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Simple quantum logic gate with quantum dot cavity QED systems
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We present a method to enact a deterministic, measurement-free, optically generated controlled-phase gate on
two qubits defined by single electrons trapped in large-area quantum dots in a planar microcavity. This method
is tolerant to optical quantum dot inhomogeneity, requires only a modest-Q planar cavity, employs only a single
laser pulse, and allows the integration of many entangled qubits on one semiconductor chip. We present the gate
in the contexts of both adiabatic evolution and geometric phases, and calculate the degradation of performance
in the presence of both spontaneous emission and cavity loss.
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I. INTRODUCTION

Quantum computers offer potential speedups over classical
computers for certain problems, but only if they are made
sufficiently large, fast, and robust. Optically controlled quan-
tum dots (QDs) are promising for this application due to
their capabilities for ultrafast optical initialization, control,
and measurement,1–5 as well as their strong interface to
single photons.6,7 In the past decade, numerous proposals for
entangling QDs with photons enhanced by optical cavities have
emerged; for a few examples, see Refs. 8–12. However, most
of these schemes fail when experimentally realistic values of
the cavity quality factor Q and the vacuum Rabi splitting g are
considered. Even for experimental parameters corresponding
to the most heroic cavity quantum electrodynamics (QED)
demonstrations, scaling these schemes may introduce unreal-
istic requirements for QD tuning and placement, or extremely
challenging optical control sequences.

Here, we argue that an entangling logic gate between
neighboring QD spins is possible in a planar microcavity using
only a single pulse of laser light. Moreover, the gate we propose
functions when the QDs have very different optical resonances,
and without requiring the strong coupling regime of cavity
QED. In conjunction with single-qubit initialization, control,
and detection techniques, as well as the introduction of high-
threshold, nearest-neighbor-only techniques for topological
fault-tolerance in cluster states,13 this gate offers strong
promise for a fast, scalable fault-tolerant quantum information
processing system using QDs.14,15

II. PRINCIPLE OF OPERATION

The single-pulse entangling gate may be understood as a
consequence of the adiabatic theorem: A quantum system in
an eigenstate remains in that eigenstate if its Hamiltonian does
not change “too quickly.” For optical control, “too quickly”
means that the duration of the optical pulse should be longer
than the inverse of the optical detuning, which may easily
be large enough to keep the adiabatic condition even with
picosecond pulses. In large-area QDs, this ultrafast control
is enabled by the large, mesoscopically enhanced oscillator
strength of an exciton,16–18 which is enhanced by a factor of
(a/a∗

B)2 in comparison to that of an atom, where a is the QD
radius and a∗

B is the effective Bohr radius.16

As shown in Fig. 1(a), a single spin in a QD has two
Zeeman-split ground states (either an electron spin-1/2 or
the J = ±3/2 states of a trapped hole). However, circularly
polarized light connects only one of these levels, which we
notate |1〉A, to an optically excited trion state, which we
notate |e〉A. The other ground state, labeled |0〉A and with
energy −h̄ωA, is “dark,” and so is unaffected by the pulse.
Neglecting the possibility of a cavity for the time being (and
so with δ = 0), when an optical pulse of amplitude �A(t) is
introduced with detuning �A, the semiclassical Hamiltonian
in the rotating reference frame of the optical pulse for qubit A
changes as

HA(t) = −ωA |0〉〈0|A + �A|e〉〈e|A + �A(t)|e〉〈1|A
+�∗

A(t)|1〉〈e|A. (1)

The adiabatic theorem tells us that a system beginning in
state |1〉A remains in state |1〉A; however, this eigenstate is
dynamically “dressed” by the field pulse into a state with
reduced energy in comparison to the bare ground state. The
resulting phase shift of this state—the ac-Stark shift—with
respect to the dark state accomplishes a single-qubit rotation1–5

by an angle θA. The total angle θA accomplished over the
duration of the pulse is θA = (�A/2)

∫ ∞
−∞[

√
1 + 4�2

A(t)/�2
A −

1]dt . The data in Fig. 1(b) of Ref. 5 is well described by this
equation, indicating adiabatic evolution.

To move to a two-qubit gate, we now add a second qubit
and an optical cavity. The optical laser pulse couples to cavity
modes indexed by μ; each mode μ is detuned from the laser
by δμ and annihilated by aμ. The part of the pulse coupling to
mode μ has (semiclassical) envelope Fμ(t) and coupling rate
χμ, so the Hamiltonian for the optical pulse and the empty
cavity is

Hoptical(t) =
∑

μ

δμa†
μaμ + χμFμ(t)a†

μ + χ∗
μF ∗

μ(t)aμ. (2)

Adding optical loss from cavity mode μ at rate κμ, an
empty cavity would evolve by this Hamiltonian with state∏

μ Dμ[αμ(t)] |vac〉 , for displacement operator Dμ[αμ(t)] =
exp[αμ(t)a†

μ − αμ(t)aμ] and

αμ(t) = −i

∫ t

0
dτFμ(τ ) exp

[
(τ − t)

(
iδμ + κμ

2

)]
.
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FIG. 1. (Color online) System schematic. (a) The energy levels of
the quantum dot; level spin-ground-state |1〉 is coupled to trion state
|e〉 by a cavity mode and control pulse. (b) The cavity, pulse, and
dot spectra; the pulse is red-detuned from the cavity, and the dot’s
exciton resonances are blue-detuned. The cavity response is itself
shifted by the presence of excitonic transitions, which depend on the
qubit states. (c) Optical pulses are focused to overlap two neighboring
patterned quantum dots in the planar microcavity.

As a first step of our quantum treatment, we work in an
interaction picture where these dynamics are removed; i.e., we
move from a density matrix ρ(t) in the rotating reference frame
to ρ̃(t) in a different reference frame with the definition ρ(t) =∏

μ Dμ[αμ(t)]ρ̃(t)
∏

ν D†
ν[αν(t)]. This is a time-dependent

basis change, and so it introduces time-dependent terms in
our Hamiltonian; in particular, the cavity QED Hamiltonian
becomes

HCQED =
∑

j=A,B

∑
μ

gjμ |e〉〈1|j aμ + H.c. →
(3)

H̃CQED(t) =
∑

j=A,B

∑
μ

gjμ |e〉〈1|j [aμ + αμ(t)] + H.c.,

where H.c. is the Hermitian conjugate. If we now define
�j (t) = ∑

μ gjμαμ(t), then in this reference frame we have
a cavity QED system with an additional semiclassical driving
term as already introduced in Eq. (1), so the full Hamiltonian
is H̃(t) = ∑

μ δμa†
μaμ + ∑

j=A,B Hj(t) + H̃CQED(t).

A. Perturbative description

As in the single-QD case, if each �j (t) evolves slowly
enough, the action of the pulse is only to cause a phase
shift on the adiabatically maintained bright states of the
system. We will use a perturbative approach in our discussion,
although all numeric calculations use exact diagonalizations or
simulations. To fourth order in perturbation theory, the energies
of the four qubit states shift according to the Feynman-like
diagrams of Fig. 2. A superposition of qubit states evolves via
these energy shifts, as

|ψ(t)〉 =
∑

j,k={0,1}
cjk(0) exp

[
−i

∫ t

0
λjk(τ )

]
|λjk(t)〉, (4)

δλ01 (t) Ω (t) −
1

ΔB
B

01

g
Bμ −

1
δμ
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FIG. 2. (Color online) Diagrams for perturbative shifts of states
|01〉 and |11〉. The stacks of three levels indicate the quantum dots,
and a cavity photon is indicated by a dot in a center. The arrows
indicate vertex terms, and the equations below indicate propagators.
A complete (fourth-order) term is a product of each vertex and
propagator.

where |λjk(t)〉 are the time-varying eigenstates of H which
begin and end as separable qubit states |λjk(0)〉 = |λjk(∞)〉 =
|j 〉A ⊗ |k〉B ⊗ |vac〉. An entangling gate results from the fact
that the two-qubit bright state |1〉A ⊗ |1〉B ⊗ |vac〉 accrues less
than twice the phase shift of either of the single-qubit bright
states, such as |1〉A ⊗ |0〉B ⊗ |vac〉. The unitary evolution
due to the pulse in this adiabatic, coherent approximation
is U = exp(iθAσ z

A) exp(iθBσ z
B) exp(iθABσ z

Aσ z
B), in terms of

single-qubit Pauli matrices σ z
j . The first two (commuting)

terms are single-qubit phase shifts. These shifts may be large,
as in demonstrated single-qubit rotations.1–5 The entanglement
results entirely from the smaller nonlinear phase θAB, which
may be found in fourth order as

θAB = −
∫

[λ11(t) + λ00(t) − λ01(t) − λ10(t)]dt

= 2 Re

{∑
μ

∫
dt

�A(t)�∗
B(t)gAμg∗

Bμ

�A�Bδμ

}
+ O(g6). (5)

Note that there is no need for the QDs to be resonant with each
other for this phase shift to occur, a critically important feature
for inhomogeneous, self-assembled QDs.

B. Geometric description

This gate also has a geometric interpretation
interpretation,19,20 rendering it similar to fast geometric
phase gates enacted with trapped ions and their phonon
modes.21 For this interpretation, we note that for qubits
projected into states j and k, the field of mode μ is
nearly classical with electric field amplitude proportional to
α

jk
μ (t) = Tr{aμ〈j |A〈k|Bρ|j 〉A|k〉B}. To second order, then,

two of these amplitudes are

α10
μ (t) = αμ(t) +

∑
ν

gAνg
∗
Aμ

�Aδμ

αν(t) + O(g4), (6)

α11
μ (t) = αμ(t) +

∑
jν

gjνg
∗
jμ

�jδμ

αν(t) + O(g4). (7)
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We may interpret this by indicating that the cavity modes
are shifted by the altered dispersive response of the cavity,
depending on how many QDs are loading it. As the cavity field
grows and then shrinks in time, a geometric phase accrues of
size

φjk =
∫ ∞

−∞
dt

∑
μ

Im
{
α̇jk∗

μ (t)αjk
μ (t)

}
, (8)

i.e., the area enclosed by each phase-space path. In the limit
of large detunings δ where Im{α̇∗

μ(t)αμ(t)} ≈ δμ|αμ(t)|2, this
gives the same result, i.e., that φ11 + φ00 − φ01 − φ10 = θAB,

as given by Eq. (5). This geometric picture provides interesting
perspective on the role of cavity loss. One may readily show in
this picture that 〈j |A〈k|Bρ|j ′〉A|k′〉B decays due to cavity loss
as exp[− ∫ t

dτ
∑

μ �
jk,j ′k′
μ (τ )], where

�jk,j ′k′
μ (t) = κμ

2

∣∣αjk
μ (t) − αj ′k′

μ (t)
∣∣2

, (9)

i.e., the distance between different paths. This decoherence
occurs due to the ability of the environment to detect the qubit
states from the light leaking from the cavity. A high detuning
assures that state-dependent paths in phase space are very close
to each other to minimize decoherence. If one wants to measure
the qubit states using light leaked from the cavity, δ = 0 is the
best strategy;22 if one wants to protect the qubit states, a high
value of δ allows the inherent quantum uncertainty of coherent
states of light to hide the qubit states.

As a final note in this section, the present analysis may
be readily generalized to more complex level structures. For
example, if a full � system is employed with a small splitting
between the ground states, a single pulse may still enact a
gate, but now it will include qubit flip-flop terms, similar to
two-laser cavity QED gates.8

III. FIDELITY ANALYSIS

Decoherence results from both cavity loss (at rate κμ) and
spontaneous emission from the QDs (at rate γ ). We may
roughly estimate these effects with the following argument, in
which we drop qubit subscripts for brevity. The dressed states
of the system due to the pulse have a trion component with
probability (�/�)2 in first order, and they have a cavity photon
with probability (�/�)2(g/δ)2 in second order. Therefore,
an off-diagonal term of the density matrix ρ̃(t) decays at a
combined exponent �(t) of approximately

�(t) ≈ xγ
|�|2(t)

�2
+ y

∑
μ

κμ

�2(t)|gμ|2
�2δ2

μ

. (10)

The unknowns x and y are in place to remind us that
there are other, order-unity constants in place depending
on the particular coherence studied. Regardless, optimal
gate operations must work as a trade-off between the two
decoherence terms. In the limit of large cavity-pulse detuning
δ, taken as much larger than the cavity bandwidth (so δμ ≈ δ),
the rate of growth of the nonlinear phase divided by the
rate of decoherence �−1(t)θ̇AB has a maximum with respect
to δ at δ ∝ √∑

ν κμ|gν |2/γ . If we tune the laser in order
to set δ at this value, and assure that

∫
�2(t)dt is large

enough that θAB = π/4, then off-diagonal terms decay to

roughly exp[− ∫
�(t)dt] ≈ exp[−(π/2)

√
xy/C], where C =

4
∑

μ |gμ|2/γ κμ is the cooperativity of the QD/cavity system.

The fidelity of the gate is then ∼[1/2][1 + exp(−1/
√

C)].
Note that QD inhomogeneity is not critical for determining
the gate fidelity. The critical figure of merit, the cooperativity
factor C, goes as the quality factor of the cavity Q divided
by its mode volume V . A high-fidelity gate uses a laser
detuned by

√
C cavity bandwidths from the cavity resonance;

for a large-area QD in a semiconductor planar microcavity,
C ∼ 100 is reasonable, in which case the optimal detuning
is approximately ten cavity linewidths from the central
resonance.

The analysis so far has assumed the conditions allowing
adiabatic evolution. For the present problem, in the case of
detunings δ and � large in comparison to the cavity bandwidth
and to Rabi frequencies gjμ, these conditions are held if
�̇j (t) ∼ ∑

μ gjμFμ(t) 
 �2
j . Again assuming the amplitude

of Fμ(t) is chosen large enough to create a controlled-Z gate
(θAB = π/4) with δμ at its optimum value, and assuming a
Gaussian pulse shape Fμ(t) ∝ (2πσ 2)−1/4 exp(−t2/4σ 2), this
condition requires σ � √

Cκ2/�2γ . Therefore, adiabaticity
may always be obtained for long enough pulses and large
enough values of �. Typical pulse lengths may be in the range
of ten to hundreds of nanoseconds, with QD detunings � on
the order of THz. This high speed is the key advantage of
self-assembled QDs over similar gates enacted with trapped
ions or superconducting qubits.

Evaluating the performance of the gate more rigorously
than the above approximations requires a careful figure of
merit, since as parameters are changed, the single-qubit phase
shifts change much faster than the nonlinear phase shift. These
single-qubit phase shifts can be eliminated by single-qubit
π pulses, and therefore should not be considered to inhibit
the fidelity of the gate; however, as they are not known
a priori, evaluation of fidelity against an “ideal” gate with
one particular choice of phase is inappropriate. Instead, we
consider two qubits initialized into the unentangled superpo-
sition state [|0〉A + |1〉A] ⊗ [|0〉B − |1〉B]/2 and evaluate the
entanglement concurrence. We then test our theory with a
series of numeric approaches. In the first, we calculate the
optimal value of �j (t) using Eq. (5), assume the adiabatic
theorem holds, and evaluate the phase shift and decay of
each element of ρ̃(t). This is accomplished via complete
diagonalization of H̃ (t) at each time t , and tracking the
evolution of diagonal terms of standard master equations for
optical loss and spontaneous emission in the eigenvector basis.
This procedure quickly estimates gate performance over a
broad range of parameters, allowing a numeric search for the
value of δ which maximizes the concurrence. The maximum
concurrence resulting from this parameter search is shown in
Fig. 3, which verifies that the figure of merit is indeed C.
To test further, we perform detailed solutions of a complete
master equation. No adiabatic or perturbative approximations
are made; the time evolution of ρ̃(t) is explicitly integrated
using Runge-Kutta or semi-implicit extrapolation integration
techniques. Again, only a single-cavity mode is assumed, but
it may admit more than one photon. These simulations are
slower, but verify the adiabatic theory for long enough pulse
lengths.
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FIG. 3. (Color online) Concurrence of initially separable spins
entangled by a gate with optimum δ, calculated numerically under
the adiabatic approximation (σ → ∞).

Realistically, it is unlikely that the adiabaticity of the
system will limit the pulse length or the allowable detunings
and homogeneity (�A and �B). As these detunings are
increased, the amount of optical power required to complete a
gate increases as well, and eventually additional decoherence
sources not modeled here will arise. In InAs QDs and donor
impurities in GaAs, such additional decoherence is seen in
studies of single-qubit rotations, in many cases preventing
high-fidelity pulses of large angles,4 but in other cases allowing
them.5 The optimization of sample parameters to balance
QD inhomogeneity and allowable optical power will be the
critical hurdle for the successful demonstration of this gate in
a semiconductor system.

IV. IMPLEMENTATION

We now address the type of small-mode-volume cavity to
be used for this gate. Transmission line resonators in circuit
cavity QED,23 photonic crystal cavities,7 and whispering

gallery modes of microdisks24 are possibilities, and if such
cavities are critically coupled to waveguides and to other
cavities to form complex “photonic molecules,” large-scale
quantum computer architectures relying on this gate may
be constructed.3,14 However, the large-scale integration of
these cavity QED systems present a variety of challenges. A
promising, simpler route for scalability, enabled by a large-area
QD lattice, is integration with a planar microcavity sample,
as shown in Fig. 1(c). The two-qubit gate would function
by exciting a laser spot with the inherent cavity mode size
rC = λ0/

√
2π (1 − R), where λ0 is the optical wavelength

in vacuum and R = √
R1R2 is the effective reflectivity,25

which overlaps two neighboring, site-controlled QDs in a
two-dimensional array.26 The cooperativity factor of a QD
in a planar microcavity is not the same as that of a point
dipole; instead, it depends on the size of the QD. The mode
volume V may be estimated under the optimal condition that
the angular distribution of the density of photon states of the
cavity match the dipole emission lobe of the QD.16 In this
case 4

∑
μ |gμ|2/κμ/γ ≈ Qλ3

0/[π3(a∗
B)2L], where L is the

cavity length. This approximation is valid for QDs large in
comparison to the optical wavelength in the semiconductor.
High values of concurrence are expected to be possible
with existing quality factors of planar microcavities27 and
site-controlled, large-area quantum QDs.26

V. PROSPECTS

The key advantages of the present proposal are a tolerance to
quantum dot inhomogeneity and compatibility with a relatively
simple, microplanar cavity design. The potential parallelism of
this two-qubit gate and the ability to array as many as 109 qubits
on a single wafer may allow several possible architectures for
fast and large-scale optically controlled quantum computers.
One such architecture, recently developed and employing this
gate concept, is detailed in Ref. 15.
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