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Two-photon indirect optical injection and two-color coherent control in bulk silicon
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Using an empirical pseudopotential description of electron states and an adiabatic bond charge model for
phonon states in bulk silicon, we theoretically investigate two-photon indirect optical injection of carriers and
spins and two-color coherent control of the motion of the injected carriers and spins. For two-photon indirect
carrier and spin injection, we identify the selection rules of band edge transitions, the injection in each conduction
band valley, and the injection from each phonon branch at 4 and 300 K. At 4 K, the TA-phonon-assisted transitions
dominate the injection at low photon energies and the TO-phonon-assisted transitions at high photon energies.
At 300 K, the former dominates at all photon energies of interest. The carrier injection shows anisotropy and
linear-circular dichroism with respect to the light propagation direction. For light propagating along the 〈001〉
direction, the carrier injection exhibits valley anisotropy, and the injection into the Z conduction band valley
is larger than that into the X and Y valleys. For σ− light propagating along the 〈001〉 (〈111〉) direction, the
degree of spin polarization gives a maximum value about 20% (6%) at 4 K and −10% (20%) at 300 K, and at
both temperature shows abundant structure near the injection edges due to contributions from different phonon
branches. For two-color coherent current injection with an incident optical field composed of a fundamental
frequency and its second harmonic, the response tensors of the electron (hole) charge and spin currents are
calculated at 4 and 300 K. We show the current control for three different polarization scenarios: For cocircularly
polarized beams, the direction of the charge current and the polarization direction of the spin current can be
controlled by a relative-phase parameter; for the collinearly and cross-linearly polarized beams, the current
amplitude can be controlled by that parameter. The spectral dependence of the maximum swarm velocity shows
that the direction of the charge current reverses under an increase in photon energy.
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I. INTRODUCTION

Silicon is a dominant material in the microelectronics indus-
try. It has also attracted much attention in optoelectronics,1–3

due to its low absorption at telecommunication wavelengths
near 1.55 μm, and in spintronics,4–6 due to its long spin
transport length and spin relaxation time.7–13 In both fields,
a full understanding of the optical properties in bulk silicon
is very important for further applications. Optical methods
can provide an effective way to generate carriers and spins
in semiconductors, to control14–16 their motions by the phase
coherence of different components of incident laser beams,
and to detect the properties of carriers and spins.17 Recently,
the direct detection of spin currents using second-order
nonlinear optical effects has been proposed18 and realized
experimentally.19

Because silicon is an indirect gap semiconductor, with an
indirect gap Eig = 1.17 eV and a direct gap Eg = 3.4 eV,20

there is a degenerate indirect “�”-photon optical transition
assisted by phonon emission or absorption at �h̄ω < Eg . This
optical response is about two orders of magnitude weaker
than that in direct gap semiconductors. While the weak
response results in low loss, which is important in realizing
optoelectronics devices, it can make optical coherent control
less effective.

By using circularly polarized light, spin-polarized carriers
can be injected.17 Generally, one- and two-photon injection
are the most widely used schemes. For coherent current
control, the minimum requirements depend on the semicon-
ductor crystal structures: For low-symmetry semiconductor
structures with nonvanishing second-order nonlinearity, such
as the wurtzite structure,21 current can be injected by even

a single-frequency laser beam; for high-symmetry semicon-
ductor structures with vanishing second-order nonlinearity but
nonvanishing third-order nonlinearity, such as the diamond
structures, current injection requires at least a two-color laser
pulse with one fundamental frequency and its �th harmonic
(“1 + �” effects). The control parameters are taken as a
relative-phase parameter between Cartesian components or
between the frequency components of the two-color laser
beams. However, most coherent-control studies to date have
focused on absorption across the direct gap,22–24 even when
considering the indirect gap semiconductors;25 seldom has
coherent control by absorption across an indirect gap been
considered,26–28 due to the weak optical response. For silicon,
which has the diamond structure and vanishing second-order
nonlinearity, it is only the second of the coherent-control
schemes mentioned above that is applicable.

For two-photon indirect optical carrier injection in bulk
silicon, most experimental studies have focused on the two-
photon absorption coefficient29–34 and its anisotropy,33 which
is important in optoelectronics devices; theoretical studies35–38

are mostly based on the parabolic band approximation and on
a phenomenological electron-phonon interaction. For current
injection by coherent control, Costa et al.27 and Spasenović
et al.28 used terahertz radiation to detect “1 + 2” injected
current in bulk silicon, and confirmed that the current can be
controlled by the phase parameter of the laser beams. Zhao and
Smirl26 measured the time and space evolution of the indirect
optically injected electrons and holes by phase-dependent
differential transmission techniques. Yet full band structure
investigations of the two-photon indirect optical injection of
spins and spin current are still lacking.
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Previously we studied the one-photon indirect optical
injection of carriers and spins39 and the spectral dependence
of the two-photon indirect absorption coefficients and their
phonon-resolved injection rates at 4 and 300 K.40 In this
paper, we continue the study of the two-photon indirect
optical injection of carriers and spins, and consider as well
the coherent control of the injected charge and spin currents
by 1 + 2 effects. We present detailed results of two-photon
indirect carrier and spin injection under σ− light propagating
along the 〈001〉 and 〈111〉 directions; due to the symmetries
of bulk silicon, injection with σ+ light has the same carrier
and spin injection as with σ− light, but with the opposite spin
polarization. The injection in each conduction band valley,
the anisotropy, and the linear-circular dichroism with respect
to the light propagation direction, the corresponding phonon-
resolved spectra, and the degree of spin polarization (DSP) are
discussed. We also consider the coherent control of the motion
of optically injected electrons and holes under particular two-
color optical fields: cocircularly polarized beams, collinearly
polarized beams, and cross-linearly polarized beams.

In optical absorption, the electron-hole interaction plays an
important role especially in determining the correct absorption
edges. First-principles studies41 of the direct gap optical
absorption show that the excitonic effect can greatly change
the line shape even for high photon energies in silicon. For
indirect one-42 and two-photon injection,37,38 investigations
within the parabolic band approximation show that this neglect
does not change the absorption line shapes at energies more
than a few binding energies above the band gap; however,
a full band structure investigation is still lacking due to
difficulty in numerical calculation of the wave functions of the
electron-hole pair. In this paper, as a preliminary calculation,
we neglect the excitonic effect.

We organize the paper as follows. Two-photon indirect
carrier and spin injection are presented in Sec. II. In this
section, we first describe a perturbation model for two-photon
indirect optical injection, and then give the numerical results
under an empirical pseudopotential model for electronic states
and an adiabatic bond charge model for phonon states. In
Sec. III, we study the interference current injection under a
two-color laser beam and the coherent control. We conclude
in Sec. IV.

II. TWO-PHOTON INDIRECT CARRIER
AND SPIN INJECTION

A. Model for two-photon indirect injection

For an incident laser beam with electric field E(t) =
Eωe−iωt + c.c, the two-photon optical injection rates of
electrons and their spins are generally written as

ṅ = ξabcdEa
ωEb

ω

(
Ec

ωEd
ω

)∗
,

(1)
Ṡf = ζ f abcdEa

ωEb
ω

(
Ec

ωEd
ω

)∗
.

From these rates, the actual injected carrier density and spin
density can be calculated once the pulse duration is specified.
In this paper, superscripts indicate Cartesian coordinates, and
repeated superscripts are to be summed over. For bulk silicon,
the lowest conduction band has six equivalent valleys, which
are usually denoted as X,X̄,Y,Ȳ ,Z,Z̄. The two-photon indirect

transitions have the same initial and final states as those of one-
photon indirect transitions.39 The injection coefficients can be
written in the form Aabcd = ∑

I Aabcd
I with Aabcd

I identifying
the injection into the I th valley. Fermi’s golden rule gives
Aabcd

I = ∑
cvλ± Aabcd

I ;cvλ± with

Aabcd
I ;cvλ± = 2π

h̄

∑
kc∈I,kv

δ
(
εckc

− εvkv
± h̄�(kc−kv )λ − 2h̄ω

)

×N(kc−kv )λ±Aabcd
ckcvkvλ

, (2)

Aabcd
ckcvkvλ

=
∑

σcσ ′
cσv

〈c̄′kc|Â|c̄kc〉Wab
c̄kc v̄kvλ

[
Wcd

c̄′kc v̄kvλ

]∗
. (3)

The coefficient Aabcd
I ;cvλ± gives the contribution to the injection

by indirect optical transition between the conduction band c

and valence band v, with the assistance of an emitted (+)
or absorbed (−) phonon in the λth mode; there are two
modes each for the transverse acoustic (TA) and optical (TO)
branches, and one mode each for the longitudinal acoustic
(LA) and optical (LO) branches. The operator Â in Eq. (3)
stands for the identity operator in carrier injection and the
f th component of spin operator in spin injection. The optical
transition matrix elements are given as

Wab
c̄kc v̄kvλ

= 1

2

(
e

h̄ω

)2 ∑
n̄m̄

[
Mc̄kcn̄kv ;λv

a
n̄m̄kv

vb
m̄v̄kv(

ωnvkv
− 2ω

)(
ωmvkv

− ω
)

− va
c̄n̄kc

Mn̄kcm̄kv ;λv
b
m̄v̄kv(

ωcnkc
− ω

)(
ωmvkv

− ω
)

+ va
c̄n̄kc

vb
n̄m̄kc

Mm̄kc v̄kv ;λ(
ωcnkc

− ω
)(

ωcmkc
− 2ω

)
]

+ {a ↔ b}, (4)

where e = |e|. Here kc and kv are the electron and hole wave
vectors, respectively; c̄ = {c,σc}, c̄′ = {c,σ ′

c}, and v̄ = {v,σv}
are full band indices with σc, σ ′

c, and σv being the spin
indices; n̄ and m̄ are band indices for intermediate states; |c̄kc〉
and εckc

are the electron states and its energy, respectively;
and ωnm(k) is defined as h̄ωnm(k) = εnk − εmk. The phonon
energy is given by h̄�qλ for wave vector q and mode λ, the
equilibrium phonon number is Nqλ, and Nqλ± = Nqλ + 1

2 ± 1
2 .

The velocity matrix elements are vn̄m̄(k) = 〈n̄k|v̂|m̄k〉 with
the velocity operator v̂ = ∂He/∂ p, and He is the unperturbed
electron Hamiltonian. The electron-phonon interaction is
written as Hep = ∑

qλ H
ep

λ (q)(aqλ + a
†
−qλ) with aqλ standing

for the phonon annihilation operator. Its matrix elements are
Mn̄kcm̄kvλ = 〈n̄kc|Hep

λ (kc − kv)|m̄kv〉.
The injection coefficient ξabcd

I is a fourth-order tensor
and ζ

f abcd

I is a fifth-order pseudotensor. Both of them are
symmetric on exchange of indices a and b and on exchange
of indices c and d. They have the properties (ξabcd

I )∗ = ξ cdab
I

and (ζ f abcd

I )∗ = ζ
f cdab

I . Furthermore, time-reversal symmetry
gives ξabcd

I = (ξabcd
Ī

)∗ and ζ
f abcd

I = −(ζ f abcd

Ī
)∗. In bulk sil-

icon, each conduction band valley has C4v symmetry. Under
this symmetry, ξabcd

Z has six nonzero independent components,

ξxxxx
Z = ξ

yyyy

Z , ξ
xxyy

Z = ξ
yyxx

Z , ξ zzxx
Z = ξ

zzyy

Z ,
(5)

ξ
xyxy

Z , ξxzxz
Z = ξyzyz, ξ zzzz

Z ,
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ζ
f abcd

Z also has six nonzero independent components,

ζ
zxyxx

Z = −ζ
zxyyy

Z , ζ
zyzxz

Z = −ζ
zxzyz

Z ,

ζ
xyzyy

Z = −ζ
yxzxx

Z , ζ
xyzxx

Z = −ζ
yxzyy

Z , (6)

ζ
xxzxy

Z = −ζ
yyzxy

Z , ζ
xzzyz

Z = −ζ
yzzxz

Z .

The injection coefficients Aabcd
I can be obtained by a proper

rotation operation that transforms the Z valley to the I th valley.
Using inversion and time-reversal symmetries, all ξabcd are
identified as real numbers, and all ζ f abcd are pure imaginary
numbers; Aabcd

I ;cvλ± shares the same symmetry properties as
Aabcd

I , while Aabcd belongs to the higher-symmetry group Oh

and has fewer nonzero independent components,

ξxxxx = ξyyyy = ξzzzz,

ξ xxyy = ξxxzz = ξyyzz = ξyyxx = ξzzxx = ξzzyy, (7)

ξxyxy = ξxzxz = ξyzyz

and

ζ zxyxx = −ζ zyxyy = ζ yzxzz

= −ζ yxzxx = ζ xyzyy = −ζ xzyzz,
(8)

ζ xxzxy = −ζ xyxxz = ζ yxyyz

= −ζ yzyyx = ζ zyzxz = −ζ zzxyz.

All these components are related to the nonzero injection
coefficients in the Z valley by

ξxxxx = 4ξxxxx
Z + 2ξzzzz

Z , ξxxyy = 4ξzzxx
Z + 2ξ

xxyy

Z ,

ξxyxy = 4ξxzxz
Z + 2ξ

xyxy

Z , ζ xxzxy = 4ζ
xxzxy

Z + 2ζ
zyzxz

Z , (9)

ζ zxyxx = 2ζ
zxyxx

Z + 2ζ
xzzyz

Z + 2ζ
xyzyy

Z .

With all these coefficients, the injection rates for laser pulses
with any polarization and propagation directions can be
evaluated. In the Appendix, we give in detail the carrier
and spin injection rates for circularly polarized light with
any propagation direction, and the carrier injection rates for
linearly polarized light with any polarization and propagation
directions. In the following, we focus on light propagating
along the 〈001〉 and 〈111〉 directions.

B. Results

For quantitative calculations of the two-photon indirect
injection rates, a full band structure description of the electron
and phonon states is necessary. Here we use an empirical
pseudopotential model43–45 for electron states and an adiabatic
bond charge model46 for phonon states. All the parameters
used in the empirical pseudopotential model and the adiabatic
bond charge model are the same as those in the calculation
of one-photon optical spin injection.39 From the empirical
pseudopotential model, the calculated direct band gap is
Eg = 3.43 eV and the indirect band gap is Eig = 1.17 eV; the

band edge for the conduction band is located at k0
c = 0.85

−→
X

and for the valence bands at the  point, k0
v = 0. From

the adiabatic bond charge model, the energies for phonons
with wave vector k0

c are 19 (TA), 43 (LA), 53 (LO), and 57
(TO) meV. Within the pseudopotential scheme we determine
the electron-phonon interaction and then evaluate the matrix
elements H

ep

λ (q) using the calculated electron and phonon

ξzzzz
Z

ξxzxz
Z

ξxyxy
Z

0.90.60.30

ξzzxx
Z

ξxxyy
Z

ξxxxx
Z

ξ
(1

04
s−

1 m
V

−
4 )

2 ω − Eig (eV)

0.90.60.30

0.4

0.2

0

FIG. 1. (Color online) Spectra of ξabcd
Z at 4 K (thick black curves)

and 300 K (thin red curves).

wave functions. With all these quantities calculated, the two-
photon indirect gap transition matrix elements in Eq. (4) are
calculated using the lowest 30 electron bands as intermediate
states to ensure convergence. The injection coefficients given
in Eq. (3) are evaluated using an improved linear analytic
tetrahedral method.39

In our calculation, the valence bands include heavy-hole
(HH), light-hole (LH), and spin split-off (SO) bands; the
conduction bands include the lowest two conduction bands.
Our results are shown in Fig. 1 for the spectra of nonzero
components of ξabcd

Z and in Fig. 2 for the spectra of nonzero
components of ζ

f abcd

Z at 4 and 300 K. The full two-photon
indirect gap injection rates in Eq. (1) can be identified for any
polarization of the electric field using Eq. (9). Comparing the
injection rates given in Eqs. (2) and (3) with the one-photon
indirect optical injection rates,39 we find that these two
formulas differ only in the transition matrix elements given in
Eq. (3). Therefore they show similar temperature dependence,
which is mainly determined by the phonon number, and
similar contributions from each valence band, which is mainly
determined by the joint density of states.

In a previous paper,40 we discussed in detail the photon
energy, temperature, and phonon branch dependence of the

ζxzzyz
Z

ζxxzxy
Z

ζxyzxx
Z

0.90.60.30

ζxyzyy
Z

ζzyzxz
Z

ζzxyxx
Z

2
Im

[ζ
]
(1

0
s−

1 m
V

−
4 )

2 ω − Eig (eV)

0.90.60.30

0.8

0.6

0.4

0.2

0

-0.2

-0.4

FIG. 2. (Color online) Spectra of 2
h̄

Im[ζ f abcd

Z ] at 4 K (thick black
curves) and 300 K (thin red curves).
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total carrier injection coefficients ξxxxx , ξxxyy , and ξxyxy .
Here the ξabcd

Z in Fig. 1 show similar properties: For excess
photon energies 2h̄ω − Eig of interest, ξzzxx

Z first increases
with increasing photon energy and then slightly decreases; all
the other components increase monotonically. In contrast, all
the components of ζ

f abcd

Z , given in Fig. 2, show a complicated
photon energy dependence. All injection rates at 300 K are
larger than those at 4 K due to the larger phonon populations.

To better understand these results, we first consider the
properties of transitions around the band edges. Then we turn
to the injection rates of carriers and spins, and the DSP under
σ− light propagating along two different directions.

1. Transitions near band edges

One can try to simplify the description of the indirect
two-photon injection around the band edges using the high
symmetry at the band edge. We symmetrize the indirect
two-photon injection rates as

Aabcd
I ;cvτ± = 2π

h̄

∑
kc ∈ I

kv,λ ∈ τ

1

Nv

∑
Pv

δ
(
εckc

− εvkv
± h̄�(kc−Pv kv )λ

− h̄ω
)
N(kc−Pv kv )λ±Ãabcd

I ;ckcv(Pv kv )λ. (10)

Here Ãabcd
I ;ckcvkvλ

= ∑
Pc,I

Aabcd
c(Pc,I kc)v(Pc,I kv )λ/Nc,I ; Pc,I are the

Nc,I symmetry operations in C4v that keep the I th valley
unchanged, while Pv are the Nv symmetry operations in Oh;
and

∑
λ∈τ indicates summation over all modes in the τ th

branch. Around the band edge, it is a good approximation
to take the mediated phonon energy h̄�(kc−kv )λ and the phonon
number N(kc−kv )λ to be constant and equal to their band edge
values h̄�k0

cλ
= h̄�0

τ and Nk0
c ;λ = N0

τ , respectively. Then the
injection rates are approximately

Aabcd
I ;cvτ± = 2π

h̄

∑
kc ∈ I

kv

δ
(
εckc

−εvkv
± h̄�0

τ − h̄ω
)
N0

τ±Āabcd
I ;ckcvkvτ

,

(11)

with

Āabcd
I ;ckcvkvτ

= 1

Nv

∑
Pv,λ∈τ

Ãabcd
I ;ckcv(Pv kv )λ. (12)

Here the symmetrized expression Āabcd
I ;ckcvkvτ

in Eq. (11) avoids
the ambiguity in calculating the band edge values of Aabcd

ckcvkvλ
,

which is induced by the degeneracy of the heavy- and light-
hole bands at the  points. This can be clearly shown by

rewriting Wab
c̄kc v̄kvλ

= 〈c̄kc|Ŵ ab
ckcvkvλ

+ Ŵ ba
ckcvkvλ

|v̄kv〉 with the
operator

Ŵ ab
ckcvkvλ

≡ 1

2

(
e

ω

)2[
H

ep

λ (kc − kv)
1

He − εvkv
− 2h̄ω

× v̂a 1

He − εvkv
− ω̄

v̂b − v̂a 1

εckc
− He − h̄ω

×H
ep

λ (kc − kv)
1

He − εvkv
− h̄ω

v̂b + v̂a

× 1

εckc
− He − h̄ω

v̂b 1

εckc
− He − 2h̄ω

H
ep

λ (kc − kv)

]
,

keeping the intermediate states appearing in Eq. (4) implicit.
Then, similar to the corresponding results for one-photon
indirect optical transition,39 we have

Āabcd
I ;ck0

cHHk0
vτ

= Āabcd
I ;ck0

cLHk0
vτ

= 1

2

∑
v′=LH,HH

Āabcd
I ;ck0

cv
′k0

vτ
, (13)

which is unambiguous for any choice of heavy- and light-hole
states at the valence band edge. We analyze the nonzero matrix
elements of Āabcd

I ;ck0
cvk0

vτ
using the symmetries of the crystal.

For a given symmetry operation, the transformation of Ŵ ab

is determined by H
ep

λ , v̂a , and v̂b; a direct symmetry analysis
for Wab

c̄k0
c v̄k0

vλ
is possible with the electron state |c̄k0

c〉 and the

hole state |v̄k0
v〉. However, because of very weak spin-orbit

coupling in silicon, this process can be greatly simplified by
dropping spin-orbit coupling terms in H

ep

λ , v̂a , and v̂b, and thus
in Ŵ ab

ckcvkvλ
. Without spin-orbit coupling, the valence states at

 are chosen with the symmetry properties of {X = yz,Y =
zx,Z = xy}; the phonon states are chosen with the symmetry
{x,y} for the TA and TO branches, {z} for the LA branch, and
{x2 − y2} for the LO branch; without losing generality, the
conduction band edge states are taken to lie in the Z valley,
which has the symmetry of {z}. All matrix elements are listed
in Table I. In total there are 15 nonzero quantities for the band
edge values. From the table, the selection rules depend strongly
on the phonon states.

With spin-orbit coupling, the valence bands are split into
HH (| 3

2 , ± 3
2 〉), LH (| 3

2 , ± 1
2 〉), and SO (| 1

2 , ± 1
2 〉) bands, and

the conduction bands are twofold-spin-degenerate bands |z ↑〉
and |z ↓〉. The indirect optical matrix elements in these states
can be easily obtained by linear combination of the terms
in Table I, and the band edge transition probabilities can be
identified by Āabcd

Z;cvτ = Āabcd
ck0

cvk0
vλ

, with k0
c being the band edge

wave vector in the Z valley. Similar to the corresponding

TABLE I. Band edge value of Wab

ck0
c vk0

vλ
. Here Mij is a matrix with matrix elements [Mij ]kl = (1 − δij )(δikδjl + δilδjk) + δij δikδil . There are

in total 15 parameters {Wi,i = 1, . . . ,10} for the TA, LA, and LO phonon branches and {W ′
i ,i = 1, . . . ,5} for the TO phonon branch.

TA and TO LA LO

Wab

ck0
c vk0

vτ
x y z x2 − y2

|X 〉 W
(′)
1 M12 W

(′)
2 M11 + W

(′)
3 M22 + W

(′)
4 M33 W6M

23 W8M
13

|Y〉 W
(′)
2 M22 + W

(′)
3 M11 + W

(′)
4 M33 W

(′)
1 M12 W6M

13 W8M
23

|Z〉 W
(′)
5 M23 W

(′)
5 M13 W7M

12 W9(M11 + M22) + W10M
33
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TABLE II. Independent nonzero components of ξ̄ abcd
Z;cHHτ .

τ

ξ̄ abcd
Z;cHHτ TA and TO LA LO

ξ̄ xxxx
Z

2
3 (|W (′)

3 |2 + |W (′)
2 |2) 0 2

3 |W9|2
ξ̄

xxyy

Z
4
3 Re[W (′)

3 (W (′)
2 )∗] 0 2

3 |W9|2
ξ̄ zzxx
Z

2
3 W

(′)
4 (W (′)

3 + W
(′)
2 )∗ 0 2

3 W10W
∗
9

ξ̄
xyxy

Z
4
3 |W (′)

1 |2 2
3 |W7|2 0

ξ̄ xzxz
Z

2
3 |W (′)

5 |2 2
3 |W6|2 2

3 |W8|2
ξ̄ zzzz
Z

4
3 |W (′)

4 |2 0 2
3 |W10|2

term for one-photon absorption,39 Āabcd
Z;cvτ has the following

properties: (i) ξ̄ abcd
Z;cvτ are the same for v = HH, LH, and SO;

(ii)
∑

v ζ̄
f abcd

Z;cvτ = 0 and ζ̄
f abcd

Z;cHHτ = ζ̄
f abcd

Z;cLHτ .
We list Āabcd

Z;cHHτ in Table II for carrier injection and in
Table III for spin injection. Generally, these nonzero transition
probabilities can be used in Eq. (11) to approximate the
Āabcd

I ;ckcvkvτ
around the band edge values, which results in the

simple formula

Aabcd
I ;cvτ± ≈ 2π

h̄
Jcv(h̄ω)N0

τ±Āabcd
I ;cvτ , (14)

the analog of which is widely used in the qualitative analysis
of one-photon direct and indirect injection even for injection
away from the band edge. Here Jcv(h̄ω) is the joint density
of states, Jcv(h̄ω) = ∑

kc∈I ;kv
δ(εckc

− εvkv
± h̄�0

τ − h̄ω). In
Fig. 3(a), we give the local properties of ξ̄ xxxx

Z;ckc(HH)kvτ
around

band edges (k0
c,k

0
v); its rapid variation away from the band

edge shows that the simple formula (14) may fail. Garcia
and Kalyanaraman36 found that the corresponding formula
for two-photon absorption should be replaced by

β =
∑
nλ±

Cnλ±Fn

(
2h̄ω

Eig

,
±h̄�0

λ

Eig

)
. (15)

Here the two-photon absorption coefficient β is related to
our calculated quantity ξxxxx by β = 2h̄ωξxxxx/(2nRcε0)2,
nR is the refractive index, c is the speed of light, ε0 is
the vacuum permittivity, Fn(x,y) = (x − y − 1)2+n/x5, and
�0

λ = �k0
cλ

is the frequency of phonons mediated in the band
edge transitions. According to the parity difference between
the band edge hole and electron states, the transitions are

TABLE III. Independent nonzero components of ζ̄
f abcd

Z;cHHτ .

τ

ζ̄
f abcd

Z;cHHτ TA and TO LA LO

ζ̄
zxyxx

Z − i

3 W
(′)
1 (W (′)

3 − W
(′)
2 )∗ 0 0

ζ̄
zyzxz

Z 0 − i

3 |W6|2 i

3 |W8|2
ζ̄

xyzyy

Z
i

3 W
(′)
5 (W (′)

2 )∗ 0 − i

3 W8W
∗
9

ζ̄
xyzxx

Z
i

3 W
(′)
5 (W (′)

3 )∗ 0 − i

3 W8W
∗
9

ζ̄
xxzxy

Z
i

3 W
(′)
5 (W (′)

1 )∗ − i

3 W6W
∗
7 0

ζ̄
xzzyz

Z − i

3 W
(′)
4 (W (′)

5 )∗ 0 i

3 W10W
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8
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FIG. 3. (Color online) (a) Values of ξ̄ zzzz
Z;ckc(HH)kv (TA) at 2h̄ω = Eig

along different directions: Dashed black curve, (k0
c + k ẑ,k0

v); solid
red curve, (k0

c + k ŷ,k0
v); and dotted blue curve, (k0

c,k
0
v + k x̂). (b)

Photon energy dependence of (2h̄ω)6ξ̄ zzzz

Z;ck0
c (HH)k0

vτ
for different phonon

branches. Here a = 5.431 Åis the lattice constant.

divided into allowed-allowed (a-a), allowed-forbidden (a-f ),
and forbidden-forbidden (f -f ) processes, which correspond
to the n = 0, 1, and 2 terms in Eq. (15), respectively; such a
classification is based on whether the band edge values of the
matrix elements of va and vb in Eq. (4) are zero (forbidden)
or nonzero (allowed) for different parities of the intermediate
states. In deriving Eq. (15), the dependence ξzzzz

ckcvkvλ
∝ (h̄ω)−6

must be used. Dinu35 argued instead that ξzzzz
ckcvkvλ

∝ (h̄ω)−5

for some processes. Here we can numerically study this
dependence, and the result is plotted in Fig. 3(b); it shows
that ω−5 and ω−6 dependences are both important, at least for
the TA phonon branch.

The simple formula (14) corresponds only to the a-a
process. In obtaining results for the other two processes, the
first and second derivatives with respect to kc and kv of
Wab

I ;ckcvkvλ
are necessary. This results in a more complicated

symmetry analysis that we do not consider here.

2. Injection for σ− light propagating along 〈001〉 and 〈111〉
For σ− light propagating along the directions 〈001〉 and

〈111〉, the electric field E〈k̂〉 can be written, respectively, as

E〈001〉
ω = x̂ − i ŷ√

2
E0,

(16)

E〈111〉
ω = 2i x̂ + (

√
3 − i) ŷ − (

√
3 + i) ẑ

2
√

3
E0,

where 〈k̂〉 denotes 〈001〉 or 〈111〉. The injection rates of
carriers and spins then are

ṅI ;cvλ± = ξ
〈k̂〉
I ;cvλ±|E0|4, Ṡ

f

I ;cvλ± = ζ
f ;〈k̂〉
I ;cvλ±|E0|4. (17)

Here ξ
〈k̂〉
I and ζ

f ;〈k̂〉
I are the injection coefficients of carriers and

spins, respectively, in the I th valley. They can be expressed
by the nonzero components of ξabcd

Z;cvλ± and ζ
f abcd

Z;cvλ± defined
in Eqs. (5) and (6). The resulting expressions are listed in
Table IV. The DSP is defined as Df = Ṡf /(h̄ṅ/2). For 〈001〉
light, the injected spin in each valley and the total spin are all
parallel to the light propagation direction, i.e., the 〈001〉 direc-
tion. The carrier and spin injection rates show valley anisotropy
between the Z valley and the X and Y valleys. For 〈111〉 light,
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TABLE IV. The carrier indirect two-photon injection coefficients ξ
〈k̂〉
I and the spin indirect two-photon injection coefficients ζ

a;〈k̂〉
I in the

I th valley for σ− light propagating along directions 〈k̂〉 = 〈001〉 and 〈111〉.

〈k̂〉 I ξ
〈k̂〉
I ζ

x;〈k̂〉
I ζ

y;〈k̂〉
I ζ

z;〈k̂〉
I

〈001〉 X 1
4 (ξ zzzz

Z + ξxxxx
Z ) − 1

2 ξ zzxx
Z + ξ zxzx

Z 0 0 Im[ζ xzzyz

Z + ζ
xyzyy

Z ]

Y ξ
〈001〉
X 0 0 ζ

z;〈001〉
Z

Z 1
2 ξxxxx

Z − 1
2 ξ

xxyy

Z + ξ
xyxy

Z 0 0 2Im[ζ zxyxx

Z ]

Total 1
2 ξxxxx − 1

2 ξxxyy + ξxyxy 0 0 2Im[ζ zxyxx]

〈111〉 X ξ
〈111〉
Z ζ

z;〈111〉
Z ζ

x;〈111〉
Z ζ

x;〈111〉
Z

Y ξ
〈111〉
Z ζ

x;〈111〉
Z ζ

z;〈111〉
Z ζ

x;〈111〉
Z

Z 1
9

[
2ξxxxx

Z + ξ zzzz
Z − ξ

xxyy

Z − 2ξxxzz
Z

+4(ξxyxy

Z + 2ξxzxz
Z )

]
2

3
√

3
Im[ζ xyzyy

Z + 2ζ
xxzxy

Z + ζ
xzzyz

Z ] ζ
x;〈111〉
Z

4
3
√

3
Im[ζ zxyxx

Z + ζ
zyzxz

Z ]

Total 1
3 (ξxxxx − ξxxyy + 4ξxyxy) 4

3
√

3
Im[ζ zxyxx + ζ xxzxy] ζ x;〈111〉 ζ x;〈111〉

the injected carriers are the same for every valley, and the total
spin polarization is still along the direction of the electric field,
i.e., the 〈111〉 direction. But the injected spins in each valley
have different spin polarization: The two transverse directions
in each valley have the same injection rates, which are different
from those in the longitudinal direction of the valley.

3. Carrier injection under σ− light propagating
along 〈001〉 and 〈111〉

We plot the photon energy dependence of the total carrier
injection coefficients for 〈001〉 and 〈111〉 light at 4 and 300 K
in Fig. 4(a). As we found earlier in a preliminary study,40

the injection coefficients increase rapidly with increasing
temperature. The injection for 〈111〉 light is larger than that
for 〈001〉 light, demonstrating the anisotropy of the injection
depending on the light propagation direction. In agreement
with Hutchings and Wherrett’s notation47 for direct gap two-
photon injection, this anisotropy can be characterized by two
parameters, the anisotropy σ and the linear-circular dichroism
δ, which are given as

σ = ξxxxx − 2ξxyxy − ξxxyy

ξxxxx
,

(18)

δ = ξxxxx − 2ξxyxy + ξxxyy

2ξxxxx
.

In the isotropic limit, σ = 0 and δ = ξxxyy/ξxxxx .48 We plot
σ and δ in Fig. 4(b). Note that the anisotropy shows a
much stronger temperature dependence than the linear-circular
dichroism. In contrast to σ in direct gap two-photon injection,
which clearly shows the onset of the transition from the
spin-split-off band to the conduction band by the presence
of a cusp, it is hard to identity the contribution from the
spin-split-off band in indirect gap injection. This is because
the energy dependence at the onset of indirect absorption is
proportional to (h̄ω − Eig)2, given by the a-a process, instead
of proportional to (h̄ω − Eg)1/2 for direct absorption.

Now we turn to the carrier injection into each valley.
For 〈111〉 light, all valleys are equivalent, and the injection
coefficient in each valley is 1/6 of the total. There is no valley
anisotropy in this case. For 〈001〉 light, the valleys can be
divided into two sets: {Z,Z̄} and {X,X̄,Y,Ȳ }, and the injection
is the same for all valleys within each set. We plot the spectra

of injection rates ξ
〈001〉
I in the I = Z and X valleys at 4 and

300 K in Fig. 5. The spectrum in each valley has a shape
similar to the total, and the injection in the Z valley is larger
than that in the X valley. The valley anisotropy arises because
of the anisotropic effective electron mass in the conduction
bands, which leads to different matrix elements appearing in
(4) for the different Cartesian components of velocity. For the
Z valley, the effective mass along the z direction is heavier than
that along the x and y directions,20 which results in a smaller z

component of the interband velocity matrix elements.49 From
Table IV, we find that the z components of the electron and
hole velocities appear only in the injection rates in the X and
Y valleys, and result in their smaller injection rates.

Figure 6 gives the phonon-resolved spectra in the X

valley for 〈111〉 light. Similar to our previous results,40

we find here that the LA-phonon-assisted process gives the
smallest contribution, while the TA- and TO-phonon-assisted
processes dominate: At low temperature, the TA-phonon-
assisted process dominates at low photon energy, and the
TO-phonon-assisted process dominates at high photon energy;
with increasing temperature, the TA-phonon-assisted process
becomes more and more important due to the small TA phonon
energy, and dominates for photon energy less than Eig at 300 K.
The phonon-resolved injection rates in each valley for 〈001〉
light show similar behavior.

δ
σ

(b)

δσ

2 ω − Eig (eV)

0.8

0.6

0.4

0.2

0
1.20.90.60.30
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(a)

ξ
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1 m
V

−
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2
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1

0.5

0

FIG. 4. (Color online) (a) Spectra of total carrier injection rates
ξ at 4 and 300 K for σ− light propagating along the 〈001〉 and 〈111〉
directions. (b) Anisotropy σ and linear-circular dichroism δ at 4 (thick
black curves) and 300 K (thin red curves).
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FIG. 5. (Color online) Spectra of carrier injection rates ξ
〈001〉
I in

the I = Z and X valleys at 4 (thick black curves) and 300 K (thin red
curves).

4. Spin injection under σ− light propagating
along 〈001〉 and 〈111〉

In Fig. 7 we show the spectra of the spin injection rates
ζ 〈k̂〉 and the Df for σ− light propagating along the 〈001〉 and
〈111〉 directions at 4 and 300 K. The total spin polarizations
are all parallel to the light propagation direction. When the
photon energy is higher than the injection edge, which is
Eig + h̄�0

TA at 4 K or Eig − h̄�0
TO at 300 K, the spin injection

rates first increase with photon energy from zero to maximum
values, then decrease, and then change direction at high
photon energies. This is different from the behavior of indirect
one-photon spin injection, in which the spin injection rates
always increase with photon energy. The difference can be
attributed to the complicated transition amplitude W in Eq. (4).
The fine structure of the injection rates around the band edge
are clearly shown by the DSP spectra in Fig. 7(b). The DSP
depends strongly on the laser propagation direction and the
temperature. For 〈001〉 light, the maximum DSP can reach
about 20% at 4 K and −10% at 300 K; for 〈111〉 light, the

TO
LO
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TA

ξ
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04
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1
m

V
−

4
)

2 ω − Eig (eV)
1.20.90.60.30

0.16

0.12

0.08

0.04

0

FIG. 6. (Color online) Phonon-resolved spectra of carrier injec-
tion rates ξ

〈111〉
X;τ at 4 (thick black curves) and 300 K (thin red curves).
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ω
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FIG. 7. (Color online) Spectra of (a) spin injection rates ζ 〈k̂〉 and
(b) the DSP D〈k̂〉 at 4 (thick black curves) and 300 K (thin red
curves). (Solid curves) E ‖ 〈001〉, (dashed curves) E ‖ 〈111〉. The
spin polarization direction is parallel to E. The labeled energies are
2h̄ω1–3 − Eig = −�0

TO,−�LA,−�TA, and 2h̄ω′
3 − Eig = �TA.

maximum DSP is only 6% at 4 K but 20% at 300 K. Around
the injection edges, the DSP show more detailed structures at
300 K than 4 K. In Fig. 7(b), we label the injection edge for
phonon branches by dotted vertical lines: h̄ω1, h̄ω2, and h̄ω3 for
the TO, LO, and TA phonon absorption process, respectively;
h̄ω′

3 identifies the TA phonon emission process. As in the
corresponding results for indirect one-photon spin injection,
the fine structures arising here come from the contributions of
different phonon branches.

To better understand these fine structures, we plot the spin
injection in each valley and the contribution from each phonon
branch for 〈001〉 light in Fig. 8. Figure 8(a) gives the spin
injection rates in the X and Z valleys at 4 and 300 K, in which
the valley anisotropy is prominent. Again, due to the anisotropy
in electron velocity, the injection rate in the Z valley is much
larger than that in the X valley. Figure 8(d) gives the detailed
structure of the DSP around the band edge. The maximum
DSP is about 36% at 4 K and −20% at 300 K in the X valley,
and about 10% in the Z valley for both temperatures. However,
the spin injection rates are very close in these two valleys near
the injection edge in Fig. 7(a), so the difference between these
maximum values can only come from the difference of the
carrier injection rates, which are much smaller in the X valley
than in the Z valley (see Fig. 5).

The phonon-resolved spin injection rates in the X and Z

valleys are plotted in Figs. 8(b) and 8(c) at 4 K. In the X

valley, the TA phonon branch dominates at low photon energy,
and the TO phonon branch dominates at high photon energy.
In the Z valley, the TA and LO phonon branches have similar
contributions and dominate at low photon energy. Near the
band edge, the spins injected from the TO- and TA-phonon-
assisted processes have opposite spin polarization directions
in the X valley, but the same in the Z valley. Figures 8(e)
and 8(f) give the corresponding DSPs. Almost all processes
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FIG. 8. (Color online) Spectra of (a) spin injection rates ζ
〈001〉
I

in the I = X valley (solid curves) and the I = Z valley (dashed
curve) at 4 (thick black curves) and 300 K (thin red curves), (b),(c)
phonon-branch-resolved spin injection rates in the X and Z valleys
at 4 K, and (d),(f) the corresponding DSPs of (a)–(c).The labeled
energies are 2h̄ω′

1,2 = �0
TO and �0

LA, respectively.

contribute nonzero DSP. In the Z valley, the spin injection
rates are given by Im[ζ zxyxx

Z;τ ] as shown in Table IV. At the band
edges, the carrier and spin injection amplitudes of the LA- and
LO-phonon-assisted processes are all zero, which means these
a-a processes inject no carriers. As one moves away from the
band edges, carriers and spins can be injected by a-f and f -f
processes, which results in a nonzero DSP. In the X valley,
the spin injection rates are given by Im[ζ xzzyz

Z;τ + ζ
xyzyy

Z;τ ]. From
the results in Table III, we see that the LA-phonon-assisted
process gives zero spin injection amplitude at the band edge,
but its DSP is not zero because the a-f and f -f processes
dominate over the a-a process. Similar results also exist in
two-photon direct injection.50

In Figs. 8(e) and 8(f), we plot only the DSPs for the phonon
emission processes; the corresponding injection edges are
given by h̄ω′

i . From the calculation of the indirect one-photon
injection, we know that the DSPs induced by the phonon
absorption process and the phonon emission process have a
similar shape, but the injection edge shifts from h̄ω′

i to h̄ωi .
At 4 K, the injection edge is dominated by the TA phonon
emission process (which begins at h̄ω′

3), and it is dominated
by the TO and LO phonon absorption process (begins at h̄ω1)
at 300 K, followed by the LA phonon absorption process at
h̄ω2 and the TA phonon absorption process at h̄ω3. Therefore,
the coaction of the TO and LO phonon absorption processes
gives a negative DSP and results in the sharp increase between
the photon energies h̄ω1 and h̄ω2 in Fig. 8(c); then the LA and
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FIG. 9. (Color online) Spectra of (a) spin injection rates ζ
a;〈111〉
Z

and (d) D
a;〈111〉
Z for the a = z (solid curves) and x,y (dashed curves)

spin components at 4 (thick black curves) and 300 K (thin red
curves). Phonon-resolved (b),(c) spin injection rates ζ

a;〈111〉
Z;τ and (e),(f)

D
a;〈111〉
Z;τ for the z (black thick curves) and x,y (blue thin curves) spin

components at 4 K.

TA phonon absorption processes give positive DSPs, so the
total DSP decreases sharply after h̄ω2.

Figure 9 gives the details of the spin injection for the σ−
light propagating along the 〈111〉 direction. The analysis is
similar to that in the 〈001〉 case.

III. TWO-COLOR CHARGE AND SPIN
CURRENT INJECTION

Now we study the motions of optically injected carriers
and spins. While a single-color light source can inject net
current into a particular valley,51,52 due to the Oh symmetry
there is no net charge or spin current injection from either
either one-photon or two-photon absorption of a single-color
light source. We calculate 1 + 2 injection effects here and
only consider the total charge and spin current induced. For
a two-color optical field E(t) = Eωe−iωt + E2ωe−i2ωt + c.c,
the carrier density injection rate is

ṅ = ξabEa
2ω

(
Eb

2ω

)∗ + ξabcdEa
ωEb

ω

(
Ec

ωEd
ω

)∗
, (19)

where ξab
i are one-photon indirect injection coefficients39 and

ξabcd are the two-photon injection coefficients studied in the
previous sections. The interference between ω and 2ω beams
injects charge and spin currents with injection rates

J̇ d
e(h) = ηdabc

e(h) Ea
2ω

(
Eb

ωEc
ω

)∗ + c.c.,
(20)

K̇
f d

e(h) = μ
df abc

e(h) Ea
2ω

(
Eb

ωEc
ω

)∗ + c.c.
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The injection coefficients ηdabc
e(h) and μ

df abc

e(h) are written in the
form Babc = ∑

λ± Babc
λ± with

Babc
λ± = 2π

h̄

∑
ckc,vkv

δ
(
εckc

− εvkv
± h̄�(kc−kv )λ − 2h̄ω

)

×N(kc−kv )λ±Babc
ckcvkvλ

, (21)

Babc
ckcvkvλ

= i
∑

σcσ ′
c ;σvσ ′

v

〈c̄′kc|〈v̄′kv|B̂|v̄kv〉|c̄kc〉

× T a
c̄kc v̄kvλ

(2ω)
[
Wbc

c̄′kc v̄′kvλ
(ω)

]∗
. (22)

Here T a
c̄kc v̄kvλ

is the one-photon indirect optical transition

amplitude.39 By taking B̂ as Ĵ d
e = −ev̂d

e , Ĵ d
h = ev̂d

h , K̂
f d
e =

− e
h̄

(v̂e
d Ŝ

f
e + Ŝ

f
e v̂d

e ), and K̂
f d

h = e
h̄

(v̂h
d Ŝ

f

h + Ŝ
f

h v̂d
h ), we obtain

the injection rates for electron and hole charge and spin cur-
rents, with ηdabc = ηdacb and μdf abc = μdf acb. For diamond
structure crystals, the nonzero components are

ηxxxx, ηxxyy = ηxxzz, ηxyxy = ηxzxz (23)

and

μzxxxy = −μzyyyx, μzxyxx = −μzyxyy,

μzxyyy = −μzyxxx, μzxyzz = −μzyxzz, (24)

μzxzyz = −μzyzxz, μzzxyz = −μzzyxz.

All other nonzero components can be obtained by cyclic
permutations of the Cartesian indices. The phonon-resolved
tensors ηdabc

e(h);λ± and μ
df abc

e(h);λ± share the same symmetry proper-

ties as the total injection tensors ηdabc
e(h) and μ

df abc

e(h) , respectively.
Using time-reversal symmetry, in the independent particle
approximation which we adopt here, all ηdabc are pure
imaginary numbers and all μdf abc are real numbers. We show
the calculated spectra of each component of the charge current
in Fig. 10 and of the spin current in Fig. 11. The current
injection coefficients ηdabc

e(h) and μ
df abc

e(h) have the same symmetry
properties as that of the two-color direct current injection
across the direct gap of germanium.25

From the calculation, both the charge and the spin currents
for injected electrons are larger than those for injected holes.
One contributing factor is that the electron moves faster than
the hole due to the smaller effective mass. But for the spin
current, another factor is that the average spin expectation
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FIG. 10. (Color online) Spectra of Im[ηf abc] for electron (a) and
hole (b) at 4 (thick black curves) and 300 K (thin red curves).
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FIG. 11. (Color online) Spectra of μdf abc
e for electron (a) and hole

(b) at 4 (thick black curves) and 300 K (thin red curves)

value over the HH and LH bands is smaller than that in the
conduction bands.

We consider the indirect current injection coefficients for
two-color laser beams propagating along the z direction with
the electric field components taken as Eω = Eωeiφω êω and
E2ω = E2ωeiφ2ω ê2ω. Here Eω and E2ω are real and positive
field amplitudes, êω and ê2ω are polarization vectors, φω and
φ2ω are their phases, and �φ ≡ 2φω − φ2ω is the relative-phase
parameter that is used to control the current. In the following,
we give the current injection for different configurations of the
laser beams.

A. Cocircularly polarized beams

For two circularly polarized beams propagating along the z

direction, the electric fields are ê2ω = σ̂ s2 and êω = σ̂ s1 with
si = ± identifying the handedness and σ s = (x̂ + is ŷ)/

√
2.

The indirect gap current injection coefficients are

J̇ e(h) = s1Im
[
ηxxxx

e(h) − η
xyyx

e(h) + 2s1s2η
xxyy

e(h)

]E2
ωE2ω√

2
m̂s1 ,

(25)

K̇ab
e(h) = [

μ
zxyyy

e(h) − μ
zxyzz

e(h) + s1s2μ
zxzyz

e(h)

]E2
ωE2ω√

2
m̂a

s1
ẑb

− [
μ

zxyyy

e(h) − μ
zxyxx

e(h) + s1s2μ
zxxxy

e(h)

]E2
ωE2ω√

2
ẑam̂b

s1

with ms1 = s1 x̂ sin �φ + ŷ cos �φ. Both the direction of the
charge and spin currents and the polarization of the spin current
can be controlled by the relative-phase parameter �φ and the
light polarization si . The charge current flows only in the x-y
plane, and the calculated η

xxyy

e(h) is negligible. For the oppositely
circularly polarized beams, the x component of the charge
current remains unchanged, but the y component reverses. The
spin current flows in the x-y plane with spin polarization along

235204-9



J. L. CHENG, J. RIOUX, AND J. E. SIPE PHYSICAL REVIEW B 84, 235204 (2011)

the x axis or flows along the z direction with spin polarization
along the x or y direction.

B. Cross-linearly polarized beams

For two z propagating cross-linearly polarized beams, Eω

along the x̂ direction and E2ω along the ŷ direction, the
injection current rates are given as

J̇ e(h) = 2Im
[
η

xxyy

e(h)

]
E2

ωE2ω ŷ sin �φ,
(26)

K̇ab
e(h) = 2

(
μ

zxyxx

e(h) ẑa x̂b − μ
zxyzz

e(h) x̂a ẑb
)
E2

ωE2ω cos �φ.

In this scenario, the charge current and the spin current are
injected with π/2 phase difference. Therefore, by tuning
the relative-phase parameter �φ, a pure charge current or
pure spin current can be injected. The charge current flows
along the second-harmonic polarization axis, and its amplitude
is determined by ηxxyy , which is zero under the parabolic
band approximation. In our full band structure calculation,
it is nonzero due to the band warping, but very small
compared to other tensor components. The spin current has
two components, one involving flow along the x direction with
the z spin polarization, and the other involving flow along the
z direction with the x spin polarization.

C. Collinearly polarized beams

For two z-propagating beams, both polarized along the x

direction, the injection current rates are given as

J̇ e(h) = 2Im
[
ηxxxx

e(h)

]
E2

ωE2ω x̂ sin �φ,
(27)

K̇ab
e(h) = 2μ

zxyyy

e(h) ( ŷa ẑb − ẑa ŷb)E2
ωE2ω cos �φ .

This scenario also gives the phase difference between the
charge current and the spin current as π/2, so as for cross-
linearly polarized beams pure charge current injection or pure
spin current injection can also be realized by choosing a
suitable relative-phase parameter �φ. Our results give the
relative-phase-parameter dependence of the injected current
as sin �φ, which is in good agreement with the experimental
results27 around zero probe delay. To understand the indirect
current injection better, we compare the indirect with the direct
current injection. Because of the lack of reports of direct gap
injection in silicon in the literature, our results are compared
with the direct current injection in bulk germanium.25 For
charge currents injected across the indirect gap in silicon, the
electron and hole currents have opposite directions at high
photon energies, but they can be the same at low energies; for
charge currents injected across the direct gap in germanium,
they always have the same direction. For the spin current,
the injected spin current is not so small compared to other
components, especially at 300 K, while it is negligibly small
in direct gap current injection in germanium because of the
complete lack of helicity of the incident light.

In this configuration, a good characterization of the charge
current is the swarm velocity, which is defined as the average
velocity per injected carriers forming this current, vx

s =
J̇ x/es ṅ, with ṅ taken from Eq. (19). Here es = −e is used
for electrons and es = e for holes. When �φ is a multiple of
π/2 and the indirect one-photon charge injection rate equals

300K
vx

h,max: 4K
300K

vx
e,max: 4K

v
x s,

m
a
x

(k
m

s−
1 )

2 ω − Eig (eV)

0.90.60.30

80

60

40

20

0

-20

FIG. 12. (Color online) Maximal swarm velocity vx
s,max for the

injected electrons (solid curves) and holes (dashed curves) at 4 (thick
black curves) and 300 K (thin red curves).

the indirect two-photon charge injection rate, the maximum
swarm velocity is

vx
s,max(ω) = Im

[
ηxxxx

s (ω)
]

es

√
ξxx
s (2ω)ξxxxx

s (ω)
. (28)

We show the maximum swarm velocity in Fig. 12 for the
injected electrons and holes at 4 and 300 K. The behavior
of the swarm velocity can be divided into two regions: (i)
For photon energies in 2h̄ω − Eig � 0.25 eV, the maximum
swarm velocities are along the x direction for injected electrons
and holes, and both magnitudes increase with increasing
photon energy. Compared to the maximum swarm velocity
in bulk germanium, which is on the order of 103 km/s,
the velocity here is about one order of magnitude smaller
due to the larger conduction band effective mass in silicon.
(ii) For photon energies 2h̄ω − Eig < 0.2 eV, the swarm
velocities show fine structures. In particular, all currents
experience directional changes except for the electron swarm
velocity at 4 K. Analogously to indirect one- and two-photon
charge and spin injection, these fine structures are induced
by the different phonon branches, which are clearly shown
in the phonon-resolved maximal swarm velocity in Fig. 13.
At 300 K, the injection edge is given by the TO and LO
phonon absorption processes, both of which give negative
velocities for injected electrons and positive velocities for
holes around the injection edge. At 4 K, the injection edge
is given by the TA phonon emission process, whose direction
is opposite to that of the band edge current at 300 K. Therefore,
the sign change of the injected current is induced by the
contributions from different phonon branches. At high photon
energies, the injected velocities are almost independent of the
temperature. This is similar to the temperature dependence
of the DSP of the one-photon indirect injection:39 The only
temperature dependence in the injection rates lies in the
phonon number, which is the same for the denominator and
numerator in Eq. (28) for a given phonon branch. For high
photon energies, an average phonon number can be used as a
good approximation, and the swarm velocities, given by the
ratio in Eq. (28), are almost temperature independent.
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FIG. 13. (Color online) Phonon-resolved maximal swarm veloc-
ity for the injected (a) electrons and (b) holes at 4 (thick black curves)
and 300 K (thin red curves).

IV. CONCLUSION

In conclusion, we have performed a full band structure
calculation of two-photon indirect carrier and spin injection
and two-color indirect current injection, in bulk silicon. We
presented the spectral dependence for all components of the
response tensors at 4 and 300 K, with which the injection under
any laser beams can be extracted. All injection rates increase
with increasing temperature due to the strong electron-phonon
interaction at high temperature. We discussed in detail the
injection under different polarized light beams.

For two-photon indirect optical carrier and spin injections,
we considered the injection under σ− light propagating along
the 〈001〉 and 〈111〉 directions. For 〈001〉 light, the injection
rates in the X and Y valleys are the same, but different from that
in the Z valley; for the 〈111〉 light, the injections into all valleys
are equivalent. For carrier injection, injections for these two
light propagation axes differ slightly. The calculated injection
anisotropy and the linear-circular dichroism characterize the
nonparabolic band effect in the full band structure calculation.
For the 〈001〉 light, the injection in the Z valley is much
larger than that in the X and Y valleys and gives the valley
anisotropy, which is induced by the velocity anisotropy in
the conduction band. At 4 K, the TA-phonon-assisted process
dominates at low photon energies and the TO-phonon-assisted
process dominates at high photon energies. At 300 K,
the TA-phonon-assisted process dominates for all photon
energies.

For two-photon indirect gap spin injection, the total injected
spins orient parallel to the light propagation direction for the
two directions considered. The spin injection rates increase
from the injection edge to a maximum value with increasing
photon energy and then decrease. The DSP strongly depends
on the temperature around the injection edge. For 〈001〉 light,
the injected spins in each valley are still along the z direction,
but the spin injection rates in the X and Z valleys are different.
The maximum DSP of total spins is 20% at 4 K and −10%
at 300 K; the DSP can reach about 40% at 4 K and −20% at
300 K in the X valley, and at both temperatures becomes 10%
in the Z valley. For 〈111〉 light, the spins in each valley orient
to a direction different from the light propagating direction.

In the Z valley, the x and y (transverse) components have the
same injection rates, which are different from that for the z

(longitudinal) component. The maximum DSPs of the total
spins are 6% at 4 K and 20% at 300 K, while that of the
z component spin in the Z valley is about 5% at 4 K and
20% at 300 K and becomes 25% and −8% for the x and y

components. All these features are induced by the interplay of
different phonon-branch-assisted processes.

For light propagating along the 〈001〉 direction, the injected
carriers or spins break the symmetry between the X and Z

valleys. Such a valley anisotropy of injected carriers could
be probed experimentally, for example, in a pump-probe
scenario where the probe beam propagates either parallel or
perpendicular to the pump beam.

For coherent control, we calculated two-color indirect
charge and spin current injection under three different po-
larization configurations of the two-color beams propagating
along the z direction. For cocircularly polarized beams, the
direction of the injected charge current is in the x-y plane;
the spin current flows in the x-y plane with a z-oriented
spin polarization, or flows along the z direction with the
spin orientation in the x-y plane; the current direction or
the spin polarization in the x-y plane can be controlled by
a relative-phase parameter. For collinearly and cross-linearly
polarized beams, the directions of the charge current, the
spin current, and the spin polarization are orthogonal to each
other. In these two cases, a pure spin current or a pure charge
current can be obtained by choosing a suitable relative-phase
parameter. We calculated the maximum swarm velocity for the
charge current as a function of photon energy, and found that
the maximum swarm velocities undergo a sign change near
the band edge, which is induced by the contributions from
different phonon branches.
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APPENDIX: DEPENDENCE OF THE INJECTION RATES
ON THE LIGHT PROPAGATION DIRECTION

For a circularly polarized laser pulse propagating along the
direction n̂1, the electric field can be expressed as

Eω = E0√
2

(n̂2 + isn̂3) (A1)

with

n̂1 =

⎛
⎜⎝

sin θ cos φ

sin θ sin φ

cos θ

⎞
⎟⎠, n̂2 =

⎛
⎜⎝

sin φ

− cos φ

0

⎞
⎟⎠, n̂3 = n̂1 × n̂2;

(A2)

here s = ±1 identifies the helicity. In the Z

valley the carrier injection rates can be written
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as

ṅZ = E4
0

[
1

8
(1 + cos2 θ )2

(
ξxxxx
Z − ξ

xxyy

Z + 2ξ
xyxy

Z

)

+ 1

8
(sin2 θ cos 2φ)2

(
ξxxxx
Z − ξ

xxyy

Z − 2ξ
xyxy

Z

)

+ 1

4
sin4 θ

(
ξzzzz
Z + ξ

xxyy

Z − 2ξzzxx
Z

)

+ sin2 θ (1 + cos2 θ )ξxzxz
Z

]
(A3)

and the spin injection rates as

ṠZ = E4
0s

{
− (cos2 θ + 1) cos θ Im

[
ζ

zxyxx

Z

]
ẑ

− 2 sin2 θ cos θ Im
[
ζ

zyzxz

Z

]
ẑ − sin3 θ Im

[
ζ

xzzyz

Z

]
n̂′

3

+ 1

4
g1(θ,φ) sin θ Im

[ − ζ
xyzyy

Z + ζ
xyzxx

Z + 2ζ
xxzxy

Z

]
− sin2 θ sin θ Im

[
ζ

xyzxx

Z

]
n̂′

3

− (3 + cos 2θ ) sin θ Im
[
ζ

xxzxy

Z

]
n̂′

3

}
(A4)

with n̂′
3 = ẑ × n̂2 and

g1(θ,φ) = (sin2 θ sin 4φ)n̂2 + [4 + sin2 θ (cos 4φ − 1)]n̂′
3.

(A5)

For an arbitrary propagating direction (θ,φ), the direction of
the spin polarization is not always along n̂1. In this case, we
consider the magnitude of the DSP of the carriers injected
into the Z valley |DZ| = |ṠZ|/(ṅZh̄/2). We plot in Fig. 14 the
(θ,φ) dependence of |DZ| at the edge of each phonon emission
process in the Z valley, which shows strong anisotropy of the
light propagation direction. The maximum |DZ| can reach
45% at (θ,φ) ≈ (π/2,0.2π ) for the TA phonon emission
process, 20% at ≈ (π/2,0.1π ) for the LA phonon, 45% at
θ ≈ π/4 for the LO phonon, and 13% at θ ≈ 0.2π for the TO
phonon.

The total carrier injection rates are

ṅ=E4
0ξ

xxxx

[
1 − δ − σ

2
sin2 θ (sin2 φ cos2 φ sin2 θ+cos2 θ )

]
,

(A6)

with δ and σ defined in Eqs. (18). The total spin injection rates
are

Ṡ = E4
0s

{
− 2Im[ζ zxyxx]n̂1

+ 1

4
sin θ g2(θ,φ)Im[ζ zxyxx − 2ζ xxzxy]

}
, (A7)
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FIG. 14. (Color online) Light propagation dependence of |DZ| at
the edge of each phonon emission process in the Z valley. (a) TA,
(b) LA, (c) LO, and (d) TO phonon.

with

g2(θ,φ) = sin θ (1 + 7 cos2 θ − sin2 θ cos 4φ)n̂1

− (sin2 θ sin 4φ)n̂2 − cos θ (3 − 7 cos2 θ

+ sin2 θ cos 4φ)n̂3. (A8)

From the above expressions, the two-photon carrier and spin
injection rates show strong anisotropy depending on the light
propagation direction. For the spin injection, the direction of
the injected spin polarization usually differs from the light
propagation direction, but it reverses as the light helicity
changes.

For the linearly polarized laser pulse, we also found that the
total carrier injection rates strongly depend on the polarization
direction. For the electric field

Eω = E0(n̂2 sin α + n̂3 cos α), (A9)

with α for the polarization direction, the total carrier injection
rates are given by

ṅ = E4
0ξ

xxxx{1 − [1 − f (θ,φ,β)]σ }, (A10)

with

f (θ,φ,β) = (cos φ sin α − cos θ sin φ cos α)4

+ (sin φ sin α + cos θ cos φ cos α)4

+ sin4 θ cos4 α. (A11)
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