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Lossy metamaterials: No effective medium properties without noise

R. R. A. Syms,* O. Sydoruk, and L. Solymar
Optical and Semiconductor Devices Group, Department of Electrical and Electronic Engineering, Imperial College London,

Exhibition Road, London SW7 2AZ, United Kingdom
(Received 22 October 2011; revised manuscript received 5 December 2011; published 30 December 2011)

Lossy metamaterial elements act as sources of Johnson noise, making such materials inherently noisy. A
coupled transmission line model capable of describing the effective medium properties, propagation and internal
reflections, the internal noise distribution, and the noise factor is developed. Two analyses are provided, a
numerical solution with limited physical insight and an approximation based on physical principles, and excellent
agreement is obtained. It is shown that the internal noise spectrum is modified as it couples to the electromagnetic
wave, and that there can be no change in permeability without an increase in the noise factor. This result implies
that metamaterials will require careful evaluation of their noise performance before use in practical devices.
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I. INTRODUCTION

Metamaterials containing metallic resonant elements such
as split-ring resonators (SRRs) and rods have received con-
siderable attention because of their ability to provide negative
values of permittivity and permeability at frequencies up to the
optical range, and the exciting potential applications arising
therefrom.1–6 The resonant elements are typically arranged in
an array, and a variety of effective medium theories7–9 and
homogenization methods10–12 have been developed to recover
the effective parameters with different unit cells. The simplest
arrangement is a one-dimensional (1D) array.13–15 In this case,
the interaction between an electromagnetic (EM) wave and the
medium can be represented using a lumped-element model in
which the EM wave is represented as an L-C transmission line
and the lossy resonant elements as R-L-C circuits.16,17

Considerable attention has been paid to conductor resis-
tance, which introduces propagation loss, and to interelement
coupling, which allows the propagation of lattice waves (for
example, magnetoinductive18 and electroinductive19 waves for
magnetically and electrically coupled elements, respectively).
However, all resistive elements must act as sources of Johnson
noise20–22 with a flat power spectral density. Dielectrics are an
alternative source of loss and noise. A typical L-C resonator
might comprise an inductor L with series resistance R and
a lossy capacitor formed from a material with complex
permittivity ε = ε′ − jε′′. The latter may be represented as a
lossless capacitor C together with an equivalent series resistor
ε′′/(ε′ωC), where ω = 2πf and f is the frequency, which
acts as a thermal noise source. Any associated noise will
therefore have 1/f spectral dependence and be most important
at low frequency.23,24 Assuming a frequency-independent
loss tangent, the contributions to resistance and noise from
the two components will be equal when ω/ω0 = Q0ε

′′/ε′,
where ω0 = 1/

√
LC is the angular resonant frequency and

Q0 = ω0L/R is the quality factor of the inductor. For
typical values of Q0 = 100 and ε′′/ε′ = 10−4, ω/ω0 = 0.01,
implying that the inductor will be the dominant noise source
near resonance. This conclusion will be invalid with purely
dielectric resonators. However, dielectric noise may be treated
in the analysis that follows by appropriately modifying the
power spectral density of the noise sources. The aspect of noise
appears to have been largely ignored in metamaterials and

may have a profound impact on any potential applications that
involve signals. For example, a noisy electromagnetic wave
incident on a metamaterial slab as shown in Fig. 1(a) would
be expected to exit the slab after suffering multiple reflection,
attenuation, and addition of further noise. While amplification
may be used to overcome loss, it is considerably more difficult
to mitigate the effects of noise.

It is well known that noise may also propagate as a wave
in distributed electrical circuits.25–33 Recently, it was shown
that the propagation of noise waves in magnetoinductive (MI)
arrays alters the power spectral density of the noise quite
dramatically,34 and similar effects have been noted in other
types of electrical lattice.35 However, interaction with an
electromagnetic wave was omitted, and the effective medium
properties were consequently ignored. Here, we extend the
analysis of 1D magnetoinductive systems to include magnetic
coupling to an EM wave in a magnetic metamaterial. We
provide two models, a detailed numerical model and an
analytic approximation, capable of simultaneously predicting
the permeability μr and the noise performance of a medium
with effective magnetic properties. In each case, multiple
reflections are included. We show that the models agree in
all their essential points, and that the effects are fundamentally
linked. There can be no change in magnetic susceptibility
caused by resonators formed from resistive elements without
an increase in the noise factor, a conclusion that can be directly
anticipated from the fluctuation-dissipation theorem.21,36–38

Here, we focus on the use of conductors to provide a negative
value of μr. However, similar conclusions are likely to be
reached for negative-index media that contain a second source
of noise derived from the conductors providing a negative
value of the permittivity εr.

In Sec. II, we introduce the full model and a method nu-
merical solution for comparison with later approximations. In
Sec. III, we calculate the dispersion relations of the isolated and
coupled systems. In Sec. IV, we use a perturbation solution to
estimate the propagation constant of the electromagnetic wave
and the effective permeability of the medium. In Sec. V, we
show how the power spectral density of the noise in the coupled
resonator system may be found. In Sec. VI, we show how this
noise is transferred to the EM wave and estimate the noise
factor of a finite array. Conclusions are presented in Sec. VII.
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FIG. 1. (a) Accumulation of loss and noise in a RF metamaterial slab; (b) coupled circuit model of an electromagnetic wave interacting
magnetically with a chain of lossy resonators.

II. PHYSICAL MODEL

Initial analysis of SRRs largely ignored their electric
response.1 However, it was subsequently shown that there
could indeed be an electric response, depending on the internal
arrangement of the SRRs and their orientation with respect
to the electric field, and that this effect could be significant
(see, e.g., Refs. 39–41). Such a response would of course give
rise to a change in effective permittivity, and the inclusion
of dielectric losses would allow this permittivity to be noisy.
Further complications (such as electric coupling between the
elements) allow magnetic coupling to the electromagnetic field
to give rise to an electric response, and vice versa, and further
possibilities for noise. Here, we emphasize that after a decade
of active research and a very large number of papers exploring
the wide range of possible effects in metamaterial lattices, the
link between effective medium properties and noise has been
ignored. As a result, although many exciting phenomena such
as negative-index materials, epsilon-near-zero materials, and
transformation optics have been explored, and applications
such as cloaking and electrically small devices have been
proposed, there has been no attempt to investigate what
may be a significant performance limitation. In the first
paper on the subject, there is a strong case to begin with
the simplest possible analysis. Such an approach allows a
relatively complicated calculation to be presented clearly,
without being obscured by the details of multiple couplings. In
many cases, magnetic effects are dominant and, furthermore,
can be engineered to be so through careful design of the
elements and the lattice.39,42 We therefore restrict ourselves
to magnetic coupling between the EM wave and the elements
and between the elements themselves. With this assumption,

the effect of the SRRs may be entirely attributed to changes
in permeability. The physical model assumed consists of an
EM wave propagating in a waveguide past a one-dimensional
array of coplanar resonant elements such as SRRs. The EM
wave is polarized so that its magnetic field may interact
with the resonators, which then provide an effective magnetic
medium. Figure 1(b) shows a low-frequency equivalent circuit,
which consists of a pair of coupled lines.16 The resonators
are represented as a 1D lattice of lumped-element circuits of
period a, with inductance L, capacitance C, and resistance R,
coupled to nearest neighbors by mutual inductance M . Such
a line supports MI waves. Due to the resistors, each element
contains an independent Johnson noise source VNR. The EM
wave is represented by a lossless transmission line of the same
period, with parameters L′ = μ0a and C ′ = ε0a, where μ0 and
ε0 are the permeability and permittivity of free space, which
is terminated with a matched load. The EM wave is derived
from a signal voltage source VS with output resistance Z0,
where Z0 is the characteristic impedance of the line. Source
noise is represented by the Johnson noise source VNS, which
is assumed to arise from the source impedance. All noise
sources are assumed to have the same temperature. Coupling
between the lines is represented by mutual inductance M ′,
which will be negative here. Currents in the nth element of
the EM and MI lines are Jn and In, respectively. For ease of
comparison with standard Johnson noise expressions, all volt-
ages and currents are specified by the root-mean-square (rms)
values.

A mathematical model corresponding to Fig. 1(b) may be
constructed by using Kirchhoff’s voltage law to generate a
set of equations relating currents to voltages. We assume N1
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sections of EM transmission line, followed by N2 sections
of interaction region, and finally N3 sections of transmission
line. However, N1 and N3 need only be sufficient to allow
later extraction of parameters. The total number of sections is
therefore N4 = N1 + N2 + N3, and there are N5 = N4 + N2

equations to solve. At the input of the EM line, we will have
at angular frequency ω = 2πf

(Z0 + jωL′)J1 + J1 − J2

jωC ′ = V1. (1)

Here, V1 is an input voltage, which might be due either to signal
or to source noise. Between the input of the EM line and the
interaction region (1 < n � N1), and between the interaction
region and the load (N1 + N2 < n � N4), we have

jωL′Jn + Jn − Jn+1

jωC ′ − Jn−1 − Jn

jωC ′ = 0. (2)

Within the interaction region (N1 < n < N1 + N2), we
have

jωL′Jn + Jn − Jn+1

jωC ′ − Jn−1 − Jn

jωC ′ + jωM ′In = 0,

(
R + jωL + 1

jωC

)
In + jωM(In+1 + In−1) + jωM ′Jn

= VNR n. (3)

Here, the voltages VNR n are due to Johnson noise in the MI
waveguide elements. Finally, at the load, we have

Z0JN3 − JN3−1 − JN3

jωC ′ = 0. (4)

Equations (1)–(4) can clearly be written in matrix form as
V = ZI, where Z is an N5 × N5 matrix containing impedances
and V and I are N5-element column vectors of voltages and
currents, respectively. Their solutions can yield a number of
results for comparison with later analytic approximations. For
example, the effects of each voltage source may be found.
Where these generate traveling waves, forward and backward
waves may be separated to yield dispersion characteristics for
each one, and reflection and transmission coefficients may
also be found. In addition, they may be solved repetitively to
find the power dissipated in the load when either the voltage
V1 or one of the voltages VNR n is present in isolation. The
results can then be scaled to represent either a signal voltage,
or a voltage arising from Johnson noise. Once this has been
done, addition of powers may be used to find the internal noise
or the signal-to-noise ratio (SNR) at the output (which may
then be compared with the SNR at the input to find the noise
factor F ).

III. DISPERSION RELATIONS

In general, the EM wave will encounter a finite line of
resonators. However, we start by considering infinite systems.
For the transmission line in isolation, and in the absence of any
voltage sources, the assumption of traveling-wave solutions to
Eq. (2) leads to the dispersion equation

1 − 2ω′2
0

ω2
+ 2ω′2

0

ω2
cos(kEMa) = 0. (5)

Here, ω′
0 = 1/

√
L′C ′ and kEM is the propagation constant of

the EM wave. This ω-k relation has the well-known sinusoidal
variation, providing low-pass propagation up to a maximum
angular frequency 2ω′

0. At low frequencies, it approximates to
the straight-line relation kEMa = ω/ω′

0, and leads to the real-
valued characteristic impedance Z0 = √

L′/C ′ = √
μ0/ε0.

Similarly, for a chain of resonators in isolation, this
approach leads to the dispersion equation for MI waves:18

1 − ω2
0

ω2
− j

ω0

ωQ0
+ κ cos(kMIa) = 0 . (6)

Here, ω0 = 1/
√

LC is the angular resonant frequency of
the elements and Q0 = ω0L/R is their quality factor, κ =
2M/L is the coupling coefficient and kMI is the propagation
constant of the MI wave. For negative κ , the waves are
backward. In the absence of losses, this ω-k relation provides
band-pass propagation over the range 1/

√
1 + |κ| � ω/ω0 �

1/
√

1 − |κ|. Propagation losses are low at mid-band, rising
rapidly at the band edges. The effect of a finite Q factor is
to allow additional out-of-band propagation, albeit with very
high loss.

For the two lines together, Eq. (3) yields the dispersion
relation16

[
1 − 2ρ2 ω2

0

ω2
+ 2ρ2 ω2

0

ω2
cos(ka)

]

×
[

1 − ω2
0

ω2
− j

ω0

ωQ0
+ κ cos(ka)

]
− q2 = 0. (7)

Here, q2 = M ′2/(LL′) is the normalized coupling coefficient
between the EM and MI waves, and we have also introduced
the ratio ρ = ω′

0/ω0. The dispersion equation may be solved
to yield an ω-k diagram with two branches. The thin lines in
Fig. 2(a) show this characteristic for the lossless case, for the
example parameters κ = −0.2, q2 = 0.02, and ρ = 20. These
results are in full agreement with previous theories, e.g., Ref. 7.
The thick lines show the corresponding results obtained for
the two uncoupled systems, to which the coupled solutions
are asymptotic. In this frequency range, the asymptotes are
straight. For the coupled system, there is a gap between
the branches near ω/ω0 = 1/

√
1 + κ = 1.118; however, the

introduction of loss allows propagation in this region.

IV. EFFECTIVE MEDIUM PROPERTIES

Since the effects of the resonators in this restricted model
are entirely magnetic, we first note that the relative perme-
ability can be found from the dispersion relation as μr =
(ka/kEMa)2, where ka corresponds to the electromagnetic
branch of the coupled system. In general, k is complex and
can be written as k = k′ − jk′′. Its frequency dependence
may, of course, be found by solving Eq. (7). The data points
in Fig. 2(b) show the variation of ω with k′ obtained for
κ = −0.2, Q0 = 100, q2 = 0.02, and ρ = 20. The result is
similar to Fig. 2(a), but the addition of loss has now allowed
propagation in the gap. Identical results can be obtained by
numerical solution of the circuit equations for a finite array,
separation of the currents into different waves, and extraction
of the relevant propagation constant.
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FIG. 2. (a) Dispersion characteristic of lossless coupled system
for κ = −0.2, q2 = 0.02, and ρ = 20 (thin lines); corresponding
result for uncoupled EM and MI systems (thick lines). (b) Dispersion
characteristic of the electromagnetic wave in a lossy coupled system
for the parameters above and Q0 = 100. Points: numerical solution;
line: approximate solution.

The data points in Fig. 3(a) show the corresponding
frequency variation of the real and imaginary parts of μr.
The variations show typical resonant behavior, shifted in
frequency by the magnetic coupling between the elements to
a higher resonant frequency ω0/

√
1 + κ . Although MI wave

propagation is supported over a wide band, the effects on
the EM wave are restricted to the narrow frequency range
where the two are almost synchronous. The real part of the
relative permeability can clearly become negative in this
region.

Although the numerical value of ka will be used in
subsequent calculations, we now present a simple analytic
approximation for comparison with published homogenization
theories. To do so, we assume that the resonators provide a
loading that alters the propagation constant of the EM wave to
k = kEM + �k. By substituting into Eq. (7), eliminating terms
using Eq. (5), neglecting second-order terms, and using the
low-frequency approximation for kEMa, we obtain

ka = ω

ρω0
− q2ω

2ρω0

[
1

1 + κ − ω2
0/ω

2 − jω0/ωQ0

]
. (8)
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FIG. 3. Frequency variation of (a) the real and imaginary parts
of the relative permeability and (b) the transmission and reflection
coefficients at the array input for κ = −0.2, Q0 = 100, q2 =
0.02, and ρ = 20. Points: numerical solution; lines: approximate
solution.

The full line in Fig. 2(b) shows the variation of ω with
k′ found in this way for the same parameters as before.
There is clearly excellent agreement with the numerical
solution. The agreement worsens as Q0 or q2 rises since
the effect on the EM wave is larger, but for moderate pa-
rameters, the perturbation solution provides a very reasonable
approximation.

Dividing Eq. (8) by kEMa and squaring the result, we can
find the relative permeability as

μr =
[

1 − q2/2

1 + κ − ω2
0/ω

2 − jω0/ωQ0

]2

. (9)
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If the interaction term q2 is small enough, we then get

μr = 1 − q2

1 + κ − ω2
0/ω

2 − jω0/ωQ0
. (10)

Equation (10) is clearly identical to expressions commonly
found in the literature if q2 is identified with the so-called
filling factor (see Refs. 1 and 2 or the discussion of five separate
models for μr in Sec. 2.8 of Ref. 43). The full lines in Fig. 3(a)
show its predictions for the same parameters as before. Once
again, there is excellent agreement with the numerical result
(the data points).

A change in μr from unity will of course give rise to
reflection at the array boundaries, as shown in Fig. 3(b).
Since the model allows a pair of coupled modes, transmission
and reflection are both in general accompanied by mode
conversion: an electromagnetic wave incident on the array
boundary will actually excite not only an EM-like transmitted
wave, but also a MI-like wave. Here, for simplicity we ignore
the latter, and assume amplitude reflection and transmission
coefficients r1, t1, r2, and t2 for the EM-like wave in standard
forms valid for low-frequency current waves incident on a
discontinuity between transmission line sections with different
magnetic properties

r1 = kEM − k

kEM + k
, t1 = 2kEM

kEM + k
,

r2 = k − kEM

kEM + k
, t2 = 2k

kEM + k
.

(11)

The lines in Fig. 3(b) show the frequency dependence of
|r1|2 and |t1|2 for the same parameters as Fig. 3(a), which
shows that these coefficients differ from zero and unity only
when the relative permeability also differs significantly from
unity. As before, the data points show results obtained from the
numerical model. Good agreement is again obtained, with only
slight discrepancies where the interaction is at its strongest.
Furthermore, examination of the numerical model shows that
the MI-like wave is indeed only weakly excited.

V. INTERNAL NOISE

We now consider the internal noise, which arises from
Johnson noise in the resonators. If the coupling to the EM
wave is weak, little of this noise will be transferred. We
therefore begin by considering the resonator array in isolation,
assuming this time that it is finite and extends from n = 1 to
m. For comparison with the full numerical model, we will take
N2 = m.

At frequencies low enough for the noise spectrum to be
flat, each of the internal noise sources will have rms voltage
VNR such that VNRV ∗

NR = 4KT Rdf in a small bandwidth
df .20,21 Here, K is Boltzmann’s constant and T is absolute
temperature. Elsewhere,34 we have shown that each source
in isolation will excite traveling waves, which are reflected
at the ends of a finite array as standing noise waves as
shown in Fig. 4(a). These waves may then be coupled to
the electromagnetic line as shown in Fig. 4(b). However, we
will postpone consideration of the more complicated geometry
until the following section.

In
F caps eerFecaps eer e

SRR array

SRR array

In

Forward
noise

Backward
noise

Multiple reflection

(a)

(b)

FIG. 4. Model for (a) excitation of noise resonances in a resonator
array, and (b) coupling of the array noise to the EM wave.

The driven response of the finite array can be found using
a simple theory previously presented for a rather different
problem (point excitation in near-field imaging devices44).
This paper showed how the complete response to excitation
of an arbitrary lossy magnetoinductive array could be found
as an expansion in terms of the eigenmodes of the same
array when lossless and undriven. For the particular case of a
regular array with rectangular boundaries, the mode shapes and
eigenvalues can be found analytically, allowing calculations
to be performed extremely simply. For the 1D array here, the
current in the rth element due to a source in the sth element
can be found as

Irs = VNR

R

m∑
ν=1

isνirν

λν

. (12)

Here, isν is the normalized shape of the νth resonant mode of
the equivalent lossless line, given by

isν =
√

2

m + 1
sin

[
sνπ

(m + 1)

]
with ν = 1,2, . . . ,m. (13)

The term irν is similar, but has s replaced with r . The terms
λν are

λν = 1 + j
ω0

ωQ0

(
ω2

0

ω2
ν

− ω2
0

ω2

)
. (14)

Here, ων is the angular resonant frequency of the νth
eigenmode, given by

ω2
ν = ω2

0√
1 + κ cos[νπ/(m + 1)]

. (15)

From Eq. (12), we may obtain

IrsI
∗
rs = VNRV ∗

NR

R2

∣∣∣∣∣
m∑

ν=1

isν irν

λν

∣∣∣∣∣
2

. (16)

Incoherently summing the effect of all noise sources then
yields

IrI
∗
r R = VNRV ∗

NR

R

m∑
s=1

∣∣∣∣∣
m∑

ν=1

isνirν

λν

∣∣∣∣∣
2

. (17)
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FIG. 5. Frequency variation of the normalized noise PSD for
(a) a 9-element and (b) a 49-element resonator array in isolation.
In each case, κ = −0.2 and Q0 = 100, and the thick lines show
results for the array edge and the thin lines for the array center.

By using the orthonormality of the modes, we then obtain

IrI
∗
r R = VNRV ∗

NR

R

m∑
ν=1

i2
rν

|λν |2 . (18)

This result may be written as IrI
∗
r R = P × VNRV ∗

NR/R. Here,
P is a normalized power spectral density (PSD) describing a
modification to the otherwise flat spectrum of Johnson noise
caused by the reactive elements in the array, given by

P (ω,r) =
m∑

ν=1

i2
rν

|λν |2 . (19)

This result may be written in full as

P = 2

m + 1

m∑
ν=1

sin2[rνπ/(m + 1)]

1 + [
(Q0ω/ω0)

(
ω2

0/ω
2
ν − ω2

0/ω
2
)]2 . (20)

The PSD was discussed extensively in Ref. 34, and shown
to depend on the number of elements m, the position r , the
coupling coefficient κ , and the Q factor. Figure 5(a) shows its
frequency variation for a nine-element array with κ = −0.2

and Q0 = 100. The thick and thin lines show results at the
array edge (r = 9) and center (r = 5), respectively. In each
case, there is a set of resonances. At the edge, all nine modes
are visible. However, only five can be seen at the center since
the antisymmetric modes all have zeros at this point and hence
make no contribution. Figure 5(b) shows similar results for
a 49-element array. Now, the resonances are starting to form
a continuum. At the array center, the PSD has assumed a
characteristic shape, which tends to the homogeneous result
obtained in an infinite array with peaks at the band edges where
the propagation losses and modal density are both high. The
same results are obtained using the numerical model, if the
EM wave is omitted.

VI. NOISE FACTOR

We now consider how the internal noise is coupled to the
EM wave. One obvious question is whether the internal noise
of the array, which exists over the whole MI band, is transferred
to the EM wave unaltered. We also estimate the noise factor
F of the array, which is given by

F = Sin/Nin

Sout/Nout
. (21)

Here, Sin and Nin and Sout and Nout are the signal and noise
powers at the input and output. In a linear device, the noise
factor is an intrinsic property and does not depend on the signal
power. A key test of the performance of metamaterial devices
will be how their attenuation and noise factor compare with
those of more conventional solutions.

In addition to the numerical model, we develop an analytic
model to explain the physics. Because so many simultaneous
equations are involved, construction of such a model is only
possible if sweeping approximations are made. Effectively,
these amount to assuming weak coupling between the EM
wave and the array, so that the perturbations to the propagation
constant of the former and the noise distribution of the latter
are both relatively small.

Even an approximate model should include reflection at
the array boundaries. For example, an incident EM wave
should be transmitted at the array input, multiply reflected
an infinite number of times, and then transmitted at the output.
The amplitude Jm of the current representing the wave at the
output of the array may be related to the amplitude J0 at the
input by the sum-of-all-paths method as

Jm = J0t1t2e
−jmka

[
1 + r2

2 e−2jmka + r4
2 e−4jmka . . .

]
. (22)

Summing the exponential terms allows this result to be written
as Jm = tJ0, where t is an overall amplitude transmission
coefficient, given by

t = t1t2
e−jmka

1 − r2
2 e−2jmka

. (23)

Clearly, Eq. (23) describes a Fabry-Perot response that allows
resonance whenever the round-trip phase change in the array
is a whole number of multiples of 2π . However, since the
reflection coefficient r2 is significantly different from unity
only at frequencies when there is also loss, high-finesse
resonance is unlikely to occur.
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As a result of these effects, both the signal and the input
noise power alter as they propagate through the array. Hence,
we can write

Sout = Sin|t |2,
(24)

Nout = Nin|t |2 + Nadd.

Here, Nadd is the additive noise generated in the resonator
array. The noise factor is therefore

F = 1 + Nadd

Nin|t |2 . (25)

For a Johnson noise source at the input, we can immediately
write Nin = KT df for a small bandwidth df .22 However, to
find Nadd, we must consider how noise is transferred from the
resonator array to the EM wave. For weak coupling, a single
current In in the nth array element will excite a pair of waves
into the EM line, traveling in either direction as shown in
Fig. 4(b). It is simple to show that the amplitude of each wave
is κNIn, where κN is a coupling coefficient given by

κN = − j

ka

M ′

2L′

(
ω

ρω0

)2

. (26)

Excitation of these waves is due to the currents Irs

previously given in Eq. (12). If coupling of noise back into
the array is neglected, the additive noise is the total power
dissipated by all such waves in the load, taking care to account
for any coherent effects and multiple reflections. For example,
summing all the waves due to a single noise source in the sth
resonant element yields an EM current wave leaving the array
with total amplitude

JT s = κN

m∑
r=1

Irs

[
e−j(m−r)ka + r2e

−j(m+r)ka
]
tN . (27)

Here, the first exponential describes contributions from all
those noise waves that are initially forward going, the second
describes all waves that are initially backward going, and tN
is an overall amplitude transmission coefficient that can again
be found by the sum-of-all-paths method as

tN = t2
(
1 + r2

2 e−2jmka + r4
2 e−4jmka . . .

)
(28)

or as

tN = t2

1 − r2
2 e−2jmka

. (29)

Clearly, the transmission coefficients of the input wave and the
additive noise wave are related, as tN = (t/t1) exp(+jmka)
and |tN |2 = |t/t1|2 exp(2mk′′a). Consequently, Fabry-Perot
resonance will affect both together, and many of the effects
will cancel in the final noise factor.

Incoherent addition of the effects of all such noise sources
then involves a sum of the form JT J ∗

T = ∑m
s=1 JT sJ

∗
T s .

Combination with the results of the previous section shows
that this can be written as

JT J ∗
T = p

κNκ∗
N4KT df

R
|tN |2. (30)

Here, the function p is given by

p(ω,m) =
m∑

s=1

∣∣∣∣∣
m∑

r=1

m∑
ν=1

isνirν

λν

(e−j(m−r)ka + r2e
−j(m+r)ka)

∣∣∣∣∣
2

.

(31)

The additive noise power dissipated in the load may then
be found as

Nadd = JT J ∗
T Z0. (32)

Substitution of Eq. (32) into Eq. (25) shows that the noise
factor must be

F = 1 + p
4κNκ∗

NZ0

R

e2mk′′a

|t1|2 . (33)

Minor substitutions then allow this result to be written in the
following form:

F = 1 + p
q2

|ka|2
Q0ω

ω0

(
ω

ρω0

)3
e2mk′′a

|t1|2 . (34)

The full line in Fig. 6(a) shows the frequency variation
of the noise factor obtained using this model for a nine-
element array with the same parameters as before (κ =
−0.2, Q0 = 100, q2 = 0.02, and ρ = 20). F is close to
unity, except at peaks near a discrete set of frequencies that
correspond to noise resonances in the magnetoinductive array.
Comparison with Fig. 5(a) shows that only odd-order modes
can be distinguished, with successively decreasing amplitude.
Consequently, the power spectral density of the noise is altered
very significantly as it is transferred to the EM wave. The full
line in Fig. 6(b) shows corresponding results for a 49-element
array. Now, only a single peak may be seen. This peak
corresponds to coupling at the frequency at which the effective
permeability is most different from unity in Fig. 3(a).

The explanation for this behavior can be found in the form
of the function p. For large arrays, the second exponential in
Eq. (31) may effectively be disregarded since it will be heavily
reduced by attenuation. The summation then represents a
phased addition of a single set of terms, and only those
adding coherently (which requires the EM and MI waves to
be synchronous) will give a significant result. This condition
coincides with the condition required for a magnetic effect.
Unfortunately, it also corresponds to a frequency range in
which the internal noise density at the center of the array is
high. Furthermore, both μr − 1 (the magnetic susceptibility)
and F − 1 (the excess noise factor) are proportional to q2,
showing that the two are inescapably linked.

The data points in Figs. 6(a) and 6(b) show the corre-
sponding results from the numerical model. Although there are
some small discrepancies in the peak heights, the qualitative
agreement is excellent. This result is striking considering
the sweeping approximations made in deriving the analytic
model, and confirms its essential validity. Effectively, it can
provide the same results as a combination of multiple solutions
of large numbers of simultaneous equations, and therefore
represents a homogenization procedure. For large arrays, the
noise factor is determined almost entirely by the propagation
constant k and the power transmission coefficient |t1|2. Here,
we have used the numerical value of k, so any discrepancies
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FIG. 6. Frequency variation of noise factor for an electromagnetic
wave coupled to (a) a 9-element and (b) a 49-element resonator array.
In each case, κ = −0.2, Q0 = 100, q2 = 0.02, and ρ = 20. Points:
numerical solution; lines: approximate solution.

are largely due to the errors in the transmission coefficient
previously shown in Fig. 3(b). For large m, the analytic model
provides a slight overestimate of F ; however, both models
predict an exponential increase of F − 1 with distance as
would be expected.

The peak value of F in Fig. 6(a) is approximately 2,
corresponding to a noise figure of ≈3 dB. Clearly, this result
is obtained at the peak of the absorption band, an undesirable
operating point. However, the results are clearly considerably
worse, and completely unrealistic for device applications,
in Fig. 6(b). Better noise figures are clearly obtained off
resonance, but in this frequency range, the effect of the medium
on the wave is reduced. Further calculations show that the peak
attenuation and noise factor increase with Q0. However, the
frequency range over which both are large reduces at the same
time, increasing the range of usable performance.

As presented, the expression for the noise factor is relatively
clumsy, and further simplifications will certainly be possible.
Several terms are slowly varying with frequency, and others
tend to simple limits as m rises. However, since thick slabs
have high loss, careful thought will have to be given as to how

usable loss and noise performance may be combined with
negative parameters.

For a single Johnson noise source, the available noise power
(i.e., the power that can be transferred to a matched load) is
Pav = KT B, where B is the bandwidth.22 At room temper-
ature (T = 293 K), we therefore obtain Pav = 4 × 10−14 W,
4 × 10−13 W, and 4 × 10−12 W for example bandwidths of
B = 10 MHz, 100 MHz, and 1 GHz, respectively. These
powers are clearly small, and the cumulative effect of many
noise sources would be required to obtain a large total noise
power. However, it should be emphasized that in any noise
factor calculation, one is effectively making comparisons
between a relatively small additive noise and a source noise
power of similar magnitude.

VII. CONCLUSIONS

We have demonstrated a physical model capable of simul-
taneously describing the effective magnetic properties and
noise of a one-dimensional array of magnetically coupled
resonators containing resistive elements. The model shows that
any coupling between a resonator array and an electromagnetic
wave that gives rise to an alteration in effective permeability
also transfers noise to the wave, with a spectral distribution
that is related to the power spectral density of the Johnson
noise in the array. The transferred noise is concentrated in
the frequency range where significant changes in effective
permeability occur, so that all such media must be inherently
noisy.

We have found a full solution of the model relying on
generalized Kirchhoff’s equations. Since it is only a numerical
solution leading to no physical insight, we have also solved
the problem of noise transfer by a set of approximations that
render the mathematical problem tractable and offer a clear
physical picture. The full solution has been compared with the
analytic approximations for the propagation constant, relative
permeability, Fresnel coefficients, internal noise distribution,
and noise factor, and excellent agreement has been obtained
in each case.

The model was chosen to be as simple as possible, subject to
the condition that it should yield a realistic description of noise.
We have restricted the model to purely magnetic interaction
between the EM wave and the metamaterial array, and to
purely magnetic interaction between the elements. Future
generalizations might involve modification of the equivalent
circuit to include modeling of the following:

(i) conducting rods (to model noise in negative-index
materials),

(ii) electrical interaction between the EM wave and the
elements,

(iii) electrical interaction between the elements,
(iv) non-nearest-neighbor interactions between the ele-

ments,
(v) 2D and 3D arrays,

(vi) loss and noise associated with lossy dielectric elements.
Calculations could again be performed directly using a

numerical approach, or analytically in terms of noise waves.
In each case, care would be required to extract the full range of
anisotropic effective medium properties, but many techniques
exist for doing so. However, we emphasize that the effects of
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any additional noise sources are likely to be cumulative since
these are uncorrelated.

Even without these developments, we may draw conclu-
sions about the use of gain. Gain may certainly be used to
compensate for attenuation, but only front-end amplification
will lead to much improvement in the noise factor because

distributed amplification will also amplify any noise due to the
medium itself, and, even worse, will create additional noise
due to the amplification process. The implications are that all
devices designed to exploit negative-index media that contain
lossy elements should be critically examined for their noise
performance.
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