetries

In computing single- and two-particle matrix elements,
there are a few symmetries that we may exploit to reduce
the number of matrix elements that need to be computed. First
of all, each single-particle term in the Hamiltonian is real and
symmetric:

〈η,n,m|A|η′,n′,m′〉 = 〈η′,n′,m′|A|η,n,m〉. (B9)

We have included the parameter η=±1 in the states to
designate whether the state is associated with the right dot
(η=−1) or the left (η=+1). As far as the impurity terms
go, this is the only symmetry they obey, at least for an
impurity located away from x =0,y =0. The kinetic and
double-well-potential terms, however, also preserve a left-right
symmetry which mixes with the single-dot parity operator
(−1)n+n′

:

〈η,n,m|A|η′,n′,m′〉 = (−1)n+n′ 〈−η,n,m|A| − η′,n′,m′〉.
(B10)

The two-particle Coulomb matrix elements form a subgroup
of the permutation group:

〈η1,n1,m1; η2,n2,m2|C|η′
1,n

′
1,m

′
1; η′

2,n
′
2,m

′
2〉

= 〈η2,n2,m2; η1,n1,m1|C|η′
2,n

′
2,m

′
2; η′

1,n
′
1,m

′
1〉

= 〈η′
1,n

′
1,m

′
1; η′

2,n
′
2,m

′
2|C|η1,n1,m1; η2,n2,m2〉

= 〈η′
2,n

′
2,m

′
2; η′

1,n
′
1,m

′
1|C|η2,n2,m2; η1,n1,m1〉. (B11)
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The Coulomb matrix elements also exhibit left-right sym-
metry laced with parity:

〈η1,n1,m1; η2,n2,m2|C|η′
1,n

′
1,m

′
1; η′

2,n
′
2,m

′
2〉

= (−1)n1+n2+n′
1+n′

2〈−η1,n1,m1; −η2,n2,m2|C|
−η′

1,n
′
1,m

′
1; −η′

2,n
′
2,m

′
2〉. (B12)

3. Orthonormal basis

Once we have the single- and two-particle matrix elements
for the various terms in the Hamiltonian, it is useful to switch
to an orthonormal basis so that we may subsequently apply
the standard Slater-Condon rules (reviewed in Appendix C) to
obtain multielectron matrix elements. There must exist a linear
transformation which takes an operator A in the original basis
to A′ in the orthonormal basis:

A′ = LAL†, (B13)

where L† appears to ensure the hermiticity of A′. Consider
now the overlap operator O:

〈η,n,m|O|η′,n′,m′〉 = 〈η,n,m|η′,n′,m′〉. (B14)

If we apply the transformation to O, then we must obtain the
identity operator by definition:

O′ = LOL† = 1, (B15)

implying that

O = L−1(L−1)†. (B16)

This factorization of O is called the Cholesky decomposition.
The components of L−1 in the original (nonorthonormal) basis
form a lower triangular matrix, and they can be found in a
systematic way. The fact that L−1 is triangular also fits with the
fact that it is the transformation which takes nonorthonormal
states to orthonormal states. To see this, consider a matrix
element of an operator A between two nonorthonormal states:

〈NO1|A|NO2〉 = 〈NO1|L−1LAL†(L†)−1|NO2〉
= 〈NO1|L−1A′(L†)−1|NO2〉. (B17)

From this, it is clear that the orthonormal states are obtained
by applying (L†)−1 to nonorthonormal states:

|O〉 = (L†)−1|NO〉. (B18)

In summary, to switch to the orthonormal basis, we first com-
pute the matrix of overlaps in the nonorthonormal basis and
then perform a Cholesky decomposition on the result to obtain
L. For each single-particle term A in the Hamiltonian, we
compute LAL† to obtain A′ in the orthonormal basis. For the
two-particle (Coulomb) terms, we use a slight generalization
of the transformation to the case of multi-index tensors:

C ′
αβγ δ =

∑
α′β ′γ ′δ′

Lαα′Lββ ′Cα′β ′γ ′δ′L
†
γ ′γ L

†
δ′δ. (B19)

Here, the index α represents a distinct set of single-particle-
state quantum numbers, α={η,n,m}, and similarly for β, etc.

APPENDIX C: SLATER-CONDON RULES FOR
MULTIPARTICLE MATRIX ELEMENTS

Once we have all the matrix elements for each term in the
Hamiltonian in the orthonormal basis, we can apply standard
Slater-Condon rules to obtain matrix elements of the various
terms with respect to fully antisymmetrized multielectron
wave functions. Since we are interested in multiparticle states
that have net spin zero, we can write a generic multielectron
state as follows:

|�〉 = |{α(1)
↑ ,α

(2)
↑ ,...},{α(1)

↓ ,α
(2)
↓ ,...}〉, (C1)

where for example the symbol α
(k)
↑ represents a spin-up

electron in the Fock-Darwin state with quantum numbers
α(k) ={ηk,nk,mk}. We define |�〉 to be a fully antisymmetrized
state, so the α

(k)
↑ , ∀k, must be distinct from each other, and

likewise for the α
(k)
↓ . Furthermore, the particular order of the

α
(k)
↑ (and similarly for the α

(k)
↓ ) does not matter. Therefore,

we may pick a canonical ordering, and for concreteness we
choose this ordering to be determined by the energy of the
single-particle states, with lowest energy states to the left
(smaller k) [see Eq. (A18)]. Obviously, states which only differ
by the choice of η (which dot they belong to) will have the
same energy, so we furthermore specify that in these cases, the
state with η=−1 resides to the left of the state with η=1.

We first consider the single-particle terms in the Hamil-
tonian, which include the kinetic, double-well-potential, and
impurity terms. Denoting these terms collectively by the
operator A, we consider the following matrix element:

〈� ′|A|�〉. (C2)

If |�〉 = |� ′〉, then according to the Slater-Condon rules, we
have

〈�|A|�〉=〈{α(1)
↑ ,α

(2)
↑ ,...},{α(1)

↓ ,α
(2)
↓ ,...}|A|{α(1)

↑ ,α
(2)
↑ ,...},

{α(1)
↓ ,α

(2)
↓ ,...}〉=

∑
κ∈{α(1)

↑ ,...}
〈κ|A|κ〉 +

∑
κ∈{α(1)

↓ ,...}
〈κ|A|κ〉.

(C3)

If |�〉 and |� ′〉 differ by only one single-particle state, either
in the set {α(1)

↑ ,α
(2)
↑ ,...} or in {α(1)

↓ ,α
(1)
↓ ,...}, then for example

(assuming the states that differ have spin up),

〈� ′|A|�〉 = 〈{α′(1)
↑ ,...,α

′(�′)
↑ ,...},{α(1)

↓ ,...}|A|{α(1)
↑ ,...,α

(�)
↑ ,...},

{α(1)
↓ ,...}〉 = (−1)�+�′ 〈α′(�′)

↑ |A|α(�)
↑ 〉,

(C4)

where α
(�)
↑ is not in the set {α′(1)

↑ ,...,α
′(�′)
↑ ,...} and α

′(�′)
↑ is not

in the set {α(1)
↑ ,...,α

(�)
↑ ,...}. If |�〉 and |� ′〉 differ by more than

one single-particle state, then the matrix element vanishes.
The story is a little more complicated in the case

of two-particle operators, which for us only includes the
Coulomb interactions. For the diagonal matrix elements, we
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have

〈�|C|�〉 = 〈{α(1)
↑ ,...},{α(1)

↓ ,...}|C|{α(1)
↑ ,...},{α(1)

↓ ,...}〉
=

∑
κ,λ∈{α(1)

↑ ,...}∪{α(1)
↓ ,...}

〈κ,λ|C|κ,λ〉 −
∑

κ,λ∈{α(1)
↑ ,...}

〈κ,λ|C|λ,κ〉 −
∑

κ,λ∈{α(1)
↓ ,...}

〈κ,λ|C|λ,κ〉. (C5)

If |�〉 and |� ′〉 differ by one single-particle state (and assuming this state has spin up), we have

〈� ′|C|�〉 = 〈{α′(1)
↑ ,...,α

′(�′)
↑ ,...},{α(1)

↓ ,...}|C|{α(1)
↑ ,...,α

(�)
↑ ,...},{α(1)

↓ ,...}〉
= (−1)�+�′ ∑

κ∈({α′(1)
↑ ,...}∩{α(1)

↑ ,...})∪{α(1)
↓ ,...}

〈κ,α
′(�′)
↑ |C|κ,α

(�)
↑ 〉 − (−1)�+�′ ∑

κ∈{α′(1)
↑ ,...}∩{α(1)

↑ ,...}
〈κ,α

′(�′)
↑ |C|α(�)

↑ ,κ〉. (C6)

In the case of two-particle operators like the Coulomb interaction, if |�〉 and |� ′〉 differ by two single-particle states, then the
result does not vanish. Furthermore, the result will depend on whether the two single-particle states have the same spin or not.
We first consider the case where they do have the same spin, and suppose for concreteness that they both have spin up. Then

〈� ′|C|�〉 = 〈{α′(1)
↑ ,...,α

′(�′
1)

↑ ,...,α
′(�′

2)
↑ ,...},{α(1)

↓ ,...}|C|{α(1)
↑ ,...,α

(�1)
↑ ,...,α

(�2)
↑ ,...},{α(1)

↓ ,...}〉
= (−1)�1+�2+�′

1+�′
2 [〈α(�′

1)
↑ ,α

(�′
2)

↑ |C|α(�1)
↑ ,α

(�2)
↑ 〉 − 〈α(�′

1)
↑ ,α

(�′
2)

↑ |C|α(�2)
↑ ,α

(�1)
↑ 〉]. (C7)

A similar relation holds for the case where both pairs of distinct single-particle states have spin down. When the pairs have
opposite spin, we instead have

〈� ′|C|�〉 = 〈{α′(1)
↑ ,...,α

′(�′
1)

↑ ,...},{α′(1)
↓ ,...,α

′(�′
2)

↓ ,...}|C|{α(1)
↑ ,...,α

(�1)
↑ ,...},{α(1)

↓ ,...,α
(�2)
↓ ,...}〉

= (−1)�1+�2+�′
1+�′

2〈α′(�′
1)

↑ ,α
′(�′

2)
↓ |C|α(�1)

↑ ,α
(�2)
↓ 〉. (C8)
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