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Topological insulators in free fermion systems have been well characterized and classified. However, it is
not clear in strongly interacting boson or fermion systems what symmetry-protected topological orders exist.
In this paper, we present a model in a two-dimensional (2D) interacting spin system with nontrivial onsite Z,
symmetry-protected topological order. The order is nontrivial because we can prove that the one-dimensional
(1D) system on the boundary must be gapless if the symmetry is not broken, which generalizes the gaplessness
of Wess-Zumino-Witten model for Lie symmetry groups to any discrete symmetry groups. The construction of
this model is related to a nontrivial 3-cocycle of the Z, group and can be generalized to any symmetry group. It
potentially leads to a complete classification of symmetry-protected topological orders in interacting boson and
fermion systems of any dimension. Specifically, this exactly solvable model has a unique gapped ground state on
any closed manifold and gapless excitations on the boundary if Z, symmetry is not broken. We prove the latter
by developing the tool of a matrix product unitary operator to study the nonlocal symmetry transformation on the
boundary and reveal the nontrivial 3-cocycle structure of this transformation. Similar ideas are used to construct
a 2D fermionic model with onsite Z, symmetry-protected topological order.
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I. INTRODUCTION

Topological phases of matter are gapped quantum systems
containing nontrivial orders which are not due to spontaneous
symmetry breaking in the ground states. While topologically
ordered systems all have exponentially decaying correlation
and appear quite simple from a classical point of view,
various exotic quantum features have been discovered which
reveal the surprisingly rich structure of topologically ordered
systems. For example, some systems have a ground-state
degeneracy which depends on the topology of the closed
manifold the system is on."> some have protected gapless
edge excitations if the system has a boundary,* some have
nontrivial entanglement structure in the ground state,>® and
some have bulk excitations with nontrivial statistics.”” How
do we obtain a clear picture of topological phases among such
a variety of phenomena? First, we find that topological phases
can be divided into two general classes according to their level
of stability under perturbations.

The first class has “intrinsic” topological order.! Systems
in this class must go through a phase transition to a trivial
phase no matter what kind of local perturbation is added.
Or using the local unitary equivalence between ground states
we find that this class of systems has ground states which
cannot be mapped to a product state under ANY Ilocal
unitary transformation as defined in Ref. 10. We say that
this kind of state has long-range entanglement. Example
systems in this class include quantum Hall systems (inte-
ger or fractional),!"'? p 4 ip superconductors,'>!# string-net
models,” Z, spin liquids,'>'7 and chiral spin liquids.'®!° It has
been discovered that systems with “intrinsic” topological order
usually have topology-dependent ground-state degeneracy,'
nontrivial topological entanglement entropy,”® and fractional
statistics of bulk excitation.”” In the following discussion we
will use the term “topological order” to specifically refer to
this class of systems.
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The second class has “symmetry-protected” topological
order. This kind of system has certain symmetry and its non-
degenerate ground state does not break any of the symmetries.
If arbitrary perturbations are allowed, systems in this class all
belong to the same phase as a trivial state. Its ground state can
be mapped to a product state with local unitary transformations
and hence are short-range entangled (SRE). However, if only
symmetric perturbations are allowed, systems in this class are
in different phases from the trivial phase. Therefore, we say
that the topological order in this class is symmetry protected.
We will call these phases “symmetry-protected topological”
(SPT) phases. Example systems in this class include Haldane
phase in one-dimensional spin chains®® and topological
insulators.?!2° Systems with SPT order have nondegenerate
ground states on closed manifold and usually have nontrivial
edge degrees of freedom if the system has a boundary.?'~%’

Many efforts have been made to obtain a more complete un-
derstanding of topological and symmetry-protected topologi-
cal orders. In particular, topological and SPT orders have been
completely classified in one-dimensional spin systems.?®?’ It
was found that one-dimensional spin systems cannot have
nontrivial topological order but different SPT orders exist
for systems with certain symmetry. Similarly, a classification
of fermion systems (interacting) in one dimension is also
possible.***> The picture changes dramatically in higher
dimensions. First of all, nontrivial topological order does
exist in two or higher dimensions. A lot has been learned
about possible topological orders®!%33-33 although a complete
understanding is still missing. In this paper, we are going to
focus only on the SPT phases. Most SPT phases in two and
higher dimensions have been identified in free fermion systems
due to the simplicity and versatility of the formalism. A
classification of possible SPT phases in noninteracting fermion
systems has been obtained.¢-3® The major open question about
SPT phases is in general which of these phases remain and
what new SPT phases are possible when the system is strongly
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interacting. In boson systems, even less is known because
noninteracting bosons are necessarily topologically trivial >’

In this paper, we present a generic picture for understand-
ing SPT phases in interacting systems through the explicit
construction of a simple example. Instead of starting from
free fermions, we take a different approach and generalize
our understanding of one-dimensional (1D) interacting SPT
phases to construct a two-dimensional (2D) spin model with
onsite Z, symmetry-protected topological order. We call this
model the CZX model for reasons that will become clear
later. On a closed surface the CZX model looks simple.
Its Hamiltonian is composed of commuting projectors. Its
symmetric gapped ground state is a product of local loops and
hence is short-range entangled. However, the model becomes
highly nontrivial if it has a boundary. The boundary must
have gapless excitation as long as symmetry is not broken;
a signature of nontrivial SPT order. We prove this fact by
relating effective symmetry transformation on the boundary
with a nontrivial 3-cocycle of the Z, group.

The construction of the CZX model signifies the close
relationship between SPT phases and nontrivial cocycles of the
symmetry group. This idea is not limited to two-dimensional
systems. In another paper, we generalize the formalism
and construct nontrivial SPT phases in any d dimension
with onsite unitary and anti-unitary symmetries G based on
(d + 1)-cocycles of G. We expect that this construction gives
a complete classification of d-dimensional SPT phases.

The effective theory on the boundary can be seen as a gen-
eralization of the Wess-Zumino-Witten (WZW) model.*!*?
The WZW model describes conformally invariant 1D systems
with an internal symmetry of a compact Lie group. The WZW
model is obtained by adding a topological term (the WZW
term) to the usual dynamical term in the Lagrangian of the
nonlinear sigma model and is exactly solvable in semiclassical
limit. It explains the physics of 1D gapless systems with a
global Lie group symmetry. However, the construction of the
model depends crucially on the fact that the symmetry group is
continuous and does not apply to, for example, the Z, group.
Our proof of the gapless nature of the 1D effective theory
on the boundary of the CZX model hence generalizes the
understanding of the WZW model to discrete groups. Our
method based on the nontrivial 3-cocycles applies to both
continuous and discrete symmetry groups, although it does
not give the conformal field theory of the system directly.
Also our proof is nonperturbative, not relying on semiclassical
approximations. The connection between the C Z X model and
the WZW model is not particularly clear in the formulation
of this paper, because the WZW model is usually given in
the Lagrangian form. In another paper,*’ we reformulate our
models (including the CZX model and those for all other
symmetries and in all dimensions) in the Lagrangian language
where the connection with the WZW model would become
obvious.

The paper is organized as follows: in Sec. II, we review our
understanding of the entanglement structure of SPT phases in
one dimension. In generalizing such entanglement structure to
higher dimension, we first present a naive attempt which fails
to produce interesting phases. Identifying the missing element,
we construct the CZX model in Sec. III. We give explicitly
the symmetry of the system, its Hamiltonian, and its ground
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state. In order to show the nontrivial nature of this model, we
study its effective boundary theory in Sec. IV. We identify
the effective degrees of freedom, effective Z, symmetry, and
show that, in simple cases, the boundary cannot be in a
gapped symmetric phase. In order to prove this conclusion
in general, we use the tool of matrix product unitary operators
(MPUOs). Introduction to the matrix product unitary operator
formalism is given in Appendix D, including its definition and
some simple properties. In Sec. V, we show how to represent
the effective symmetry on the boundary of the CZX model
using MPUO. We find that the transformation rule between
the MPUOs is related to a nontrivial class of 3-cocycles
in the third cohomology group H>(Z,,U(1)) of Z,.** Using
this relationship, we prove that the boundary cannot have a
gapped symmetric ground state. This result applies in general
to any MPUO related to a nontrivial 3-cocycle in H>(G,U(1)).
Hence we conclude that the CZX model is in a nontrivial
SPT phase protected by onsite Z, symmetry. Using similar
ideas, we construct in Sec. VII a fermion system with onsite
Z, symmetry whose boundary is also nontrivial.

II. FROM 1D SPT PHASES TO 2D

In this section we first review our understanding of the en-
tanglement pattern at the fixed point of 1D SPT phases, which
we then try to generalize to higher dimensions. However, we
are going to show that a straightforward generalization fails to
give nontrivial SPT order. We identify the missing elements
and prepare for the construction of nontrivial model in the next
section.

Each 1D SPT phase in systems with onsite symmetry G
can be well understood from the entanglement pattern of
its ground state at the fixed point, as shown in Fig. 1. At
the fixed point, each site contains two spins. On each site,
symmetry is represented linearly. But on each spin, symmetry
only needs to be represented projectively. [A simple example of
projective representation is given by SO(3) symmetry on a spin
1/2. For an introduction to projective representations and the
second cohomology group H2(G,U(1)) see Appendix A. More
generally, group cohomology is introduced in Appendix B.]
If symmetry on the left spin belongs to the projective
representation of class w in H2(G,U(1)) [e.g., spin 1/2 under
SO(3)], then on the right spin it belongs to —w [again spin 1/2
under SO(3)] so that together they form a linear representation.
The ground state of the system is a product of dimers between
spins on neighboring sites. Each dimer is an entangled state
of two spins which forms a one-dimensional representation
of G. The ground state is hence a total singlet under the
symmetry. The nontrivial feature of the system shows up when
we cut the chain into a finite segment. There are free degrees of
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FIG. 1. (Color online) Fixed-point ground state of 1D SPT phase
with onsite symmetry of group G. Each site contains two spins, which
form the projective representation of class w and —w, respectively.
Connected spins form a dimer which forms a one-dimensional

representation of G. On a finite segment of the 1D chain, the boundary
spins form projective representations of G.
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FIG. 2. (Color online) 2D “bond” state, which is short-range
entangled and symmetric under the onsite symmetry of group G. Each
site contains four spins, each forming a projective representation of
G. Two spins connected by a bond form a projective representations
of class w and —w, respectively. The “bond” represents an entangled
state of the two spins, which forms an one-dimensional representation
of G. On a lattice with boundary, the boundary degrees of freedom
are spins with projective representation @ (—w).

freedom at the ends of the segment, each forming a projective
representation of G. Two 1D systems belong to the same SPT
phase if their end degrees of freedom belong to the same class
of projective representation w € H2(G,U(D)).

This simple picture can be generalized to two or higher
dimension to give a “bond” state. Consider the 2D state in
Fig. 2.

Every site contains four spins. Each spin forms a projective
representation of the onsite symmetry G, but the four spins on
each site together form a linear representation of G. Two spins
on neighboring sites that are connected by a bond form the
projective representation w and —w, respectively, and the bond
represents an entangled state between the two spins which
forms a one-dimensional representation of G. Similar to the
ID case, the total state is invariant under onsite symmetry
G. The state is short-range entangled and can be the gapped
ground state of a simple Hamiltonian (sum of projections onto
the entangled pairs). If the system is defined on a disk with a
boundary, there will be free degrees of freedom at each site on
the boundary which form projective representations of G.

It might seem that states with different projective repre-
sentations at each site on the boundary correspond to different
SPT phases, just like in the 1D case. However, this is not totally
true. If translation symmetry is required, each boundary spin
is well defined and the projective representation they form
do label different phases. On the other hand, in the absence
of translation symmetry, boundary spins can be combined
and their projective representations can add together. As
projective representations form an additive group [the second
cohomology group H2(G,U(1)) of G], combining boundary
spins would change the projective representations from one
class to another and, in particular, to the trivial class. Therefore,
without translation symmetry, all 2D states with a bond form
as shown in Fig. 2 belong to the same phase.
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On the other hand, SPT phases are known to exist in two
and higher dimensions without the protection of translation
symmetry; for example, in topological insulators. The simple
bond picture above therefore cannot account for their SPT
order. In order to have nontrivial SPT order, we need to gen-
eralize the bond state in two ways: (1) The local entanglement
structure does not constitute bonds between two spins, but
rather plaquettes among four spins on sites around a square.
This alone is not enough to construct new SPT order. We also
need (2) symmetry transformations on each site to not factorize
into separate operations on each of the four spins. That is, the
total linear symmetry operation on each site is not a tensor
product of four projective representations, because otherwise
the state can be reduced to a bond state.

Following this line of thought, we construct the CZX
model in Sec. III. The C Z X model has an onsite Z, symmetry
that does not factorize into projective representations and the
symmetry-protected topological order of the state is robust
against disorder. The boundary effective degrees of freedom
in C Z X model has an effective Z, symmetry which cannot be
written in an onsite form. Moreover, the boundary cannot be
in a gapped symmetric state under the effective symmetry.
In other words, the boundary must either break the Z,
symmetry or have gapless excitations. This is different from
the bond state discussed above (Fig. 2). In the bond state,
the boundary degrees of freedom are the boundary spins
with projective representations. The effective symmetry is still
on site. Several boundary spins can form a singlet if their
projective representations add up to a linear representation.
Therefore, in the bond state, the boundary can be in a gapped
symmetric state under onsite symmetry simply by breaking
translation symmetry. However, in the C ZX model, this is not
possible.

III. CZX MODEL

In this section, we construct the CZX model explicitly,
which turns out to have nontrivial SPT order protected only by
onsite Z, symmetry.

Consider a square lattice with four two-level spins per site,
as shown in Fig. 3(a) where sites are represented by circles
and spins are represented by dots. We denote the two levels as
|0) and |1). The system has an onsite Z, symmetry as given in
Fig. 3(b). It is generated by

Uczx = UxUcy, (D
where
Ux =X1 ® X2 ® X3 ® Xs. @)
X; is the Pauli X operator on the ith spin and
Ucz = CZ1nCZy3CZ34C 2y, (3)

where CZ is the controlled-Z operator on two spins and is
defined as

CZ = |00)(00] + [01)(01] + |10)(10| — [11)(11].  (4)

As defined, CZ does nothing if at least one of the spins is in
state |0), and it adds a minus sign if both spins are in state |1).
Different C Z operators overlap with each other. But because
they commute, U7 is well defined. Note that Uc cannot be
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FIG. 3. (Coloronline) C Z X model. (a) Each site (circle) contains
four spins (dots) and the spins in the same plaquette (square)
are entangled. (b) Onsite Z, symmetry is generated by Uczx =
X1 X, X3X4CZ1,CZy3CZ34CZ4 (c) Alocal term in the Hamiltonian,
which is a tensor product of one X4 term and four P, terms as defined
in the main text.

decomposed into separate operations on the four spins and the
same is true for Uczx. Uy and Uz both square to / and they
commute with each other. Therefore, Uczx generates a Z,
group.

The Hamiltonian of the system is defined as a sum of local
terms around each plaquette. Plaquettes are represented by
squares in Fig. 3. H = ) H,,, where the term around the ith
plaquette H ), acts not only on the four spins in the plaquette but
also on the eight spins in the four neighboring half plaquettes,
as shown in Fig. 3(c),

H,=-X,P; P @ Pi®P;, 5)
where X, acts on the four spins in the middle plaquette as

X4 = [0000)(1111] 4 |1111)(0000], (©)

and P; acts on the two spins in every neighboring half plaquette
as

P, = |00)(00] 4 [1T)(11]. )

Py, Pz‘i, P2l, and P; act on the up-, down-, left-, and right-
neighboring half plaquettes, respectively. For the remaining
four spins at the corner, H), acts as the identity on them. The
P, factors ensure that each term in the Hamiltonian satisfies
the onsite Z, symmetry defined before.

All the local terms in the Hamiltonian commute with each
other; therefore, it is easy to solve for the ground state. If the
system is defined on a closed surface, it has a unique ground
state which is gapped. In the ground state, every four spins
around a plaquette are entangled in the state

[, ) = 10000) + [1111), 8)

and the total wave function is a product of all plaquette
wave functions. If we allow any local unitary transformation,
it is easy to see that the ground state can be disentangled
into a product state just by disentangling each plaquette
separately into individual spin states. Therefore, the ground
state is short-range entangled. However, no matter what local
unitary transformations we apply to disentangle the plaquettes,
they necessarily violate the onsite symmetry and, in fact,
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the plaquettes cannot be disentangled if the Z, symmetry is
preserved due to the nontrivial SPT order of this model, which
we will show in the next sections.

It can be checked that this ground state is indeed invariant
under the onsite Z, symmetry. Obviously, this state is invariant
under Uy applied to every site. It is also invariant under Ucz
applied to every site. To see this, note that between every two
neighboring plaquettes, C Z is applied twice, at the two ends
of the link along which they meet. Because the spins within
each plaquette are perfectly correlated (they are all |0) or all
[1)), the effect of the two CZs cancel each other, leaving the
total state invariant.

Therefore, we have introduced a 2D model with onsite Z,
symmetry whose ground state does not break the symmetry and
is short-range entangled. In particular, this onsite symmetry is
inseparable, as discussed in the introduction, and therefore
cannot be characterized by a projective representation as for
the bond state. We can add a small perturbation to the system
which satisfies the symmetry and the system is going to remain
gapped and the ground state will remain short-range entangled
and symmetric. It seems that the system is quite trivial and
boring. However, we are going to show that surprising things
happen if the system has a boundary and that, because of these
special features, the system cannot be smoothly connected to
a trivial phase even if translation symmetry is not required.

IV. CZX MODEL BOUNDARY

The nontrivial nature of this model shows up at the
boundary. Suppose that we take a simply connected disk from
the lattice, as shown in Fig. 4(a).

The reduced density matrix of spins in this region is
invariant under onsite symmetry in this region. The reduced
density matrix is a tensor product of individual terms on
each full plaquette, half plaquette, and plaquette corner,
respectively. On a full plaquette,

4 = (10000) + [1111))({0000] + (1111]). )

(c)

FIG. 4. (Color online) (a) CZX model on a disk with boundary.
(b) Boundary effective degrees of freedom form a 1D chain which
cannot have an SRE symmetric state. (¢) Two boundaries together
can have an SRE symmetric state which is a product of entangled
pairs between effective spins connected by a dashed line.
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On a half plaquette,
p2 = [00)(00] + [1T)(11]. (10)

On a corner of a plaquette,

pr = 10)(0] 4 [1)(1]. an

The state of spins on the plaquettes totally inside this region is
completely fixed. But on the boundary there are free degrees
of freedom. However, unlike in the bond state, only part of
the total Hilbert space of the spins on the boundary is free.
In particular, two spins in a half plaquette on the boundary
are constrained to the two-dimensional subspace |00) (00| +
[11)(11]| and form an effective spin degree of freedom if we
map |00) to |0) and |11) to |T).

InFig. 4(b), we show the effective degrees of freedom on the
boundary as diamonds on a line. Projecting the total symmetry
operation on the disk to the space supporting reduced density
matrix, we find that the effective symmetry operation on the
boundary effective spins is Uczx = ]_[lN:1 X; ]_[JN:l CZii1,
with the Pauli X on each effective spin and the C Z operation
between neighboring effective spins. The boundary is periodic
and CZy. y41 acts on effective spins N and 1. This operator
generates a Z, symmetry group.

This is a very special symmetry on a 1D system. First it is
not an onsite symmetry. In fact, no matter how we locally group
sites and take projections, the symmetry operations are not
going to break down into an onsite form. Moreover, no matter
what interactions we add to the boundary, as long as it preserves
the symmetry, the boundary cannot have a gapped symmetric
ground state. We can start by considering some simple cases.
The simplest interaction term preserving this symmetry is
Z;Z;. This is an Ising interaction term and its ground state
breaks the Z, symmetry. In the transverse Ising model, the
system goes to a symmetric phase if the magnetic field in the
x direction is increased. However, X; breaks the Z, symmetry
Ucyzx on the boundary and therefore cannot be added to the
Hamiltonian. In fact, we are going to prove that the boundary
cannot have an SRE symmetric ground state (actually a more
generalized version of it) in the next section. This is one special
property that differentiates between the CZX model and the
bond state in Fig. 2. In the bond state, the symmetry operations
on the boundary are just projective representations on each site.
Without translational invariance, there can always be an SRE
symmetric state with this symmetry.

The special property on the boundary only shows up when
there is an isolated single boundary. If we put two such
boundaries together and allow interactions between them,
everything is back to normal. As shown in Fig. 4(c), if
we have two boundaries together, there is indeed an SRE
symmetric state on the two boundaries. The state is a product of
entangled pairs of effective spins connected by a dashed line.
The entangled pair can be chosen as |00) 4 |11). In contrast
to the single-boundary case, we can locally project the two
effective spins connected by a dashed line to the subspace
|00) (00| + |11)(11] and, on this subspace, the symmetry acts
in an onsite fashion.

This result should be expected because, if we have two
pieces of sheet with boundaries and glue them back into a
surface without boundaries, we should have the original SRE
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2D state back. Indeed if we map the effective spins back to
the original degrees of freedom |0) — |00) and |1) — [11),
we see that the SRE state between two boundaries is just the a
chain of plaquettes |[0000) + |1111) in the original state.

This model serves as an example of nontrivial SPT order
in 2D SRE states that only needs to be protected by onsite
symmetry. In order to prove the special property on the
boundary of the CZX model and have a more complete
understanding of possible SPT orders in 2D SRE states with
onsite symmetry, we are going to introduce a mathematical tool
called the matrix product unitary operator. We will show that
2D SPT phases are related to elements in H3(G,U(1)) which
emerge in the transformation structure of the matrix product
unitary operators. The definition of matrix product unitary
operator and some basic properties are given in Appendix D.
The discussion in the next section is general, but we will work
out the CZ X example explicitly for illustration.

V. MATRIX PRODUCT UNITARY OPERATORS AND
ITS RELATION TO 3 COCYCLE

In this section, we discuss the matrix product unitary
operator (MPUO) formalism and show how the effective
symmetry operation on the boundary of CZX model can be
expressed as an MPUO. Moreover, we are going to relate
MPUOs of a symmetry group to the 3-cocycle of the group
and, in particular, we are going to show that the CZX model
corresponds to a nontrivial 3-cocycle of the Z, group.

41? matrix product operator acting on a 1D system is given
by

0 = Z Te(T TR0 TN il il Y ivin -+ i),
(i) (i}
(12)

where for fixed i and i/, T is a matrix with index o and S.
Here we want to use this formalism to study symmetry trans-
formations, therefore we restrict O to be a unitary operator
U. Using the matrix product representation, U does not have
to have an onsite symmetry. U is represented by a rank-four

tensor Tof:i’ on each site, where i and i’ are input and output
physical indices and «, B are inner indices. Basic properties
of matrix product unitary operators are given in Appendix D.
In particular, the symmetry operator Uczx (we omit the
~ label for effective spins in following discussions) on the
boundary of the C Z X model can be represented by tensors

TONCZX) = [0)(+], T"°(CZX)=|1)(—|,

(13)
other terms are zero,

where |4+)=10)+|1) and |-)=]0)—|1). It s
easy to check that this tensor indeed gives Uczx =
CZ]2-~-CZN1X1 XN

The other element in the Z, group—the identity
operation—can also be represented as MPUO with tensors

T%%(1) = 10)(0l, T"'(I1)=10)(0],
(14)

other terms are zero.

These two tensors are both in the canonical form as defined in
Appendix D.
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Pgl,gz'{

FIG. 5. (Color online) Reduce combination of 7'(g,) and T'(g;)
into 7'(g1£2).

If two MPUO T (g,) and T(g;) are subsequently applied,
their combined action should be equivalent to 7(g;g>).
However, the tensor 7(g;,g2) obtained by contracting the
output physical index of T'(g,) with the input physical index
of T'(g1) (see Fig. 5) is usually more redundant than 7'(g;g>)
and might not be in the canonical form. It can only be reduced
to T'(g1g2) if certain projection Py, ., is applied to the inner
indices (see Fig. 5).

Py, ¢, is only defined up to an arbitrary phase factor e/?(#1:82),
If the projection operator on the right side P,, ,, is changed by

the phase factor ¢/?®1-82), the projection operator P{, ,, on the
left side is changed by phase factor e~1%(¢1:¢2), Therefore, the
total action of Py, ,, and Pgl, ¢ on T'(gy,g2) does not change
and the reduction procedure illustrated in Fig. 5 still works.
Moreover, from the discussion in the Appendix D, we know
that this is the only degree of freedom in Py, & Up to a phase
factor, Py, ,, is unique [on the unique block in the canonical
form of T (g1,g2)]-

Let us illustrate how the reduction is done for the symmetry
group (I,Uczx). For example, if we apply UczxUczx the
totally action should be equivalent to I. However, the tensor
T(CZX,CZX) is given by

7%%CZX,CZX) = 01)(+ — |,
T"N(CZX,CZX) = |10){(— + |, (15)

other terms are zero.

This tensor is reduced to 7'(1) if projection

Pezx.czx = (101) — [10))(0] (16)

and its Hermitian conjugate are applied to the right and left
of T(CZX,CZX), respectively.*> Adding an arbitrary phase
factor ¢/9(C2X.C2%) to Pc,x czx does not affect the reduction
at all. By writing Pczx czx in the above form, we have made
a particular choice of phase.

Below we list the (right) projection operators for all possible
combinations of g; and g; of this Z, group:

Prr =00){0],
Pczx,1 = 100)(0] + [10)(1],
17
Pr.czx = 100)(0] + [10)(1],
Pczx.czx = (|01) — [10)){0].

Note that, in giving Py, ,,, we have picked a particular choice
of phase factor ¢/%(¢1:82) In general, any phase factor is allowed.
Nontrivial phase factors appear when we consider the
combination of three MPUOs (see Fig. 6 ).
There are two different ways to reduce the tensors. We
can either first reduce the combination of T'(g;), T(g») and
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T(g) o) P(g, 2 23) T(21
P
T(g,)*1®2 T(g,) P»l 328].
T(gz} PSJSE.Bg T{U 82 gf}_
(a) (b)

FIG. 6. (Color online) Different ways to reduce combinations of
T(g3), T(g2), and T(g,) into T(g18283). Only the right projection
operators are shown. Their combined actions differ by a phase factor
$(81,82,83)-

then combine 7'(g3) or first reduce the combination of T(g,),
T (g3) and then combine 7'(g;). The two different ways should
be equivalent. More specifically, they should be the same
up to phase on the unique block of T(g1,g2,83). Denote the
projection onto the unique block of 7T(g1,£2,83) as Qg es.05-
We find that

Q160613 ® Pyy 6,) Pyyr.0, = $(81.82:83) Q1065

X (Pg, 0, ® 1) Py g, (18)
From this we see that the reduction procedure is associative
up to a phase factor ¢(g;,g2,83). According to the definition
of cocycles in Appendix B, we see that ¢(g;,g2,g3) forms a
3-cocycle of group G. That is, ¢(g1,82,83) satisfies

$(82,83,84)9(81,8283,84)9(81,82,83)
$(8182.83.84)$(81.82.8384)

Let us calculate ¢(g1,82,23) explicitly for the group
generated by Uczx:

=1. (19)

o, 1,1) =1,
¢(1,CZX,I) =1,
¢(1,CZX,CZX) =1,
¢(CZX,1,CZX) =1,

&(,1,CZX) = 1,
HCZX, 1) =1,
HCZX,CZX,I) = 1,
#(CZX,CZX,CZX) = —

(20)

We can check that ¢ is indeed a 3-cocycle. The last term
shows a nontrivial —1. This minus one cannot be removed
by redefining the phase of Py, ., in any way. Therefore, ¢
corresponds to a nontrivial 3-cocycle for the Z, group.

What does this nontrivial mathematical structure imply
about the physics of the C Z X model? In the next section we are
going to answer this question by proving that MPUOs related
to a nontrivial 3-cocycle cannot have a short-range-entangled
symmetric state. That is, the boundary of the CZX model
cannot have a gapped symmetric ground state. It either breaks
the symmetry or is gapless.

VI. NONTRIVIAL 3-COCYCLE OF MPUO AND
NONEXISTENCE OF SRE SYMMETRIC STATE

In this section we will show that a symmetry defined by an
MPUO on a 1D chain can have an SRE symmetric state only
if the MPUO corresponds to a trivial 3-cocycle. Therefore,
the boundary of the CZX model must be gapless or have
symmetry breaking. For this proof, we will be using the matrix
product state representation of SRE states.
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FIG. 7. (Color online) Reduction of the combination of 7'(g) and

A into A. Here T%"(g) is an MPUO, A’ is a matrix product state
symmetric under 7%/ (g).

Suppose that the symmetry on a 1D chain is represented
by tensors Tof:j;(g). Without loss of generality, 7'(g) is single-
blocked and in the canonical form, as defined in Appendix D.
Assume that it has an SRE symmetric state represented by
matrices A% which s also single-blocked and in the canonical
form. For a review of matrix product state formalism including
its canonical form and single-block property, see Appendix C.

Based on the result in Refs. 47 and 48, we can show that
(see Appendix D)

Al =yt (Z T’*"’(g)A"’) v, (21)

where VIV =1 and V is unique on the single block of
>, T*'(g)A” up to phase. This is saying that we can reduce
the MPS obtained from 3", 7" (g)A" back to the original
form A’ by applying V' and V to the left and right of the
matrices, respectively (see Fig. 7).

For a fixed representation of the SRE state A’ and fixed
representation of the MPUO symmetry 7(g), V is fixed up to
phase. We can pick a particular choice of phase for V.

Now we consider the combined operation of 7'(g;) and
T(g) on A (see Fig. 8).

We can either first combine 7'(g;) and A and then combine
T(g1) and A or first combine 7(g;) and T(gy) and then
combine 7'(g1g>) and A. The right projection operators for
these two methods differ by a phase factor ¢(g;,g>). This
phase factor can be arbitrarily changed by changing the phase
of Pg, ¢,. For the following discussion, we fix the phase of
Py, ., and hence of ¢(g1,82).

This is all the freedom we can have. If we are to combine
three or more T’s with A, different reduction methods differ
by a phase factor but the phase factor are all determined by
©(g1,82). Consider the situation in Fig. 9, where we are to
combine T(g3), T(g2), and T (g;) with A.

To change the reduction procedure in Fig. 9(a) to that in
Fig. 9(c), we can either go through step (b) or steps (d) and

T(g)) ‘v(gl g2)

T(g,) l]- e g{l‘
mrey B rl

”\-

FIG. 8. (Color online) Two ways of reducing the combination of
T(g2), T(g1) and A into A. Only the right projection operators are
shown. Their combined actions differ by a phase factor ¢(g1,2).
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FIG. 9. (Color online) Different ways of reducing the combina-
tion of 7(g3), T(g2), T(g1), and A into A. Only the right projection
operators are shown. Their combined actions differ by a phase factor
written on the arrow.

(e). If we go through step (b), the phase difference in the right
projection operators is

¢ (8182.83)9 ' (g1,82). (22)

On the other hand, if we go through steps (d) and (e), the phase
difference in the right projection operators is

?(21,82,83)9 ' (81,8283)¢ ' (22,83). (23)

But these two procedures should be equivalent because the
initial and final configurations are the same whose phases have
been fixed previously. Therefore, we find that

5(21.82.23) = (0(8178283)@(82,83)7 24)
©(8182,83)9(81.82)
and ¢(g1,82,g3) must be a trivial 3-cocycle (see Eq. (B11)).

This finishes the proof that a 1D system with symmetry
defined by matrix product unitary operators can have a gapped
symmetric ground state only if the matrix product unitary
operator corresponds to a trivial 3-cocycle.

Because we have shown that the symmetry on the boundary
of the CZX model corresponds to a nontrivial 3-cocycle of
the Z, group, the system with boundary cannot have a gapped
symmetric ground state. This shows that the CZX model has
nontrivial SPT order protected by onsite Z, symmetry as we
have promised in Sec. III.

VII. GENERALIZATION TO FERMION SYSTEM

Due to the interest in fermion SPT orders in interacting
systems in two and higher dimensions, in this section we are
going to give a fermionic version of the CZX model which
also has nontrivial SPT order protected only by onsite Z;
symmetry.

In constructing this model, first we identify each spin in
the C ZX model with a fermionic mode and the spin |0) state
with the zero fermion state and the spin |1) state with the one
fermion state. Each site then contains four modes (see Fig. 3).
Denote the creation and annihilation operator on each mode

as ¢} and ¢;.
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A fermion system has an intrinsic fermion parity symmetry
which is an onsite Z, symmetry that is given by

4
Pf =[]0 —2cfen. (25)
i=1
This Z, symmetry is always preserved.
Similar to the CZX model we define another onsite Z,
symmetry U Cf 2 x> Which is going to protect the nontrivial SPT
order:

U'cfzx = U){ng’ (26)

where

4
U =[]l +en @7

i=1

is a particle-hole transformation and

4
ng = 1_[([ — 2c2'cicj+lci+1). (28)

i=1

It can be checked that U )}; and U Cf , commute with each
other and that they both commute with Pf. Therefore, U g 7X

commutes with Pf. U, g ~x generates an onsite Z, symmetry.
The Hamiltonian of the system is again a sum of local terms
around each plaquette, H/ = Y H, ,{,

H =-x{eoP oP o or’ (29

[see Fig. 3(c)] where X 4{ acts on the four modes in the middle
plaquette as

X] = cacserer + cleleleh (30)
and sz acts on the two modes in every half plaquette as
P = cicleipiel,, + cleicl, e (€1))

For the remaining four modes at the corner, H ,'f[ acts as identity
on them. It can be checked that the Hamiltonian satisfies the
fermion parity symmetry and the onsite Z, symmetry gener-
ated by ng x- Moreover, terms around different plaquettes
commute with each other.

The ground state is then a product of plaquette states:

[vi) = +clelele)io), 32)

where |2) is vacuum state on the four modes 1~4 around
a plaquette. The ground state is short-range entangled and
symmetric under both P f and U({f zx-If U({f 2 x can be violated,
we can disentangle this state into a product of states on
each mode without violating the fermion parity symmetry.
However, if Ug 2 x 18 preserved, this state is inequivalent from
a trivial product state.

The nontrivial nature of this model can be seen again from
the boundary. The boundary of this fermion model is the same
as that of the spin model, because the effective degrees of
freedom in each half plaquette has two states: the vacuum
state on the two modes and the fully occupied state on the
two modes. These two states are both bosonic; therefore, the
boundary can be treated as a spin system just like for the CZX
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model. The symmetry on the boundary is again generated by
Uczx, which we have shown cannot have an SRE symmetric
state. Therefore, this fermionic C ZX model has a nontrivial
onsite Z, symmetry-protected SPT order.

VIII. SUMMARY

In this paper, we have given the explicit construction of a
two-dimensional interacting spin model with nontrivial onsite
Z, symmetry-protected topological order. We found that the
system is highly nontrivial because, if it has a boundary, the
boundary is either gapless or breaks symmetry. We showed
this by writing the effective symmetry transformation on the
boundary as a matrix product unitary operator and revealed
a nontrivial 3-cocycle structure in its transformation rule. We
proved that any matrix product unitary operator related to a
nontrivial 3-cocycle in (G, U(1)) cannot have a gapped short
range entangled symmetric state.

This model could have interesting implications for the study
of topological phases using a tensor network presentation.
In the tensor network representation of topological phases, it
has been understood that, in one dimension, injective tensors
provide a complete characterization of gapped ground states
and its gauge transformation under symmetry reals the SPT
order of the phase.?®?’ In higher dimensions, similar analysis
of injective tensors have been carried out.*>' However, the
fact that the ground-state wave function of the CZX model
has a loop structure and cannot be represented by an injective
tensor tells us that we need to consider more general forms
of tensors in order to study interesting SPT orders in more
than one dimension. Identifying the proper set of tensors for
the characterization of gapped short range entangled phases
in higher dimensions is an important open question. Or an
alternative approach is to reduce the problem from 2D to 1D
by considering the tensor representation of effective symmetry
transformations on the boundary, as was done in this paper.
How the reduction can be done in more than two dimension is
unknown.

The 1D boundary of the CZX model presents new
challenges to our understanding of 1D systems. While it is
a locally interacting system with Z, symmetry, it does not
have a gapped symmetric phase like in the transverse Ising
model. Moreover, the gapless excitations cannot be gapped by
breaking translational symmetry like in spin 1/2 chains. The
peculiarity of this system originates from the fact that this 1D
system can only exist as the boundary of a 2D system and
not on its own. Finding a proper field theory description of
this system would expand our current understanding of 1D
physics.

The relation between SPT order and cocycle is not acciden-
tal. Actually the pattern has shown up in lower dimensions.?’
In zero dimensions, symmetric states are classified by the 1D
representation of the group; that is, class of 1-cocycles in
H'(G,U(1)) and in one dimension SPT phases are classified
by projective representations of the group; that is, class
of 2-cocycles in H*(G,U(1)). Here, we make a connection
between 2D SPT order and class of 3-cocycles in H3(G,U(1)).
In fact, this relation is more general. In another paper, we
are going to show that actually d-dimensional SPT orders are
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related to (d + 1)-cocyclesin HA(G,U(1)), which could lead
to a full classification of SPT orders in any dimension.
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APPENDIX A: PROJECTIVE REPRESENTATION

Matrices u(g) form a projective representation of symmetry
group G if
(AD)

u(gu(gr) = w(g1,82)u(g182), &1.82 € G.

Here, w(g1,g2) € U(1) and w(g1,g2) # 0, which is called the
factor system of the projective representation. The factor
system satisfies

®(82,83)0(81,8283) = w(g1,82)w(g182,83), (A2)

forall g1,82,83 € G.If w(g1,82) = 1, this reduces to the usual
linear representation of G.

A different choice of prefactor for the representation
matrices u'(g) = (g)u(g) will lead to a different factor system

'(g1,82):

(8182)
(g1(g2)

We regard u'(g) and u(g) that differ only by a prefactor as
equivalent projective representations and the corresponding
factor systems w'(g;,g2) and w(g;,g2) as belonging to the
same class .

Suppose that we have one projective representation u;(g)
with factor system w;(gi,g2) of class w; and another
uy(g) with factor system w»(g,g2) of class w,, obviously
ui1(g) ® uy(g) is a projective presentation with factor group
w1(g1,82)w2(g1,82). The corresponding class w can be written
as asum w; + w;. Under such an addition rule, the equivalence
classes of factor systems form an Abelian group, which is
called the second cohomology group of G and denoted as
H?[G,U(1)]. The identity element 1 € H2[G,U(1)] is the class
that corresponds to the linear representation of the group.

w'(g1,82) = (g1,82). (A3)

APPENDIX B: GROUP COHOMOLOGY

The above discussion on the factor system of a projective
representation can be generalized to give rise to a cohomology
theory of group. In this section, we briefly describe the group
cohomology theory.

For a group G, let M be a G module, which is an
Abelian group (with multiplication operation) on which G acts
compatibly with the multiplication operation (i.e., the Abelian
group structure) on M:

g-(ab)=(g-a)g-b),

For the cases studied in this paper, M is simply the U(1) group
and a a U(1) phase. The multiplication operation ab is the
usual multiplication of the U(1) phases. The group action is
trivial: g -a = a, g € G,a € U(1).

geG, abeM. (Bl
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Letw, (g1, -..,g,) be afunction of n group elements whose
value is in the G-module M. In other words, w, : G" — M.
Let C"(G,M) = {w,} be the space of all such functions. Note
that C"(G,M) is an Abelian group under the function multi-
plication /(g1 ...,8:) = wu(g1, ... ,8n)@,(&1, .. .&n). We

define a map d,, from C"[G,U(1)] to cHG, U
(dna)n)(gla . agn+l)

iyt
= 41 'wn(gZa~-- =D

1
agn+1)a)n (glv "~9gn)

n
X 1_[60,(1_1)‘ (815++-+8i-1,8i8i+1,8i42s - - - &ur1)-  (B2)
i=1

Let
B(G.M) = {w,|w, =dy_10p—1|w,—1 €C" (G, M)} (B3)

and
Z"(G,M) = {w,|d,w, = 1,0, € C"(G,M)}. B4

B"(G,M) and Z"(G, M) are also Abelian groups which satisfy
B'(G,M) C 2"(G,M)where B'(G,M) = {1}. The n-cocycle
of G is defined as

H'(G,M) = Z"(G,M)/B"(G,M). (B5)

Let us discuss some examples. We choose M = U(1) and
G acts trivially: g-a=a, g € G, a € U(l). In this case
w, (81, - - -,8n) 1s just a phase factor. From

(dw1)(g1,82) = wi1(g2)w1(g1)/w1(g182), (B6)

we see that

ZH(G,U(1) = {w1|o1(g)w1(81) = 01(8182)}.  (BT)
In other words, Z!'(G,U(1)) is the set formed by all the
1D representations of G. Since B'(G,U(1)) = {1} is trivial,
HUG,U(1)) = Z1(G,U(1)) is also the set of all the 1D
representations of G.
From

(82,83)w2(81,8283)

(d2w2)(g11g27g3) = s (BS)
®>(8182,83)02(81,82)
we see that
ZX(G,U(1) = {w2|oma(82.83)@2(81,8283)
= 02(8182,83)®2(81,82)}
and
2 w1(g2)w1(g1)
B(G,U(1)) = Jw2]wr(g1,82) = ———— . (BY)
1(8182)

The 2-cocycle H*(G,U(1)) = Z%(G,U(1))/B*(G,U(1)) clas-
sifies the projective representations discussed in Appendix A.
From

(d3w3)(81,82,83,84)

_ @3(82,83,84)w3(81,8283,84)w3(81,82,83)
w3(8182,83,84)w3(81,82,8384)

. (B10)

we find
Z3(G,u(1))
_ {w ‘ws(gz,gs,g4)w3(gl,gzg3,g4)w3(gl,g2,gs) _ 1}
®3(8182:83,84)w3(81,82,8384)
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and

B*(G,U(1) = {a)3 w3(g1,82,83) =

(82,83)w2(81,8283) }

@2(g182,83)w2(g1,82)
(B11)

which  gives us the H3(G,U(1)) =

Z3(G,U(1))/B*(G,U(1)).

3-cocycle

APPENDIX C: REVIEW—MATRIX PRODUCT STATE AND
ITS CANONICAL FORM

In this section we the review matrix product state (MPS)
and its canonical form, which was derived in Ref. 47. Similar
ideas are going to be used in the study of matrix product unitary
operators.

A matrix product representation of a 1D state is

|Y) = Z Tr(AilAiz~~'AiN)|i1i2"'iN>, (ChH

i1iy...iN

where the A;s are D x D matrices.
Define the double tensor E for the MPS as

E =ZA,~ ® Ar. (C2)
Equivalently, £ can be expressed as a completely positive

quantum channel £ as

EX)=) AXA] (C3)

and the corresponding dual channel £* as

EX) =) AlxA;. (C4)

The correspondence between E and &£, £* is as follows:
Suppose that X and Y are D x D matrices which satisfy

Y = E(X). (C5)

Combine the two indices of the matrices into one and write
them as vectors:

(Vx)a-1p+8 = Xa.p (V¥)a—1)p+8 = Yo 8- (Co)
Vx and Vy are then related to E by

EVx = Vy. (CT)
Similarly, if

Y = &%(X), (C8)
then

ViE =V (C9)

We will use E and &, £* interchangably—whichever is more
convenient.

From the structure of £ and £* we can put the A;s
into a canonical form. Suppose that the largest magnitude
of the eigenvalues of £ is A; > 0. There could be multiple
eigenvalues A e'% of this magnitude. As shown in Ref. 53,
e'% form a group and they are the pth root of unity. To get rid
of this, we can just group p sites together and the eigenvalues
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of the largest magnitude will all be real and positive. We still
label them as A;.

Because £ is a completely positive channel, at least one of
corresponding fixed points A

E(A) = 1A (C10)

is positive semidefinite. Denote the support space of A as P.
It can be shown that A; P = PA; P.*’ Decompose each A;
into four parts: A; = PA;P + PA;P, + P LA;P + P, A;P,.
P, A;P =0. PA; P, may not be zero. However, it does not
contribute to the MPS, therefore we can remove it safely. After
doing this, A; is decomposed into two blocks and A is a full
rank positive fixed point of £p(X) = >,(PA; P)X(PA; P)!
with eigenvalue A;.
Because

Ep(X)= ) (PA;P)X(PA;P)' = (AiP)X(A; P)',

(C11)

every fixed point of £p (within space P) is also a fixed point
of £ with the same eigenvalue. Therefore, 1, is also the largest
eigenvalue of £p. Suppose that £p has another fixed point
Z of eigenvalue A; which is not proportional to A. Without
loss of generality, we can choose Z to be Hermitian. This is
because Y ,(A; P)Z(A; P) = 1 Z, s0 Y ;(A; P)ZT(A; P)l =
1 Z'. And because Z is not proportional to A, at least
one of the Hermitian matrices Z + Z' or i(Z — Z") is
not proportional to A. Diagonalize the Hermitian matrix
A~12Z A71/2 and get eigenvalues z; > 7o > ---. It is easy to
see that A — %Z is another nonfull-rank positive fixed point of
Ep with eigenvalue ). Therefore, we can repeat the previous
process and turn P A; P into smaller blocks.

Repeat this process for every block until the following
conditions are fulfilled: (1) The channel £p, of every block
k has a largest positive eigenvalue ;. There is a positive
full rank fixed point Ap within subspace Pi. (2) There
is no other fixed point within P, of the same eigenvalue.
(3) The block P, = I — )", Pr which does not have a positive
fixed point for the largest eigenvalue must have only zero
eigenvalue. The block could be nonzero in general, but it
does not contribute to the MPS. Note that Zk P.+P =1,
A; P, = Py A; P,. Written in the blocks P, and P, A; is upper
(or lower) triangular.

Now we look at each block k separately but from the
dual-channel perspective. We can similarly block diagonalize
Aff if a nonfull-rank positive fixed point exists for the
largest eigenvalue of & . For each sub-block projection

Pii, PryA¥ = Py A¥ Py AF can be turned into sub-blocks
AY! = P AFPy ;. Note that, if Ap, = PoiAp P,

Z AZ'CJAPM (Ai'{.])T = Af‘{JAPk (A'z"{’I)Jr

= PriAfAp, (Af)TPk,l

= MAp,,. (C12)

Therefore, within each sub-block, A p,, is still a positive full-
rank fixed point of £p,, with eigenvalue A;. As there cannot
be positive fixed points of other eigenvalue, A; must be the
largest. Similarly, if X; is a fixed point of Ep,, Pr; X Py is a
fixed point of £p,, with the same eigenvalue.
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Proceeding similarly as for £, we can block diagonalize Af?

into Af’l such that £  has only one fixed point for its largest
eigenvalue which is full-rank positive.

Finally, we arrive at a canonical form, which is composed
of blocks P, and sub-blocks P, ;. Within each sub-block, the
matrices satisfy (1) the channel £p, has a largest positive
eigenvalue. The corresponding fixed point is full rank positive.
(2) There is no other fixed point within the subblock of the
same eigenvalue. (3) The dual channel £5, , also has the largest
positive eigenvalue. The corresponding fixed point is full-rank
positive. (4) There is no other fixed point within the sub-block
of the same eigenvalue.

A generic matrix product state has only one block in its
canonical form.*’ We will call these MPS single-blocked
MPSs. Single-blocked MPSs represent gapped, short-range
correlated 1D states. The single-block property is a general-
ization of the injectivity condition for MPS.*” A single-blocked
MPS is injective if the dimension of the matrices equals that
in the canonical form. On the other hand, a single-blocked
MPS might not be written in a canonical form. It is, in general,
more redundant. To do the reduction, necessary steps involves
projection onto the single block and relabeling the basis. Any
invertible operation within the projected space might be added.
However, if the resulting canonical form is fixed, the reduction
operation is unique within the projected space up to an arbitrary
phase factor.

APPENDIX D: MATRIX PRODUCT UNITARY OPERATORS

Similarly to MPS, a matrix product representation of
operators acting on a 1D system is given by**

0 = Z Te(TH T2 .
(i} (i)

TN ifi i) (iin - - i)

(D1

Here we restrict to unitary operators U as we want to discuss
symmetry operations. Using matrix product representation, U
does not have to be an onsite symmetry. U is represented by
a rank-four tensor T "p on each site, where i and i’ are input
and output physical 1ndlces respectively, and «, B are inner
indices.

Just as every matrix product state can be reduced to
a canonical form,*” every matrix product operator can be
reduced to a canonical form also. To do so, we just need to
treat the two physical indices as one and apply the procedure
described in Appendix C. Similar to MPS, we can also define
a double-tensor or quantum channel for each matrix product
operator. The double tensor of T is

E=)"T"®["). (D2)
ii’

The fact that T represents a unitary operator puts a strong
constraint on the formof 7. UTU = I ® - - - ® I is represented
on each site by tensor

ii ii l”l’
Tow pp —ZT

T must be equivalent to §;;» on each site. We can reduce
T to the canonical form. The canonical form of T could

(D3)
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contain multiple blocks, but each block must represent the
same operator / @ --- ® I and takes the form A;d; ;v|k)(k|.
|k) (k| is the projection onto the kth block and A is a number.
Later we will impose further constraints on U to get rid of
multiblocks.

First we want to show that we can write every MPUO in
a single-blocked canonical form. That is, the canonical form
contains only one block. Suppose that we start with a canonical
representation of the symmetry operation. In general, the
canonical representation could have multiple blocks. We are
going to show that this is not necessary as different blocks
represent the same unitary operation.

Suppose that a canonical MPUO contains two blocks:

T =T/ ® T}, (D4)
Tjy) represents MPO O and Tpp) represents MPO O, (not

necessarily unitary). U = O; + O,.
The corresponding T contains four blocks:

i’ Z Tii/ ® (Ti”i’)*

- T[ll] ® T[lZ] ® T[Zl] ® T[ZZ] (D5)

Tk represent MPO OkOk,. Because T represents I ®
I---® 1, each of its blocks must also represent the same.
Therefore,

0,0/ = 0,0] = 0,0l =101---®1.

That is, O and O, represent the same unitary operator and
there is no need for multiple blocks. In the following we will
always assume that T is written in a canonical form with only
one block. We will call this the single-block condition for
MPUO.

With the MPUO representation defined for each symmetry
operation, we now want to know how the representation
changes when two or more operations are combined.

First let us consider what happens when U is combined with
U'. As we discussed before, this is represented by T which
could contain multiple blocks A;§; ;»|k)(k| in the canonical
form. Correspondingly, the double tensor of T

E = Z Ti,i’ ® (Ti,i’)* — Z Ti’i
i,i’ i

has multiple eigenvectors |k) with corresponding eigen-
values Ay.

Define the correlator between two sets of operator pairs
{o]",07'} and {05,065} to be

(01,000 = ) Tr(of 03 UaT 33U

mn

[ZTr Uua'u T)} |:ZTr(0§U6§UT):|.
(D8)
On the one hand, written in terms of tensors, the correlator is
expressed as
(01,00)y = Te(E --- E[o1] - - - E[02] - - - E)
—Tr(E ---E[0y] - E)THE - - - E[0s] - - - E),
(D9)

= 0,0] = (D6)

(D7)
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where

Eoa = 0 6)" @) o (0

m,i

Ep,) = Z (Og)iz,ig (5g)i4,i|Til,i2 ® (Ti4’i3)*,

n,i

(D10)

This is the same form as the correlation function of operators
o1=>),0"'®0d"and 0, =), 05 ® 0, in a matrix product
state with double-tensor E. From our knowledge of MPS, we
know that the correlator decays as (Ay/A;).

On the other hand, we consider for simplicity only unitaries
U which preserve locality of operators exactly. That is, if o is
supported on a finite number of sites, UoU is also supported
on a finite number of sites, although the number may be larger.
We do not consider the local operators with exponentially
decaying tails.”> Under this restriction, it follows that, when

n ~n

{o}",07'} and {05,065} are far apart,
Z Tr 0’1" oy U

= Z Tr(of' U U
mn

= Z Tr(o'l"
mn

the correlator (01,0,)y must be zero if the separation is large
enough. Therefore, A, = 0. E has only one eigenvector and T
has only one block in its canonical form.

Now we want to use this property to show that the single-
block condition is stable under combinations of MPUOs. That
is, if we start with two MPUOs represented by 7¢ and T? with
only one block in the canonical form, their combination

czz a,ii' b i'i"
T pp = ZT Typ

ZTr oMU U Ustuutaur)

) ® (3U,U")

81U Tr(0r), (D11)

(D12)

also has only one block in its canonical form. Of course, written
as above, T¢ is not necessarily in the canonical form. Note
that the discussion in the previous paragraphs is actually on
the special case where T = (T@!'y*,

In order to see this, we take the double tensor of T¢

ES = Z Tc,ii” ® (Tc,ii”)*

ii”

— Z (ZTa,iﬂ ® Tb,i;i”) (ZTauz ® Tbl’t”)
Lir \ i

— § 'I[*a,i{ié ®'I[*b,i{ié.

Y
1151y

(D13)

T and T? both have one block in their canonical form. Denote
the projection onto the blocks as P, and P, as

(D14)

P, = WS&)(

Po = |02 0Es
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Being the only eigenvector of E and E?, [y¢;) and W2

are positive full rank if written as matrices Ag 5, & The
only term that contributes to the trace of E€ is
(¥ @ "N ® (¥°)). (D15)

This is also true for any power of E°.

This special property of E€ tells us that E¢ has only a
single nonzero eigenvalue. Suppose E€ = A¢|0)(0| + M, |0)
is short for [¥%) ® |¥?). Tr(EC) = Ag. Moreover, Tr(E) =
Ak Because Tr(E€)* = > )¥, it can be shown that A; = 0
‘v’z > (. The fact that E¢ has a single eigenvalue in turn tells us
that T contains only one block in its canonical form because,
otherwise, E€ would have at least n% nonzero eigenvalues with
n being the block number.

Therefore, we have shown that, if we start with the
canonical single-blocked tensor representation of some unitary
operators, the tensor obtained from their concatenation still
has only one block in its canonical form and is hence single
blocked. For single-blocked T we can always apply the
procedure in Ref. 47 (also discussed in detail in Appendix C)
to reduce it to a canonical form. If we have multiple ways to
do the reduction, they must be equivalent. More specifically,
projected onto the unique block, the reduction operation is
unique up to phase (if the final canonical form is fixed, not up
to gauge). This phase factor is going to play an important role
in our study of SPT orders.

A similar reduction procedure applies when a matrix
product unitary operator acts on a matrix product state. In
particular, suppose 7% is an MPUO and A’ represents an MPS
which is symmetric under it. Suppose that 7" and A’ are both
in the canonical form and have only one block. Because T
represents a symmetry of Al

— Z Ti,i’ ® Ai’

represents the same matrix product state as A’. Moreover,
because A’ is short-range correlated and 7%’ does not increase
correlation length, A’ is still short-range correlated and it also
contains one block in its canonical form. However, note that
T"" is a matrix and the inner dimension of A’ is in general
larger than that of A’. Therefore, A’ may no longer be in the
canonical form. Some reduction procedure needs to be done
to bring A’ back to the canonical form.

Suppose that P is the projection onto the single block in the
canonical form of A’. Due to the uniqueness of the canonical
form of an MPS, P must be of the same dimension as A’ and
P A’ P must be equivalent to A’ up an invertible transformation
0.47*8 That is,

(D16)

Al=QPTATPO. (D17)

Denoting V, = PQ~' and V; = QP, we get A’ = V;A'V,.
Moreover, V;V, = I, which is the identity on the inner
dimensions of A’. As Q is unique up to phase, V; and V,
are unique on the single block of A’ up to a conjugate phase
factor. With slight abuse of notation, we will denote V, as V
and V; as V1 and we have

Al =ViAly, (D18)
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