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Nonperturbative approach to photoemission by direct simulation of photocurrents
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A procedure is presented for the ab initio calculation of the angle- and energy-resolved photocurrents emitted
from an atom, molecule, cluster, or solid surface excited by a fs-laser pulse. The approach does not rely on
perturbation theory. Instead, it is based on the direct simulation of the photoemission process in the time-and-space
domain. Hence, though the focus of the present work is on single-photon photoemission from the Si(001) surface
which is presented as a test case, we emphasize that the simulation inherently includes two- and multiphoton
photoemission currents. The system is assumed to be initially in its electronic ground state. Its electronic structure
is calculated within density functional theory using supercells and a slab geometry. The time evolution of the
system is obtained by the integration of the time-dependent Kohn-Sham equations. In case of photoemission
from solid surfaces discussed in this paper, the inelastic scattering of the photoelectrons is roughly accounted
for by an absorptive gauge-invariant optical potential, which is acting on the excited-state admixtures of the
time-dependent singe-particle wave functions only. Due to the omission of the inelastically scattered electrons
from the calculated charge density, the effective potential cannot be updated any longer and has to be kept frozen
during the simulation. Technically, the decoupling of the slabs is achieved by an absorbing potential in the vacuum
region. The angle- and energy-resolved photoemission spectrum is obtained from the Fourier transform of the
time-dependent single-particle wave functions. Photoemission spectra for the Si(001) surface are compared to
experimental data from the literature.
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I. INTRODUCTION

Photoemission has developed into a highly sophisticated
tool to obtain detailed information about the electronic
structure of solids, clusters, and molecules.1 Angular resolved
ultraviolet photoemission spectroscopy (ARUPS) is applied
to solids in order to map the electronic bulk band structure
of the occupied states and to determine the k‖ dispersion
of the eigenenergies of the surface states.1–4 In addition,
spectral line shapes provide information about the lifetime
of excitations of the electronic system and many-body effects
contained in the spectral function.5,6 In the cases discussed
above the electron emission occurs in response to a single-
photon absorption event; thus, the process is referred to as
one-photon photoemission (1PPE). The unoccupied states
below the vacuum level that are not accessible by 1PPE can
be probed by inverse photoemission.7 On the other hand,
with two-photon photoemission (2PPE) at the same time
occupied initial and unoccupied intermediate states are probed,
which can be disentangled by the different dispersion of peak
position with photon energy h̄ω.8 Moreover, 2PPE pump-probe
spectroscopy makes it possible to observe dynamical processes
directly on the fs time scale.9,10 Specifically, with respect
to 2PPE from the Si(001) surface, we refer to Refs. 11–15.
Beyond this, there is great interest in highly nonlinear effects
occurring in strong laser fields such as multiphoton ionization
(MPI), above-threshold ionization (ATI), and high harmonic
generation (HHG).16–20

The prevailing theoretical interpretation of 1PPE spectra
within the single-particle approach is based on the Fermi’s
golden rule type of equation for the spectrally resolved
photocurrent,1,21–23

j ∼ ve

occ∑
i

|〈f |A · p̂ + p̂ · A|i〉|2δ(εf − εi − h̄ωp). (1)

Here ve denotes the velocity of the photoelectron, A the
vector potential of the incident light wave, and |i〉 and |f 〉
the initial and final states with energies εi and εf , respectively.
A prefactor containing the distance between specimen and
detector R and the photon energy h̄ωp is absorbed into the
proportionality factor.

Compared to this rather compact formula for the 1PPE spec-
tra, the perturbation series expansion for the 2PPE spectra with
respect to the vector potential results in a more complicated
form with a summation over all possible intermediate states.24

In order to calculate higher-order photoemission currents
including and beyond 2PPE, a nonperturbative approach is
therefore clearly desirable. In this paper we present such
a nonperturbative approach to photoemission. Conceptually,
it is based on previous work in which we have simulated
the Si(001) surface exposed to a fs-laser pulse by ab initio
molecular dynamics based on time-dependent density func-
tional theory (TDDFT).25 While the focus of that simulation
was on electron-hole pair excitations and electrons essentially
confined to the slab, we present an extension to higher photon
energies allowing for electrons to be emitted into the vacuum
region. However, we assume here that all atom positions are
fixed and we will assume the effective potential to be frozen.
The reasons are explained below. We hope that this approach
will be useful for the investigation of nonlinear effects in
photoemission experiments with strong laser pulses as well
as for the investigation of coherence effects in pump-probe
experiments with very short pulse lengths.

In an early work paving the way for a nonperturbative
treatment of laser-matter interaction, the time-dependent one-
electron Schrödinger equation (TDSE) has been integrated by
Kulander26 to study MPI of a hydrogen atom. The solution of
the full TDSE for a helium atom was performed by Parker et al.
in the mid-1990s.27 For heavier atoms and molecules, however,
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the numerical effort becomes too demanding. Therefore,
electron correlation effects, in particular during the process of
nonsequential ionization,28 have mostly been extracted from
full TDSE integrations of one-dimensional models for the two-
electron systems He (Refs. 29–34) and H2 (Refs. 35 and 36),
respectively. One line of approximate approaches encompasses
time-dependent Hartree-Fock (TDHF)37 together with its
enhancements to time-dependent unrestricted or extended
Hartree-Fock (TDUHF, TDEHF)38,39 as well as multiconfigu-
rational time-dependent Hartree-Fock (MCTDHF), at present
applicable to systems with up to about ten electrons.40,41

However, at the moment, TDDFT seems to be the only viable
approach for large systems. A comprehensive overview of
TDDFT simulations for atoms, molecules, and clusters in
strong laser fields can be found in Part V of the book by
Marques et al.42 In particular, we refer to the work cited
there by Ullrich et al.,43–45 by Bauer and Ceccherini,46 and by
Tong and Chu47,48 for Ne and other noble-gas atoms, further
the considerations concerning the kinetic-energy spectra of
photoemitted electrons within TDDFT by Véniard et al.49

Diatomic or linear molecules in strong laser fields have
been studied by several authors,50–52 while R. Baer et al.
have considered a benzene molecule exposed to circularly
polarized light.53 For the investigation of metal clusters within
TDDFT we refer to Refs. 54–57 and in particular to the
calculation of photoelectron spectra from Na and K clusters by
Pohl et al.58–60 A review on laser-excited cluster dynamics can
be found in Refs. 61 and 62. The nonequilibrium Green’s
function (NEGF) technique, on the other hand, constitutes a
description of the time dependence of the quantum system
based on many-particle theory.63–66 Comparison to TDDFT
calculations can yield the opportunity to test the quality of the
approximations to the exchange-correlation functional.

In the present paper we describe our approach to the
calculation of photoemission spectra for clusters and solid
surfaces by direct simulation. The general theory and the
necessary approximations are outlined. As a first application,
we present normal emission photoemission spectra (1PPE)
for Si(001) calculated for fixed atomic positions and frozen
effective potential.

II. THEORY

A. Introduction to theory

We consider an atom, molecule, cluster, or solid surface
which is exposed to the electromagnetic field of a femtosecond
laser pulse. The system is assumed to be initially in its ground
state. The evolution of the electronic system is governed by
the time-dependent many-particle Schrödinger equation. In
principle, also the nuclei will be accelerated due to the forces
exerted on them by the light wave as well as the Coulomb
interaction with the induced charge density. Even though their
motion can be included within the Ehrenfest approximation
in the TDDFT molecular dynamics program,25 in the present
calculations all nuclear positions will be assumed to be frozen.

From a general theoretical point of view the dynamics
of the electrons can be described by time-dependent current
density functional theory (TDCDFT). It has been proven
by Vignale (Ref. 67; see also Ref. 68 for the original

Ghosh-Dhara theorem) that there exists a noninteracting
Kohn-Sham system, which evolves according to a time-
dependent vector potential AKS and scalar potential vKS with
the same charge density n(r,t) and current density j(r,t) as the
interacting many-particle system (atomic units will be used
throughout this paper):

i
∂ψ

∂t
=

{
1

2

(
p̂ + 1

c
AKS

)2

+ vKS

}
ψ. (2)

The initial wave functions ψ(r,0) are taken equal to the
Kohn-Sham states entering the DFT ground state. This is a
generalization of the Runge-Gross theorem69 of TDDFT. It
lays the grounds for TDCDFT, in which the current density ap-
pears as the basic variable. A well-known problem of TDDFT,
namely, the ultra-nonlocal dependence of the Kohn-Sham
potential on the induced charge density,42 can be overcome
in TDCDFT. By keeping track of the time-dependent current
density one is able to capture the buildup of macroscopic
polarizations or global changes in the charge distribution of an
extended periodic system.70,71 The macroscopic polarization
can be incorporated into TDDFT as an independent degree
of freedom (see the work by Kootstra et al.72 and by Bertsch
et al.73).

For the objective of the present paper, which focuses on
technical aspects of the direct simulation of the photoemission
process, we go back to TDDFT and assume the very simple
adiabatic local density approximation (ALDA) for the time-
dependent exchange-correlation potential (and thereby ignore
the ultra-nonlocality problem):

i
∂ψ

∂t
=

{
1

2

(
p̂ + 1

c
A

)2

+ veff

}
ψ, (3)

where A is the vector potential of the external field and veff the
time-dependent effective potential

veff(r,t) = v(r,t) +
∫

d3r′ n(r′,t)
|r − r′| + vLDA

XC (n(r,t)). (4)

This level of theory has been implemented in the TDDFT
code.25 It can be applied to simulate photoemission from
atoms, molecules, and small clusters, that is, small finite
systems.

However, it is well known that in case of solid surfaces bulk
contributions to the photoemission spectra sensitively depend
on the k⊥-selection rule, and therewith on the finite escape
depth of the photoelectrons.1,74 Thus, the inelastic scattering
of the photoelectrons in the solid has to be accounted for.
This can be achieved by including an optical potential1 that
acts on all conduction states, as is explained in detail below.
A disadvantage of this approach is that the time evolution is
not unitary anymore due to absorption. Hence, the effective
potential cannot be updated and has to be kept frozen at
its value from the ground-state DFT calculation. Such an
approximation is also tacitly assumed in above golden rule
formulation of the photocurrent. We emphasize, however, that,
in case of atoms, molecules, or small clusters no optical
potential has to be used and no such limitation to a frozen
effective potential is necessary.

The theory section is organized as follows. In Sec. II B,
the equations of motions are detailed. The slab or supercell
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geometry of the simulation and the absorbing boundary
conditions (decoupling the slabs or supercells) are presented
in Sec. II C. In Sec. II D the nonlocal optical potential operator
is described. The following Sec. II E is dedicated to the
gauge invariance of our approach. The calculation of energy-
and angular-resolved photocurrents (i.e., of the photoemission
spectra) is, in fact, a nontrivial problem, which is discussed in
Sec. II F as well as Secs. II G, II H, and II I.

B. Equations of motion

To avoid complications that arise for infinite systems from
the neglect of macroscopic polarizations (see, e.g., Refs. 75
and 76), we conceptually start from finite systems, that is,
a cluster or molecule, which are exposed to a light pulse.
Our objective is to calculate the induced photocurrent. The
diameter of the cluster is assumed to be much smaller than the
wavelength of the light pulse. Hence, we can apply the dipole
approximation and neglect the spatial variation of the electric
field E or the vector potential A. The vector potential is given
by

A(t) = −c

∫ t

−∞
dt ′E(t ′). (5)

The Kohn-Sham electronic equations of motion have the form
of a Schrödinger equation for a single particle moving under
the influence of a time-dependent effective potential,

i
∂ψ(t)

∂t
= Ĥ

(A)
KS (t)ψ(t), (6)

where the Kohn-Sham Hamiltonian consists of the following
terms:

Ĥ
(A)
KS (t) = 1

2

(
p̂ + A(t)

c

)2

+ V̂eff,loc + V̂
(A)

ps,nl + V̂
(A)

opt . (7)

In general, both the electric field of the laser pulse and the
variation of the Coulomb potential due to the induced charge
density difference will result in a nonvanishing force acting
on the nuclei. The dynamics of the nuclei can approximately
be described by solving the Ehrenfest equations of motion.25

In this work, however, for the sake of simplicity, the atomic
positions Ri(t) will be assumed to be frozen. This assumption
is justified since the motion of the nuclei occurs on a distinctly
longer time scale than the duration of the laser pulse, which is
taken to be of the order of 10 fs in the present simulations.25,61

The time-dependent local contribution to the effective
potential comprises the local part of the pseudopotential, the
Hartree potential of the time-dependent electron density, and
the time-dependent exchange-correlation potential,

Veff,loc(r,t) = Vps,loc(r,{Ri(t)}) + VH(r,t) + VXC[n](r,t). (8)

The xc potential is nonlocal and in general depends on the
history of n(r,t).77 In the adiabatic approximation VXC[n](r,t)
is replaced by the instantaneous charge density inserted into
the xc potential of static DFT. Furthermore, we apply either
a local density (LDA) or semilocal generalized gradient
approximation (GGA) to the static vXC. The ALDA is denoted
by VXC(n(r,t)).

In case of solid surfaces it will turn out to be necessary to
go back to non-self-consistent calculations. This approach is

quite common in 1PPE theory, which is based on a golden-rule
expression for the photoemission matrix elements. In this case,
a single active electron is moving in the frozen ground-state
effective potential, as derived from the ground-state electron
density n0(r), plus the time-dependent external field,

Veff,loc(r) = Vps,loc(r,{Ri}) + VH(r) + VXC(n0(r)). (9)

The theory below encompasses both situations, that is, both
self-consistent calculations for molecules and clusters and
non-self-consistent calculations for solid surfaces.

For the nonlocal part of the pseudopotentials we use
the fully separable form established by Kleinman and
Bylander,78–82 now with a time-dependent gauge factor83 (as
discussed below in Sec. II E),

V
(A)

ps,nl(r,r
′,t) =

∑
i

∑
(l,m)

εlφ
KB
i;(l,m)(r)φKB

i;(l,m)(r
′)∗e−i(r−r′)·A(t)/c,

(10)

with φKB
i;(l,m) and εl denoting the KB orbitals and KB energies

for atom i and angular momenta (l,m), respectively.
Usage of pseudopotentials instead of all-electron calcu-

lations introduces certain sources of errors. First of all, the
polarization of the core electrons is neglected due to the
frozen-core approximation, which is an unavoidable prereq-
uisite of any pseudopotential construction. Furthermore, it is
known (e.g., from the energy dependence of the logarithmic
derivatives of the Kohn-Sham wave functions78) that standard
pseudopotentials represent the scattering properties of the ions
accurately only within the energy range of the occupied states
plus some energy interval above the Fermi level, but not
necessarily within the energy range of the photoexcited elec-
trons. However, recently Luppi et al.84 have investigated the
influence of the Si pseudopotential on excited-state properties,
like the dielectric function of bulk Si. They conclude that the
pseudopotential approximation can be applied to excited state
calculations even several tens of eV above the Fermi level.

The nonlocal optical potential operator V̂
(A)

opt introduced
for the case of photoemission from solid-state surfaces is
discussed below in Sec. II D.

Within the dipole approximation, the Hamiltonian for solid
surfaces in Eq. (7) is invariant with respect to translations
by lattice vectors parallel to the surface. Therefore, the
components of the Bloch vector parallel to the surface are
constants of motion, and the following ansatz for the time-
dependent Kohn-Sham wave function is justified:

ψk‖,j (r,t) = wk‖,j (r,t)eik‖·r. (11)

Here wk‖,j (r,t) has the translational periodicity of the lattice.
This observation allows us to expand the time-dependent
Kohn-Sham wave functions with respect to plane waves in
the usual form known from static DFT.

C. Simulation geometry with absorbing boundaries

For the simulations we use a repeated-slab geometry, as is
usually employed for calculations of solid surfaces, adsorption
and chemical reactions on surfaces, etc., within DFT.85 With
regard to ground-state electronic properties, the slabs are
decoupled by a sufficiently thick vacuum layer. A periodically
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FIG. 1. (Color online) Schematic side view of the slab geometry
for the simulation of photoemission from crystal surfaces. The
dotted blue lines mark the boundaries of the periodically repeated
supercells. The dangling bonds at the bottom surface are saturated
by hydrogen atoms (small filled circles). Photocurrents are prevented
from impinging on neighboring surfaces by an absorptive potential.
The region of nonvanishing absorptive potential within the vacuum
region between the slabs is hatched. The photocurrents are measured
at the plane indicated by the dashed line.

repeated supercell is used to describe the periodically repeated
crystal slabs and the vacuum region (see Fig. 1).

A time-dependent homogeneous electric field normal to
the surface can be applied to the slab in a similar way as in
case of a static electric field, see, for example, the work by
J. Neugebauer and M. Scheffler.86 The linear scalar potential
corresponding to the homogeneous time-dependent electric
field E(t)ez within the range of the slab,

	(z,t) = −zE(t), (12)

is forced to be periodic by introducing a potential jump in the
middle of the vacuum region. Otherwise a vector potential A
can be used, together with a vanishing scalar potential 	, in
order to describe the exciting field.

A further problem arises when the photon field leads
to photoelectric emission of electrons. In this case, without
further precautions, the photocurrent emitted by a crystal slab
would impinge on the neighboring slab and would partially
penetrate the slab or be reflected. To avoid this, we add a

complex absorptive potential (i.e., a complex potential with a
negative imaginary part) vabs(z), which is nonvanishing only
within a thin slab within the vacuum region (for details we refer
to Sec. III C). In the practical calculations including such a
potential it has turned out to be advantageous to use a nonlocal
potential v̂abs instead of the local potential, which acts on the
excited-state part of the Kohn-Sham wave functions only, but
not on the tails of the single particle orbitals of the Kohn-Sham
ground state. In this way artificial damping of ground-state
wave functions is avoided. Let P̂v be the projector onto the
Kohn-Sham ground state, then we use the nonlocal absorptive
potential

v̂
(A)
abs = (

1̂ − P̂ (A)
v

)
vabs(z)

(
1̂ − P̂ (A)

v

)
. (13)

Here the superscript indicates that in case of a vector potential
A 
= 0 the projector onto the electronic valence states P̂ (A)

v
has to be augmented by a gauge factor as described in the
following section.

D. Optical potential

For the description of the photoemission at solid surfaces
it is essential to account for the finite mean free path
of the photoelectrons in the solid. It is the finite escape
depth of the photoelectrons that makes UV photoemission
surface sensitive. Moreover, it explains the occurrence of the
broadened k⊥ selection rule. A very rough approach commonly
used in photoemission theory is to consider the attenuation of
the elastically scattered component of the wave function, but
to disregard the inelastically scattered electrons. This can be
achieved by introducing a z-dependent optical potential, which
is nonvanishing within the bulk. This optical potential results in
a damping of the excited wave functions within the range of the
slab. Technically, we restrict the damping to the excited-state
admixtures of the time-dependent Kohn-Sham wave functions
by projection onto the conduction bands. The optical potential
vopt is set constant inside the crystal, falling off to zero in the
transition region to the vacuum. The spatial decay of vopt(z) has
been chosen proportional to the ground-state electron density
profile n̄(z) averaged in the directions parallel to the surface.
The constant value of the optical potential within the crystal
is taken equal to the imaginary part of the self-energy (of an
electron at an average excitation level) as obtainable from
many-particle calculations.87–90 Neither the energy nor the
wave-vector dependence of the self-energy are accounted for.

Altogether, our optical-potential operator reads

V̂
(A)

opt = (
1̂ − P̂

(A)
V

)
vopt(z)

(
1̂ − P̂

(A)
V

)
. (14)

This equation is formally identical to Eq. (13). As above, P̂ (A)
V

denotes the valence-band projector. For a periodically repeated
supercell its kernel is given by

P
(A)
V (r,r′) =

∑
j (occ)

∫

BZ

d3k

BZ

ϕk,j (r)ϕ∗
k,j (r′)e−i(r−r′)·A(t)/c,

(15)

with the appropriate gauge factor (see Sec. II E) and where the
indices k,j are the three-dimensional Bloch vector and band
index of the occupied valence states in the supercell and 
BZ
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denotes the volume of the three-dimensional Brillouin zone of
the superlattice.

For the numerical computation of photocurrents from
certain initial states the time-development of the Kohn-Sham
wave functions has to be calculated only for a small, discrete set
of Bloch vectors in the two-dimensional (2D) Brillouin-zone
of the crystal slab. We call these wave vectors k0

‖ below. In
general, the component of the Bloch vector perpendicular to
the layers is set to zero, that is, k0 = (k0

‖, k0
⊥) = (k0

‖,0). In case
of finite systems, k0 = 0.

The application of P̂
(A)
V to such a state ψk0

‖,j 0 yields

(
P̂

(A)
V ψk0

‖,j 0

)
(r,t) =

∑
j (occ)

∫

BZ

d3k

BZ

uk,j (r)

× eir·(k−A(t)/c)
∫

d3r′u∗
k,j (r′)wk0

‖,j 0 (r′,t)

× eir′ ·(k0−(k−A(t)/c)), (16)

where we have split the Bloch functions into phase factors and
supercell-periodic parts according to

ϕk,j (r) = uk,j (r)eir·k, and
(17)

ψk0
‖,j 0 (r,t) = wk0

‖,j 0 (r,t)eir·k0
,

respectively. The integral over r′ produces a factor propor-
tional to δ(k0 − (k − A(t)/c)); thus, the only nonvanishing
contribution comes from k = k0 + A(t)/c, and we obtain(

P̂
(A)
V ψk0

‖,j 0

)
(r,t) =

∑
j (occ)

uk0+A(t)/c,j (r)eir·k0

×
∫




d3r′u∗
k0+A(t)/c,j (r′)wk0

‖,j 0 (r′,t).

(18)

The numerical problem with this form is that it effectively
introduces time-dependent shifts of the Bloch vectors

k0
eff(t) := k0 + A(t)/c, (19)

thus coupling states at different points in the Brillouin zone to
one another (in particular, the time-dependent wave functions
at �̄ with k0 = 0 to stationary states with Bloch vectors k 
= 0).

An approximation is used setting the periodic parts of the
Kohn-Sham wave functions constant in the neighborhood of
the k-points k0, which runs up to neglecting time-dependent
shift of the Bloch vectors in the periodic part of the wave
functions,

uk0+A(t)/c,j ≈ uk0,j . (20)

This leads to the following approximate expression for the
projector onto the valence-band states:

P
(A)
V (r,r′) ≈

∑
j (occ)

∑
k0

‖

ϕk0
‖,j (r)ϕ∗

k0
‖,j

(r′). (21)

E. Gauge factors and gauge invariance

A spatially periodic Hamiltonian is a prerequisite for
a simulation in a repeated slab geometry. As opposed to
finite systems, in case of crystal slabs the periodicity of

the Hamiltonian parallel to surface cannot be enforced by a
saw-tooth potential. However, in dipole approximation the
electric field can be described by a spatially homogeneous
time-dependent vector potential according to Eq. (5), thus
conserving periodicity of the Hamiltonian in case of extended
systems.

The correct gauge factors to be applied to nonlocal
potentials in the presence of external electromagnetic fields
have been established in the work by Ismail-Beigi, Chang,
and Louie83 for the general case. Results for special cases,
in particular, first-order treatments, have been derived before
(see references cited in Ismail-Beigi83). For the type of
nonlocal operators applied here, where nonlocality arises from
projections onto certain subspaces of states, the gauge factors
can be derived from the gauge transformations of the wave
functions involved. For the particular form of the gauge factors
we refer the reader to Eqs. (10) and (15).

In order to shed some light on the approximation resulting
in Eq. (21), we now specialize to the situation of grazing
incidence of the light wave, with the electric field vector
perpendicular to the crystal surface. In this case, there is a
simple alternative to the above description of the light wave
by the vector potential A, that is,

	 = 0, A(t) = −c

∫ t

−∞
dt ′E(t ′). (22)

Instead, we can set the vector potential equal to zero and use a
linear scalar potential,

	(r,t) = −zEz(t), A = 0. (23)

This describes the excitation field acting on a single slab.
To proceed with the numerical calculation we switch over to
periodically repeated slabs, which are decoupled by absorber
layers in the middle of the vacuum regions as described above.
The electrostatic potential is assumed to be saw-tooth shaped
and thereby periodic also perpendicular to the surface.

In this gauge the Hamiltonian reads

ĤKS(t) = 1
2 p̂2 − 	̂(t) + V̂eff,loc + V̂ps,nl + V̂opt. (24)

Here the nonlocal potentials take the same form as in static
DFT, that is, without the gauge factor of Eqs. (10) and (15),
respectively:

Vps,nl(r,r′,t) =
∑

i

∑
l,m

εlφ
KB
i;(l,m)(r)φKB

i;(l,m)(r
′)∗ (25)

and

PV(r,r′) =
∑
j (occ)

∫

2D

BZ

d2k‖

2D

BZ

ϕk‖,j (r)ϕ∗
k‖,j (r′). (26)

The effect of approximating the projectors onto the valence-
band states by Eq. (21) is shown in Fig. 2. We find that the
relative intensities of the peaks in the photoemission spectra
are affected; however, the variation does not exceed 20%.

F. Calculation of photocurrents

To derive the photoemission spectra from the simulation,
the photocurrents in the vacuum region are calculated from
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FIG. 2. (Color online) The effect of neglecting the gauge factors
in the nonlocal valence-band projectors. The photoemission spectra
were calculated using different descriptions of the external field. Blue
(or dark gray) line, vector potential according to Eq. (22) and with
the approximation (21) for P̂

(A)
V . The Kleinman-Bylander potential is

used in the form of Eq. (10). Orange (or light gray) line, saw-tooth-
shaped scalar potential according to (23)–(26). Further parameters of
the light pulse: pulse width, tp = 5.0 fs; frequency, h̄ωp = 21.2 eV;
maximum field strength, Emax = 0.0025 H/a0; electric field vector
oriented normal to the surface.

the time-dependent Kohn-Sham wave functions. We use the
simple expression

jk‖,j (r,t) = Im{ψ∗
k‖,j (r,t)∇ψk‖,j (r,t)}. (27)

We point out that a rigorous treatment of the current densities
requires TDCDFT. Furthermore, Eq. (27) only holds in case
of vanishing vector potential A(r,t). We assume that the
excitation is due to a laser pulse that is limited to a certain
time interval. Thus, Eq. (27) can be applied to calculate the
photocurrent after a sufficiently long time, when the vector
potential of the laser pulse is negligible. This is in agreement
with the experimental setups, where the detector measuring the
photoemission spectra is positioned far away from the surface,
that is, in a region of vanishing electromagnetic field of the
incident light wave.

The problems arising from the limited width of the vacuum
region in the simulation can be overcome by transforming
the Kohn-Sham wave functions to the Kramers-Henneberger
frame (see Refs. 91–95). For the Fourier components, this
reads

ψ
(KH)
k‖,j (G,t) := Ûψk‖,j (G,t), (28)

with the unitary transformation

Û = ei
∫ t

−∞ dt ′((k‖+G)·(A(t ′)/c)+ 1
2 (A(t ′)/c)2). (29)

In this frame of reference the Hamiltonian takes the form

Ĥ (KH)(t) = 1
2 p̂2 + V̂loc(r(t)) + V̂nl(r(t),r′(t)), (30)

with

r(t) = r + 1

c

∫ t

−∞
dt ′A(t ′). (31)

The Kramers-Henneberger frame is the rest frame of the
classical electron moving back and forth under the influence
of the external electromagnetic field. In this frame of reference
the external electromagnetic field vanishes whereas the ions
oscillate (in the present simulations the maximum excursion
during excitation remains below 0.025a0). Hence, in the vac-
uum region the perturbation vanishes altogether. Photocurrents
and photoemission spectra derived formally from ψ

(KH)
k‖,j do

not change in the vacuum region outside the slab. Thus, the
currents can be calculated at a z coordinate rather close to the
surface. As pointed out above, the laser intensity has become
zero when the electrons reach the detector far away from the
surface. At that time, ψ

(KH)
k‖,j and ψk‖,j coincide apart from an

irrelevant phase factor and an irrelevant spatial shift and yield
the same photocurrent.

The total current density at a coordinate z outside the
sample is given by summing up the contributions of all initially
occupied states,

j(r,t) =
∑

j

∫

2D

BZ

d2k‖

2D

BZ

2fF

(
ε0
j (k‖) − μ

kBT

)
jk‖,j (r,t)

=
∑

j

∫

2D

BZ

d2k‖

2D

BZ

2fF

(
ε0
j (k‖) − μ

kBT

)

× Im
{
ψ

(KH)∗
k‖,j (r‖,z,t)∇ψ

(KH)
k‖,j (r‖,z,t)

}
. (32)

The factor of two accounts for spin degeneracy. Extension
to a spin-polarized simulation is straightforward. The integral
over k‖ extends over the surface Brillouin zone with area 
2D

BZ.
The sum over j extends over all bands. The contributions
from all at least partially occupied bands are considered.
fF is the Fermi distribution. It describes the occupation
numbers of the ground-state wave functions with Kohn-
Sham eigenenergies ε0

j (k‖). For T → 0, the Fermi occupation
probability converges toward a step function selecting the
lowest-energy Kohn-Sham eigenstates. The ground-state wave
functions are assumed to be taken as initial condition before
the laser excitation.

To introduce a spectral and an angular resolution, the action
of the detector on the wave functions is described by the
application of appropriate projection operators to the wave
functions. This is detailed in the following sections. After
projection, the wave functions are inserted into Eq. (32) to
finally obtain the photoemission spectra.

G. An energy filter for spectral resolution

As we deal with a repeated-slab geometry, the final states
of the photoemission process, which are unbound, strongly
depend on the vacuum thickness or, equivalently, the overall
width of the supercell in the direction perpendicular to the
surface. Furthermore, as we apply an absorptive potential, the
Hamiltonian would not be Hermitian anymore. For this reason
we cannot simply project the time-dependent Kohn-Sham
wave functions onto high-energy eigenstates. Instead, we have
to resort to a different approach making use of the entire time
evolution of the wave functions.

In the following we use a mixed representation of the
wave functions, that is, a plane-wave expansion for the two
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directions parallel to the surface and a real-space representa-
tion for the direction perpendicular to the surface:

ψ
(KH)
k‖,j (r,t) =

∑
G‖

ψ
(KH)
k‖,j (z,G‖,t)

ei(k‖+G‖)·r‖
√


2D
. (33)

Here 
2D is the area of the surface supercell. The sum extends
over all vectors of the 2D-reciprocal lattice. In the numerical
simulations the summation is restricted to all 2D-reciprocal
lattice vectors up to a certain cutoff energy.

The energy-dependent detection probability of the energy-
analyzer is described by a Gaussian function F 2:

F 2
ω0,ω(ω) = 1√

2πω
e
− (ω−ω0)2

2ω2 , (34)

with ω0 and ω being the center and width of the detection
probability density, respectively.

The action of the energy-selective detector is approximately
described by application of the operator P̂erg = Fω0,ω( ˆH KH)
to the time-dependent Kohn-Sham wave function ψ

(KH)
k‖,j (r,t) in

the Kramers-Henneberger frame. As ψ
(KH)
k‖,j (r,t) are solutions

to the time-dependent Kohn-Sham equations

Ĥ (KH)ψ
(KH)
k‖,j = i

∂ψ
(KH)
k‖,j

∂t
, (35)

we obtain

Fω0,ω(Ĥ (KH))ψ (KH)
k‖,j (r,t) = Fω0,ω

(
i

∂

∂t

)
ψ

(KH)
k‖,j (r,t). (36)

Fourier transform with respect to time t yields

Fω0,ω(Ĥ (KH))ψ (KH)
k‖,j (r,t)

=
∫ ∞

−∞

dω

2π
e−iωtFω0,ω(ω)ψ (KH)

k‖,j (r,ω). (37)

The plane-wave expansion of the energy-filtered wave
function with respect to 2D lattice vectors parallel to the
surface takes the form

Fω0,ω(Ĥ (KH))ψ (KH)
k‖,j (r,t)

=
∑
G‖

∫ ∞

−∞

dω

2π
e−iωtFω0,ω(ω)ψ (KH)

k‖,j (z,G‖,ω)

× 1√

2D

ei(k‖+G‖)·r‖ . (38)

H. Angular or momentum resolution

In angle-resolved photoemission experiments the direction
of the outgoing photoelectrons is selected by placing the
electron detector in the desired direction, as the illuminated
sample area is small and the detector is far away from
the sample. Detecting direction and the kinetic energy of
the photoelectrons make it possible to determine all three
components of the momentum vector of the photoemitted
electrons outside the sample.

In case of the simulations the geometry is fundamentally
different. The illuminated specimen surface extends to infinity.
In order to select the direction of the emitted electrons, we
make use of the conserved quantities in the vacuum kinetic

energy ω and momentum k‖ + G‖ parallel to the surface. The
emission angles ϑ and ϕ are derived from

ϑ(ω,k‖ + G‖) = arcsin

( |k‖ + G‖|√
2ω

)
, (39)

ϕ(ω,k‖ + G‖) = arctan

(
ky + Gy

kx + Gx

)
. (40)

The acceptance direction n̂ of the detector is defined by the
angles ϑ0 and ϕ0,

n̂ = cos ϑ0êz + sin ϑ0(cos ϕ0êx + sin ϕ0êy). (41)

The finite angular resolution of the detector is taken into
account by tolerance angles ϑ and ϕ. This leads to the
characteristic function for a detector in direction n̂,

χn̂,
(k‖ + G‖,ω) :=
⎧⎨
⎩

1 if |ϑ − ϑ0| � ϑ,

and |ϕ − ϕ0| � ϕ,

0 else.
(42)

Thus, we define the action of the operator P̂dir that is selecting
the emission direction to the energy-filtered wave function
P̂ergψ

(KH)
k‖,j (r,t) [Eq. (38)] as

P̂dirP̂ergψ
(KH)
k‖,j (r,t) = P̂dir

∑
G‖

∫ ∞

−∞

dω

2π
e−iωtFω0,ω(ω)

×ψ
(KH)
k‖,j (z,G‖,ω)

1√

2D

ei(k‖+G‖)·r‖

=
∑
G‖

∫ ∞

−∞

dω

2π
e−iωt

×χn̂,
(k‖ + G‖,ω)Fω0,ω(ω)

×ψ
(KH)
k‖,j (z,G‖,ω)

ei(k‖+G‖)·r‖
√


2D
. (43)

In summary, the energy and direction filter operators
are defined by multiplication of the Fourier-transformed
wave function expansion coefficients ψ

(KH)
k‖,j (z,G‖,ω) by local

resolution functions Fω0,ω(ω) and χn̂,
(k‖ + G‖,ω).

I. Calculation of photoemission spectra

Experimentally, the photoemission spectrum is given by the
number of electrons detected at a certain energy ω0 in a certain
direction n̂. In the simulation we assume a laser pulse of finite
duration. The electron count rate in the detector, integrated
over many pulses, will be proportional to the expectation value
of the total photoemitted charge per surface unit cell. The
energy and angular resolution of the detector is accounted for
by applying the filter operators P̂dir and P̂erg defined in the
previous section.

Inserting the filtered wave functions (43) into Eq. (32) for
the current density we obtain the following expression for the
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energy- and angular-resolved photocurrent density:

jn̂,ω0 (r,t) = 1


2D

∑
j

∫

2D

BZ

d2k‖

2D

BZ

2fF

(
ε0
j (k‖) − μ

kBT

)
Im

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π
F ∗

ω0,ω(ω′)Fω0,ω(ω)e−i(ω−ω′)t
∑
G‖

∑
G′‖

χ∗
n̂,


× (k‖ + G′‖,ω′)χn̂,
(k‖ + G‖,ω)ψ (KH)∗
k‖,j (z,G′‖,ω′)

(
i(k‖ + G‖) + êz

∂

∂z

)
ψ

(KH)
k‖,j (z,G‖,ω)e−i(G‖−G′

‖)·r‖ . (44)

The total photoemitted charge per unit cell as observed in
a photoemission experiment is obtained by integrating this
current density (44) both over time and over the cross-section
of the slab:

q n̂,ω0
=

∫

2D

d2r‖
∫ ∞

−∞
dtjn̂,ω0 (r‖,z,t) · êz. (45)

The integration over time yields a δ function,∫ ∞

−∞
dte−i(ω−ω′)t = 2πδ(ω − ω′), (46)

and the integration over the surface unit cell yields∫

2D

d2r‖ei(G‖−G′
‖)·r‖ = 
2DδG‖,G′

‖ . (47)

Thus, the total photoemitted charge simplifies to

q n̂,ω0
=

∑
j

∫

2D

BZ

d2k‖

2D

BZ

2fF

(
ε0
j (k‖) − μ

kBT

)

×
∫ ∞

−∞

dω

2π
F 2

ω0,ω(ω)
∑
G‖

χn̂,
(k‖ + G‖,ω)

× Im

{
ψ

(KH)∗
k‖,j (z,G‖,ω)

∂

∂z
ψ

(KH)
k‖,j (z,G‖,ω)

}
, (48)

where we have used the identity χ∗χ = |χ |2 = χ .
Next we specialize to the case of normal emission of

the photoelectrons. The angular resolution of the detector
is assumed to be such that only the G‖ = 0 components of
the wave functions are detected. Thus, the sum over G‖ in
Eq. (48) reduces to the term for G‖ = 0. Furthermore, we
assume a semiconducting band structure, or, less restrictively,
that all bands entering Eq. (48) are, within the acceptance
cone of the detector, either fully occupied, fF = 1, or fully
unoccupied, fF = 0. We also neglect the k‖ dependence
of Im{ψ∗

j (z,k‖ + G‖,ω)(∇zψj )(z,k‖ + G‖,ω)}. In this case,
the remaining integral reduces to the ω-dependent area of
the Brillouin zone corresponding to the acceptance cone of
the detector, 
2D

BZ(ω) = 2πωϑ2, divided by the area of the
2D Brillouin zone of the supercell 
2D

BZ,∫
d2k‖

2D

BZ

χêz,
(k‖,ω) = 
2D
BZ(ω)


2D
BZ

. (49)

In this case the total photoemitted charge can be written as

q êz,ω0
=

∫ ∞

−∞

dω

2π
F 2

ω0,ω(ω)

2D

BZ(ω)


2D
BZ

× 2
∑
j,occ

Im

{
ψ

(KH)∗
0,j (z,0,ω)

∂

∂z
ψ

(KH)
0,j (z,0,ω)

}
. (50)

III. IMPLEMENTATION AND APPLICATION TO
ONE-PHOTON PHOTOEMISSION FROM Si(001)

After a brief description of the Si(001) surface reconstruc-
tion in Sec. III A, we give some details on the implementation
of the photoemission simulation program together with the
parameters required for converged spectra in Sec. III B. In
Secs. III C and III E, we discuss the absorptive and the optical
potential, respectively. The exciting laser pulse is introduced
in Sec. III D. In Sec. III F, the dipole selection rules in case
of normal emission due to the symmetry of the p(2 × 2)-
reconstructed surface are summarized. In the final Sec. III G
we compare—as a test case—simulated 1PPE spectra from
this surface to experimental data by Johansson et al.96 and
analyze the photoemission spectra in terms of the initial states
that contribute.

A. Surface structure and emission geometry

The surface geometry of Si(001) has been studied intensely
both experimentally and theoretically.97 The p(2 × 2) and
c(4 × 2) surface reconstructions are characterized by dimer
rows. The Si dimers buckle, and the buckling angle alternates
along the dimer rows. The two reconstructions differ only in the
relative phase of the dimer buckling in adjacent rows. Figure 3
shows a schematic top view of the p(2 × 2) reconstruction,
which, for the sake of simplicity, has been assumed for all
calculations in this work.

On terraces separated by single atomic height steps the
orientation of the Si-dimer bond differs by 90◦. Nominally
flat Si(001) surfaces contain steps. Thus, to compare to
experimental photoemission spectra, an incoherent average
over the two orientations of dimerization has to be performed.
At increased miscut of the order of few degrees along one of
the 〈110〉 directions double atomic steps prevail and the vicinal
surface becomes single domain.98

For the calculation we use a Cartesian coordinate system
with x and y axes within the surface plane, and the z axis
pointing outward from the Si bulk into the vacuum. The angle
of incidence of the laser beam with respect to the surface
normal will be denoted by θ . The component of the electric
field vector in the plane of the Si surface is oriented either
parallel or perpendicular to the dimer bonds. In the final
photoemission spectra, both orientations have been averaged
over.

The surface electronic structure in the energy gap between
the valence and the conduction states in the projected band
structure consists of occupied and unoccupied surface states
derived from the dangling bonds at the Si-up and Si-down
atoms, respectively.87,99–102 Due to the (2 × 2) cell there are
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FIG. 3. (Color online) Si(001) surface geometry (top view). Top-
layer Si atoms are denoted by shaded circles. Darker shade denotes the
atoms of the Si dimer that have relaxed outward toward the vacuum
(Si-up atoms). Lighter shade denotes the Si-down dimer atoms, which
are closer to the bulk. The thin dashed line frames the p(2 × 2) surface
unit cell. Mirror planes perpendicular to the surface (σv) are denoted
by solid lines, glide planes by dash-dotted lines. Furthermore, the
twofold rotational axes (C2) are indicated.

two surface bands of each type, which we denote with Dup and
D

′
up or Ddown and D

′
down.

B. Computational details and convergence parameters
of the DFT code

The Si surface is simulated within a slab geometry, with
a supercell repeated periodically in the directions parallel as
well as perpendicular to the surface. The Si-surface atoms on
the bottom side of the slab are saturated with hydrogen atoms.
Parameters needed to achieve convergence of Si(001) total
energy calculations and calculation of the electronic structure
are known.101 However, tightened convergence parameters are
needed in some cases in order to simulate the angle- and
energy-resolved photoemission spectra.

Particular attention has to be paid to the number of silicon
layers in the slab. First, for a meaningful description of
photoemission from solid surfaces, the thickness of the slab has
to exceed the escape depth of the photoelectrons, preferentially
by a factor larger than two. In the calculation, the escape depth
is determined by the imaginary part of the optical potential.
Second, a satisfactory description of the 1D density of states at
a given Bloch vector k‖ parallel to the surface is indispensable
to obtain reasonably smooth spectra. The number of layers can
be thought of to correspond to a certain sampling of k⊥, the
component of the Bloch vector perpendicular to the surface.
Via the dispersion relation ε(k‖,k⊥) of the electronic bulk states
(here only the dependence on k⊥ for the direction normal to the
surface enters), this translates into a set of discrete eigenergies,
which have to represent the smooth variation of the density of
states for the true half-space geometry. We find that, in the

case of Si(001) and for the width of the laser pulses as applied
in this work, up to 20–36 layers are required in order to obtain
reasonably converged normal emission spectra.

Neighboring Si slabs are separated by a sufficiently thick
vacuum region that not only has to electronically decouple
the surfaces, but which, moreover, has to accommodate the
absorptive potential. The spatial extent of the absorptive
potential amounts to order of 10a0 (Bohr). In the present
calculation the absorber is located close to the center of
the vacuum region. The distance between the surface and
the absorptive potential has to be sufficiently large, so that
the photocurrent can be determined before the photoelectron
enters the absorber. Furthermore, in particular in case of low
frequency and large electric fields of the incident laser pulse,
the oscillations of the Si slab in the Kramers-Henneberger
frame have to be accounted for (see Sec. II F). Altogether,
in the present calculation a thickness of the vacuum region
of about 60a0–70a0 has been used, leaving a gap of about
30a0 between the absorptive potential in midvacuum and the
surface of the slab. This distance is necessary to decouple the
absorptive potential from the valence states of the crystal,
which are decaying into the vacuum. We note that, as a
consequence of the finite cutoff energy limiting the size of our
plane-wave basis set, the residual densities of the valence states
at the absorber are distinctly larger than would be expected
from the exponential decay of the exact Kohn-Sham states.
To further reduce this unwanted absorption, we multiply the
optical potential with a projector onto conduction states as
described above (see Sec. II C).

Photoexcited electrons propagating toward the bulk may
be reflected when reaching the back side of the slab. This
artificial reflection, which is due to the finite thickness of the
slab, becomes irrelevant for thick slabs due to the damping of
the photoelectrons by the optical potential within the slab. This
is verified by convergence with respect to the slab thickness.

The ground-state atomic configuration and electronic struc-
ture of the surface, which enter the simulation as the starting
configuration, have been calculated within density functional
theory in LDA for the exchange-correlation energy. To obtain
a good representation of the electronic ground-state density
and frozen-in effective potential in which the photoelectrons
will propagate, a k-point set with nine special wave vectors in
the irreducible part of the Brillouin zone has been chosen. In
case of the semiconducting Si(001) surface, an energy cutoff
of 10–20 Ry in the plane-wave basis set has turned out to be
sufficient.

The ground-state configuration of the Si(001) surface has
been relaxed with the code FHI96MD from the Fritz Haber
institute in Berlin.103 The result serves as the initial condition
for the real-time simulation of the excitation process. The
time-dependent Kohn-Sham equations have been integrated
with a modified predictor-corrector scheme,25 which has been
implemented in the FHI96MD code. In the present simulations
the ion positions have been kept fixed.

C. Choice of the absorptive potential

The effect of a potential with a negative imaginary part (ab-
sorptive potential) is to damp the wave functions exponentially
with increasing time. Absorptive potentials have long been

235135-9



H. HUSSER, J. VAN HEYS, AND E. PEHLKE PHYSICAL REVIEW B 84, 235135 (2011)

used to provide absorbing boundary conditions, for example,
for the simulation of scattering processes and of laser-matter
interaction within the time domain (see, e.g., Ref. 104 and
several of the works cited in the Introduction; alternatively, a
so-called mask function105 can be applied). Optimization of the
potential parameters for this purpose, that is, minimization of
the transmission and reflection, has been carried through and
discussed by D. Neuhauser and M. Baer.106 Further results
in this field have been obtained in the following by several
authors (cf. Refs. 107 and 108 and references therein). In the
latter paper by Macı́as et al. an extension to complex potentials
was considered.

In the present simulation of the photoemission process in
the time domain we use an absorptive potential in order to
decouple neighboring crystal slabs. Photoemitted electrons are
absorbed in the center of the vacuum region. Our supercell
geometry puts a technical limit to a practical thickness of the
absorber; we only allow for a thickness of the absorber of
about 10a0.

While for kinetic energies in the range of UV-
photoelectrons the transmission probability can easily be
suppressed by choosing a sufficiently large imaginary part
of the absorptive potential, the reflection probability tends to
rise steeply with decreasing kinetic energy of the electron.
We ascribe this to the fact that the absorbing potential begins
to vary significantly on the length scale of the de Broglie
wavelength of the electron.

Partially, this problem can be overcome by adding a real part
to the absorber potential, which is attractive and which, roughly
spoken, acts as an accelerator for the incoming electrons before
they reach the region of strongly absorbing imaginary part of
the potential. In this way, the reflection probability can be
significantly reduced for the low-energy electrons. Therefore,
we use a complex potential vabs = vr + ivi , where both parts
satisfy vr,vi � 0. In the simulation a real-space grid is used,
with a spacing chosen according to the sampling theorem
applied to the plane-wave expansion of the electron density.
At a plane-wave cutoff energy of 10 Ry, the spacing amounts
to ≈0.5a0. The absorptive potential has to be specified at the
grid points falling within the range of the potential. We have
minimized the scattered intensity for given energy ranges of
the UV-photoelectrons. We assume a Boltzmann distribution of
kinetic energy of the electrons and we take the reflection plus
the transmission probability, averaged over this distribution
of kinetic energies, as a target function for the optimization
process. In view of the practical applicability or transferability
(keeping the potentials as simple as possible), only monoton-
ically rising polygons for both real and imaginary part were
admitted. Within this class of potentials a reduction of the total
scattered intensity (transmission plus reflection) as displayed
in Fig. 5 can be achieved. The associated absorber potential is
displayed in Fig. 4. This complex absorber potential has been
applied throughout for the simulations described in this work.

D. Laser pulse for optical excitation

For the excitation we apply a single coherent laser pulse
(typically in the UV region), with photon energies in the range
from 10 to about 30 eV.

FIG. 4. (Color online) The complex absorptive potential vabs [see
Eq. (13)] used for the UV-photoemission calculations. The abscissa
gives the position with respect to the center of the vacuum region.

The pulse is given by a Gaussian envelope and a frequency
ωp. In the dipole approximation the spatial variation is
dropped. Technically, it is advantageous to limit the support
of the laser pulse to a finite time interval [0,2tp]. Note that,
in order to collect all photoemitted electrons, it is necessary
to simulate the electron dynamics on a longer time interval
[0,T ]. Altogether, we have

E(r,t) ≡ E(t) =
⎧⎨
⎩

E0 sin(ωpt)e
− 1

2 (
t−tp
tp

)2

for 0 � t � 2tp,

0 else.
(51)

In contrast to attosecond pulses leading to broad band
excitations, for an appropriate description of 1PPE light pulses
with a duration much larger than the period of the light wave
are required. To obtain a sufficiently fine energy resolution
ωp = 1/tp, an accordingly long duration 2tp of the laser

FIG. 5. (Color online) Reflection and transmission probabilities
as a function of incident electron energy for the absorptive potential
in Fig. 4. Note that the transmission of electrons with kinetic energies
in the range of UV-photoemission is negligibly small. Thus, the total
transmitted and reflected intensity is dominated by reflection.
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FIG. 6. (Color online) The influence of the pulse duration on the
photoemission spectra. The solid blue (dark gray) curve shows the
photoemission spectrum for a pulse with a width tp = 5 fs. This
is the pulse width that was used for calculating the photoemission
spectra throughout this paper. The dashed red curve was obtained
using a pulse with twice this duration, that is, tp = 10 fs. Subsequent
convolution of this spectrum with a Gaussian that corrects for the
different spectral widths of the two excitation pulses results in the
solid orange (light gray) curve. The photon energy is h̄ωp = 21.2 eV
and the electric field vector is perpendicular to the surface.

pulse is required. On the other hand, the simulation time is
limited due to the computational costs.

In the present work a laser pulse with a width tp = 5 fs
has been chosen, resulting in an energy resolution of ωp =
130 meV. Within 2tp = 10 fs there are 20 to 75 cycles of the
electrical field. The pulse is switched on at t = 0, reaches
its maximum at ≈tp = 13.7 fs, and is switched off at 2tp,
where the electric field amplitude has dropped to ≈0.026E0. In
Fig. 6 the influence of the pulse duration on the photoemission
spectra is shown.

In this work, for 1PPE the maximum field strength has been
taken as E0 ≈ 2.5 × 10−3 H/a0 ≈ 0.13 V/Å, corresponding
to a peak intensity of I ≈ 2.2 × 1011 W/cm2. We note that
the 1PPE part of the spectrum of the photoemitted electrons
is expected to scale linearly with the intensity of the light.
We have carried through test calculations that confirm this
behavior.

E. Estimates for the optical potential

As described above in Sec. II D, the attenuation of the elastic
component of the photocurrent due to inelastic scattering
processes inside the crystal is accounted for by an optical
potential within the slab region acting on the excited part
of the electronic wave functions only. In order to preserve
the ab initio character of the simulations, the values for
the optical potential are chosen in accordance with the
imaginary part of the quasiparticle self-energy corrections to
the Kohn-Sham eigenenergies as calculated within the GW
approximation109,110 by Fleszar and Hanke,90 rather than being
estimated from experimental determinations of the electronic
mean free path.

FIG. 7. (Color online) The effect of the spatial extent of the
optical potential on the photoemission spectra. The solid blue (dark
gray) curve denotes the photoemission spectrum as obtained with the
optical potential constructed as described in the text. To obtain the
solid orange (light gray) or dashed red curves, the optical potential
has locally been shifted rigidly outward or inward by dz = 1.0a0,
respectively. In this way, the spatial region where the optical potential
acts has been extended or shortened by 1.0a0. The spectra have been
calculated for a photon energy h̄ωp = 21.2 eV and p-polarized light
incident under an angle of θ = 15◦.

The optical potential is set constant throughout the slab and
decays proportional to the electronic density into the vacuum
region. The slight influence of a different choice of the extent
of the optical potential into the vacuum region on the peak
intensities has been tested and the result is shown in Fig. 7.

As the optical potential is assumed to be energy-
independent in the present simulations, a typical electron
energy has to be chosen such that the imaginary part of the
optical potential is set equal to the imaginary part of the
self-energy90 at that particular energy. To this purpose we have
chosen the energy of an electron excited by one photon from
about 1 eV below the valence-band maximum.

In the present simulations the real part of the optical
potential has been set equal to zero. We note, however,
that a band-gap correction, as is commonly introduced by a
scissor operator, can easily be included by adding a spatially
constant real part to vopt(z). In case of 1PPE this shift has
not been considered explicitly, because within the golden rule
formulation for the 1PPE photocurrent it is equivalent to a shift
of the photon energy.

F. Symmetry of Si(001) p(2 × 2) and dipole selection rules
for 1PPE in normal emission

Symmetry selection rules are a helpful tool to interpret the
photoemission spectra taken with polarized light. Furthermore,
the computational workload can be reduced by restricting the
time propagation to those initial states that actually couple
to the outgoing photoelectron states. Selection rules are
particularly meaningful in case of normal emission because
of the high symmetry of the outgoing electron wave function.

Due to the surface-induced modification of the electronic
structure and the small escape depth of the elastically scattered
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TABLE I. Characters of the (irreducible representations of the)
symmetry group C2v .

C2v E C2 σv σ ′
v

A1 z 1 1 1 1
A2 xy 1 1 −1 −1
B1 x 1 −1 1 −1
B2 y 1 −1 −1 1

photoelectrons, the selection rules are governed by the 2D
symmetry group of the surface rather than the 3D space group
relevant for, for example, optical transitions in the bulk. Dipole
selection rules for optical transitions in the fcc and bcc lattices
are, for instance, tabulated in the paper by Eberhardt and
Himpsel.111

The 2D space-group of the p(2 × 2) reconstruction of
Si(001) is pmg. Due to the glide plane it is not symmorphic.
At �̄ the 2D point group of the wave vector is C2v. There are
four 1D irreducible representations of the C2v (Ref. 112) (see
Table I).

If the electric field vector points along one of the coor-
dinate axes, the dipole operator transforms according to the
irreducible representations B1 (for the x direction), B2 (for the
y direction), and A1 (for the z direction).

In case of 1PPE the photocurrents could be calculated
from Fermi’s golden rule formula (1). We assume the dipole
approximation for A. In case of normal emission, the final state
|f 〉 describing the outgoing photoelectron is A1 symmetric.
Hence, there are nonvanishing matrix elements only if the
initial state |i〉 transforms according to the same irreducible
representation as the dipole operator. Thus, as long as one
remains within the linear regime, the computational workload
can be reduced by omitting initial states that do not couple.
We have carried through test calculations that confirm that the
spectra are not affected by this procedure. States that do not
couple have thus been omitted from the simulations presented
below.

Furthermore, for an arbitrary orientation of the polarization,
described by the vector A, we observe that the mixed terms
in the matrix element vanish due to the fact that for an initial
state with a given symmetry only one of the matrix elements
with respect to p̂x , p̂y , and p̂z can be nonzero:

|A · 〈i|p̂|f 〉|2 = |Ax |2|〈i|p̂x |f 〉|2 + |Ay |2|〈i|p̂y |f 〉|2
+ |Az|2|〈i|p̂z|f 〉|2. (52)

Thus, within the approximation of one single active electron,
1PPE spectra for arbitrary polarization can be calculated
from the three spectra with the electric field pointing into
one of the coordinate directions. This has been exploited to
create the spectra in Figs. 8 and 9. We emphasize that the
simplifications described above only hold in case of 1PPE. In
case of multiphoton photoemission, an individual simulation
is required for each direction of the electric field vector of the
light wave. Furthermore, the selection rules for the initial states
are less restrictive and hence more states have to be propagated
within the simulation. Thus, the present code can be used to
calculate, for instance, 2PPE spectra, but the computational
effort will be somewhat larger.

FIG. 8. Experimental (left) and calculated (right) normal emis-
sion photoemission spectra for the Si(001) surface for p-polarized
light incident under an angle of θ = 15◦ with respect to the surface
normal. hν denotes the photon energy. The theoretical photocurrents
have been averaged with respect to the (1 × 2) and (2 × 1) domains
of the Si(001) surface reconstruction, with the plane of incidence
being either parallel or perpendicular to the direction of the dimer
rows. The experimental spectra have been extracted (digitized) from
Fig. 4 of the work by Johansson et al. (Ref. 96). The peak positions
and denominations have been adopted from the original work by
Johansson et al. Moreover, motivated by our theoretical results, an
additional peak has been marked without label in the experimental
spectra. Its position has been derived by visual inspection and thus
should only be considered as a rough estimate of the true peak
position.

G. Simulated Si(001) 1PPE spectra at normal emission

The theoretical spectra for several photon energies in
the range h̄ωp = 10−26 eV and an angle of incidence of
the light θ = 15◦ and θ = 45◦ are displayed in Figs. 8
and 9, respectively (for the values of the optical potential,
see Table II). They are compared to experimental Si(001)

235135-12



NONPERTURBATIVE APPROACH TO PHOTOEMISSION BY . . . PHYSICAL REVIEW B 84, 235135 (2011)

FIG. 9. Same as Fig. 8 but for an incidence angle of θ = 45◦. Only
peaks that are present by virtue of the field component perpendicular
to the surface have been marked in the theoretical spectra. The
experimental spectra have been extracted (digitized) from Fig. 5 of the
work by Johansson et al. (Ref. 96). Peak positions and denominations
have been adopted from their original work. To aid the comparison to
the theoretical results, additional peaks derived from visual inspection
have been marked without label in the experimental spectra. The
peak S attributed to the surface dimers has a shoulder at higher
binding energies, which is marked qualitatively by the dotted line. It
is attributed to a second Si-dimer-derived peak.

photoemission spectra by L. S. O. Johansson et al., which
have been extracted from Figs. 4 and 5 of Ref. 96.

The peaks in the experimental spectra are labeled according
to the original denominations of Johansson et al. The cor-
responding peaks in the theoretical spectra are denoted by
the same letters. A first comparison shows that almost all
structures identified in experiment find a correspondence in
the theoretical spectra. Additional features in the computed
spectra can be identified on the basis of the calculations.
The initial states resulting in these peaks are discussed below.

TABLE II. Values of the imaginary part of the optical potential
used in the simulations as a function of photon energy h̄ωp. They
were estimated by reading off typical values for the imaginary part
of the self-energy from Fig. 3 in Ref. 90 by Fleszar and Hanke. In
the present photoemission calculations, the real part of the optical
potential has been set equal to zero.

Photon energy Optical potential
h̄ωp (eV) ImVopt (eV)

10.2 0.40
12.0 0.60
13.0 0.70
15.0 0.85
16.85 1.00
19.0 1.20
21.2 1.45
23.0 1.62
26.0 1.85

When comparing to experiment one has to consider that the
background of inelastically scattered electrons is absent in the
theoretical spectra.

The origin of the peaks in the calculated photoemis-
sion spectra can be revealed by decomposing the spectra
into contributions from different initial state bands or into
contributions arising from specific polarization of the light
(i.e., with the electric field vector pointing parallel to one
of the Cartesian axes). Figures 10 and 11 illustrate these
considerations. Figure 10 corresponds to an electric field vector
in the surface plane. It is the sum of the two spectra for
the electric field oriented in x and y directions, respectively.
Figure 11 has been calculated for an electric field vector of
the light perpendicular to the surface (i.e., pointing into the
z direction). The final theoretical spectra in Figs. 8 and 9 are
superpositions of these spectra weighted with the appropriate
geometry factors. As pointed out above, only initial states of
definite symmetry contribute to the spectra with the electric
field parallel to one of the coordinate axes. This allows for
an identification of the origin of the peaks at arbitrary angles.
The capital letters in the figures classify the contributions to
the photocurrent according to the initial state from which they
originate.

The primary information contained in photoemission spec-
tra are the positions of the maxima, from which the binding
energy of the respective states are deduced. Due to the k⊥
dispersion, photoemission peaks derived from bulk states
disperse with photon energy. In Figs. 12 and 13 and in Figs. 15
and 16 we compare the peak positions in the experimental and
theoretical spectra as a function of photon energy.

The initial-state Kohn-Sham bulk bands relevant for normal
emission are shown in Figs. 14 and 17, together with surface
resonances that have been identified in the theoretical spectra.
The wave vectors in Fig. 17 are folded back onto the  line if
the scattering by the p(2 × 2) surface reconstruction is taken
into account. Moreover, the assignment of the photoemission
peaks to the respective initial states is marked by the labels at
the vertical arrows.

For the analysis of the initial-state contributions to the
photoemission spectra, bulk states have been assigned to the
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FIG. 10. (Color online) Polarization analysis for the Si(001)
p(2 × 2) normal-emission spectra. Here the spectra have been
calculated for angle of incidence of the light θ = 0◦; that is, the
electric field vector lies in the surface plane and is either parallel or
perpendicular to the direction of the dimer rows. The spectra have
been averaged with respect to these two orientations, corresponding
to an average over the (2 × 1) and (1 × 2) dimerized terraces on the
Si(001) surface. As a guide to the eye, peaks have been connected by
dashed or dotted lines.

initial states from the slab calculation in the following way:
The plane-wave expansion of the Kohn-Sham states from the
slab calculation is subdivided into four contributions, each con-
taining all wave vectors of the form G + ν1π/aex + ν2π/aey ,

FIG. 11. (Color online) Same as Fig. 10 but for grazing incidence
(θ = 90◦) and electric field vector of the light perpendicular to the
Si(001) surface. As compared to the spectra in Fig. 10 an additional
scaling factor of 1/2 has been applied. In addition, the spectra in this
figure have been convoluted with a Gaussian of width 100 meV.

ν1,ν2 ∈ {0,1}. G denotes the reciprocal lattice vectors of
the supercell with (1 × 1) surface unit cell. a is the surface
lattice constant of Si(001)(1 × 1). If one of the wave vectors
ν1π/aex + ν2π/aey dominates, the orbital from the slab
calculation is assigned to the respective rod in reciprocal space.
If there is more than one relevant admixture, it is assigned to
all of the respective bulk states. We expect this to be the case
for surface states or bulk states with strong surface scattering.
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FIG. 12. (Color online) Dispersion of the peaks A, B, C, and
E observed in the calculated and experimental spectra for angle of
incidence of the light θ = 15◦ (see Figs. 8 and 10). These peaks
arise from initial states which can be ascribed to the 5-bulk
band and require no backfolding (see Fig. 14). The circles and
triangles represent the theoretical and experimental peak positions,
respectively. To account for the difference between quasiparticle
energies and the Kohn-Sham eigenenergies, the dash-dotted lines
have been obtained from the calculated peak positions by a rigid shift
of 0.58 eV [the band-gap correction (Ref. 90)] toward higher photon
energies. See Sec. III E.

Emission from bulk bands that require no backfolding is
characteristic for the peaks labeled A, B, C, D, E, and H . In
the online version of this paper the respective contributions are
marked in blue in Figs. 10–17. The structures denoted I , J , K ,
and L require a 2 × 1 backfolding [i.e., they should be present
also for a (2 × 1) reconstructed surface]. They are marked
in green. M , M ′, M ′′, and U require a further backfolding
also perpendicular to the dimer bonds; these contributions

FIG. 13. (Color online) Same as Fig. 12, but for angle of incidence
of the p-polarized light θ = 45◦ and the peaks D, H , S, and S ′ (see the
spectra in Figs. 9 and 11) that are due to emission from the ′

2-bulk
band (without backfolding) and to the dangling-bond states Dup and
D′

up (cf. Fig. 14). Labels and colors correspond to Fig. 11. Rough
estimates for the peak positions S ′, and in parts also for D, have been
derived from inspection of the experimental spectra.

FIG. 14. (Color online) Initial states of photoemission. Bulk band
structure of the Kohn-Sham eigenenergies of Si along the  line. In
addition to the 5- and ′

2-bulk bands the energies of the Dup- and
D′

up-surface resonances are marked by horizontal lines. Transitions
identified above are indicated by arrows. Labels and colors correspond
to Figs. 10 and 11.

are marked in orange. Finally, S, S ′, T , and N are features
associated with surface resonances, which are marked in violet,
magenta, or red.

In the rest of this section we give details of the origin
of the individual peaks observed in the calculated spectra
and compare to the experimental peaks and assignments of
Johansson et al. (cf. Fig. 1 in Ref. 96). The polarization is
abbreviated by ⊥ and ‖ if the electric field vector of the incident
light wave is perpendicular to the surface or lies within the
surface plane. First we consider the nondispersing features
S at about −0.15 eV relative to the valence-band maximum
(VBM) and S ′, which lies in the range between −0.4 and
−0.8 eV, furthermore the structures denoted by T and K at
−0.9 eV and −1.2 to −1.3 eV, respectively, as well as the
prominent peak labeled N or E at about −2.7 eV.

(1) The peaks S and S ′ appear over the whole range of
photon energies. They can be ascribed to emission from the
dangling-bond resonances Dup and D′

up, respectively. Note

that there are two occupied dangling-bond resonances at �

due to the p(2 × 2) reconstruction. In our slab calculation,
the Dup-state at � lies between −0.10 and −0.20 eV, close
to the value of −0.10 to −0.15 eV determined experimentally
and theoretically.12,13,15 D′

up forms a broad resonance with

the ′
2-bulk band with center at around −0.7 eV at � (cf.

Ref. 15). This resonance width permits the observed shifts in
the position of peak S ′ with varying photon energy.

In Ref. 96 Johansson et al. point out that there is a
low-energy shoulder of the surface-derived peak S, which is
not marked explicitly in the original spectra. For clarity, we
have indicated an approximate position of this shoulder in the
experimental spectra in Fig. 9 by a dotted line and adopted this
in Fig. 13. For the presence of the D′

up state in photoemission
from the Si(001) surface we refer the reader to the papers by
Landemark et al.,113 Enta et al.,114 and Johansson et al.115

At lower photon energies the relative emission intensities
from the dangling-bond states—as compared to the rest of
the spectrum—seem to agree with experiment. However, for
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FIG. 15. (Color online) Dispersion of additional peaks M , N , T ,
U , K , and L not contained in Fig. 12 observed in the calculated
photoemission spectra for angle of incidence of the light θ = 15◦.
As these peaks have been derived from local maxima in symmetry-
specific partial contributions to the photoemission spectrum, not all
of them can easily be identified in the total spectrum. See text for
details. Weak features are marked by open circles. The peaks in this
viewgraph originate either from backfolded bulk bands at �(K , L,
M , and U denoted by green and orange circles) or the two surface
resonances (T and N denoted by red circles). See Fig. 17 for the initial
states. For comparison, selected peak positions from the experimental
spectra in Fig. 8 are denoted by triangles. This includes the peak with
the highest binding energy in the hν = 10.2 eV spectrum, as well as
peaks D, C, and E in the spectra taken at increasingly larger photon
energy. When comparing to experiment, one should keep in mind that
peak M is comparatively weak in the theoretical spectra, save for the
lowest photon energies. For a detailed comparison, see text.

photon energies between 19 and 23 eV, the relative intensity
in the dangling-bond state peak S is considerably higher in the
experimental than in the calculated spectra.

(2) There is another nondispersing peak in the upper part
of the spectrum at around −0.89 eV labeled T . This structure
is excited by the electric field component parallel to the dimer
bonds only and thus due to emission from an initial state
of B1 symmetry, most likely forming part of a dangling-bond
resonance. Emission from this state is strong at photon energies
h̄ωp = 10.2 eV and h̄ωp = 15–21 eV, but it is nearly missing
for h̄ωp = 13 and 26 eV. At h̄ωp = 10.2 eV peak T is crossed
by the dispersing structure B that is comparably weak at
the other photon energies, and between h̄ωp = 17 eV and
h̄ωp = 19 eV peak A disperses through the region. Thus, T

appears mainly as an enhancement in the emission from the
bulk band 5 that is underlying the dispersing structures A

and B (see below). Possibly, this feature may also occur in the
experimental spectra, although for any instance weaker and
not marked explicitly.

(3) Present in the theoretical spectra more or less throughout
the whole range of photon energies there is a peak labeled K

at about −1.3 eV. This peak can be traced back to emission
from a nearly flat bulk band along the �-L line (see Fig. 17,
cf. Kentsch et al.,12 where L′

3 is determined at −1.27 eV). We
attribute K to the high density of states of this band (DOS-
peak). Since this band is of B2 symmetry, which means that it

FIG. 16. (Color online) Same as Fig. 15, but for angle of incidence
of the p-polarized light θ = 45◦ and the peaks M ′, M ′′, I , and J (see
spectra in Figs. 9 and 11). The peaks in this viewgraph originate from
backfolded bulk bands at �. See Fig. 17 for the initial states. For
comparison, selected peak positions from the experimental spectra
in Fig. 9 are denoted by triangles. For a detailed comparison to
experiment, see text.

has negative mirror parity (as is indicated by the minus sign
in Fig. 17), normal emission from this band is excited by the
electric field component in the surface plane perpendicular to
the dimer bonds. We have not been able to attribute peak K to
a feature observed in the experimental spectra.

(4) The pronounced peak at about −2.7 eV in the theoretical
spectra consists of two different components. One contribution
that we have denoted by N stems from a back bond-related
surface resonance of B2-symmetry that is located at −2.68 eV
in our slab calculation. The resonance is formed with the 5-
bulk band of B2 symmetry. Consequently, this contribution is
excited by the field component parallel to the dimer rows. In
the experimental spectrum for h̄ωp = 10.2 eV, the peak D that

FIG. 17. (Color online) Initial states of photoemission (contin-
ued). Bulk band structure of the Kohn-Sham eigenenergies of Si
along three lines in reciprocal space, which are folded back to the 

line in case of the p(2 × 2) reconstruction. In addition, the positions
of two (presumably dangling-bond- and back bond-related) surface
resonances are noted. Transitions are marked similar as in Fig. 14.
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was not ascribed to a bulk band transition by Johansson et al.,
seems to coincide with our peak N .

We have identified a second component denoted by E at
an energy of −2.85 to −2.88 eV which we interpret as a
DOS peak owing to the high density of states close to the
bottom of the doubly degenerate 5-bulk band. Actually,
the bottom of this band at the X point lies a little lower at
about −2.95 to −3.0 eV (Kentsch et al.12 have found a value
of −2.97 eV). The peak is discernible for photon energies
above 13 eV and becomes stronger with increasing photon
energy. This peak can be identified with the corresponding
peak E in the experimental spectra. However, there is a shift of
100–300 meV to higher binding energies in the experimental
data that becomes most pronounced for the highest photon
energies.

Now we turn to the dispersing features. These are the peaks
denoted by A, B, and C in the spectra for ‖ polarization and by
D and H in the spectra for ⊥ polarization as well as the peaks
M and M ′, M ′′. Furthermore, there is a group of dispersing
peaks labeled L and U in the spectra for ‖ polarization and by
I and J in the spectra for ⊥ polarization that are discernible
only for a range of photon energies of some eV.

(5) The peaks A and B within the upper and lower range
of photon energies have their origin in the 5-bulk band (cf.
the ascription of Johansson et al.). In fact, the 5 band is
doubly degenerate (with contributions from atomic Si px and
py orbitals). The states have B1 and B2 symmetry with respect
to C2v . These bands yield contributions to the photocurrent
of comparable intensity for the appropriate electric field
components in the surface plane. Also originating from the
5-bulk bands, but from k points closer to the X point, the peak
C disperses from about 1.75 eV downward to finally merge
into peak E—in both theory and experiment—at a photon
energy of about 15 eV. The dispersion of all three structures
is in agreement with the experimental findings, in particular
if the shift of photon energy—correcting for the LDA band
gap—is taken into account (see Fig. 12).

(6) Similarly, the peaks D and H arise from the ′
2-bulk

band, which disperses more steeply along the  line than the
5 band. The peak H in the upper range of photon energies
has also been identified in the experimental spectra, and the
dispersion agrees well (cf. Fig. 13). For the theoretical structure
D, there are corresponding peaks in the experimental spectra,
which have been marked for photon energies from h̄ωp =
8 eV to h̄ωp = 12 eV in the original spectra. To compare
to theory, we have attempted to extrapolate this structure to
higher photon energies in Fig. 9. At about 17 eV, there is a
strongly enhanced emission where H crosses the energy range
of the surface resonance peaks S and S ′. This is observed both
in theory and in experiment.

(7) Peak M as well as peaks M ′ and M ′′, which branches
off from M ′ at a photon energy of 19 eV, can be ascribed
to emission from the bulk band displayed in the right panel
of Fig. 17, which is dispersing from 2.9 eV down to 4.0 eV.
This band is threefold degenerate; the states have A1, B1,
and B2 symmetry with respect to C2v. It contributes to
the photocurrent for all polarizations of the incident light.
Although the respective peaks can be tracked through all
photon energies in the calculated spectra, the emission is
strong only for the lowest photon energies, in particular for

h̄ωp = 10.2 eV. At this energy there is a peak at about the
same binding energy in the experimental spectra (not explicitly
marked in Ref. 96). Its approximate position has been added
to Figs. 8 and 15 as well Figs. 9 and 16.

(8) The peaks denoted by L in the ‖-polarization spectra
and by I and J in the ⊥-polarization spectra originate from
the dispersing bulk band signified by “+” in the left panel
of Fig. 17. The states have two symmetries, A1 and B1, with
respect to C2v. The states of B1 symmetry yield peak L, while
the states of A1 symmetry yield peaks I and J . The occurrence
of peak I at lower and higher photon energies has also been
identified in the experimental spectra for θ = 45◦ with roughly
the same small dispersion (see Fig. 16). As for the features
labeled L and J in the theoretical spectra one has to bear in
mind that they were elicited from one of the contributions
to the photocurrent after the complete (also with respect to
backfolding) decomposition of the theoretical spectra. These
features cannot be clearly detected from an inspection of the
spectra alone, since peak J is nearly degenerate with H , and
L partially fills the energy range between peaks N and A.

(9) The preceding point also holds for the peak labeled
U in the theoretical spectra at higher photon energies in
case of ‖ polarization. It is overlapping with A, and for this
reason it cannot be clearly distinguished from A only by
inspection of the spectrum itself. Close inspection of the wave
functions suggests that there is a feature U that goes back
to the dispersing bulk band of B1 symmetry displayed in the
middle panel in Fig. 17 (bulk bands backfolded in dimer row
direction).

Altogether, the assignment of the peaks to the valence bands
and surface states as well as the peak dispersion are generally
in good agreement with the experimental data.96 The relative
intensity of the emission from the dangling-bond peaks is not
reproduced well at all photon energies. We speculate that this
may be due to dynamical screening of the laser field at the
surface, which is neglected in the frozen effective-potential
approach (see, e.g., Refs. 116–120). Although certainly an
important aspect, the refraction of the light has not been
considered in this work. Application of the Fresnel equations
to the optical refraction problem implies an unphysical jump of
the component of the electric field perpendicular to the surface.
If the nonlocal screening response is considered in the surface
region the resulting electric field becomes continuous.121

We note that the screening of the normal component of
the electric field can, in principle, be calculated within a
self-consistent TDDFT simulation as long as retardation
effects can be neglected. This will be the direction of future
work.

Beside this source of possible deviations of the intensities
from experiment, it should also be kept in mind that the
inelastic scattering events are represented only in a very
approximate way by the optical potential operator.

Furthermore, we observe that there are apparently addi-
tional or considerably stronger photoemission peaks in theory
than in experiment, which are derived from valence states
backfolded by the 2 × 2 reconstruction (e.g., peaks M , N , T

at certain photon energies). Additional calculations for a 2 × 1
reconstructed Si(001) surface with buckled dimers indeed
confirm that these features vanish in the 2 × 1 normal emission
spectra. The photoemission experiments96 were performed at
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room temperature, that is, above the order-disorder transition
of the dimer buckling orientation.122,123 Nonetheless, a strong
local 2× antibuckling correlation is known to persist up
to room temperature, which is reflected by the observation
of 2× backfolded states in room-temperature photoemission
spectra.113,114,124 The smaller intensity of the backfolded bands
in the experimental room-temperature photoemission spectra
as compared to the calculated spectra may be ascribed to the
temperature-induced disorder of the 2× dimer antibuckling
surface reconstruction.113,114 We note that the lowest energy
structure from DFT is the c(4 × 2) reconstruction.101 How-
ever, the energy difference to the p(2 × 2) reconstruction
is known to be of the order of a few meV per dimer,101

switching is possible even by an applied electrical field.125

As the photoemission experiments were performed at room
temperature, correlations between neighboring dimer rows
are expected to be very much smaller than “antibuckling
correlations” within a single row. Thus, any structure in the
theoretical normal emission spectra associated with the relative
phases of the dimer buckling in neighboring dimer rows
should be “washed out” in the experimental room-temperature
spectra.

IV. SUMMARY AND OUTLOOK

A method for the ab initio calculation of photoemission
spectra excited by fs-laser pulses has been developed. The
emission process is simulated in the time domain, and
the angle- and energy-resolved spectra are calculated from the
Fourier transform of the time-dependent single-particle wave
functions. An optical potential, estimated from theoretical
data for the energy-dependent self-energy of bulk Si by
Fleszar and Hanke,90 is taken to approximately account for
the finite mean free path of the photoelectrons due to inelastic
electron-electron scattering. In that case, the effective potential
from the ground-state DFT calculation has to be assumed
frozen during the whole simulation.

Normal-emission photoemission spectra for the Si(001)
surface have been calculated and compared to experiment to
demonstrate our approach. The detailed analysis of the spectra
results in an assignment of photoemission peaks to valence
bands and surface states. We obtain an overall good agreement
with the peak dispersion observed experimentally. Deviation
of the photoemission peak intensities may partially be due
to approximations in the theory, for example, the neglect of
screening of the laser field, the neglect of thermal disorder,
and the very rough description of inelastic electron scattering
by the optical potential.

The direct simulation is not intended as a substitute for the
Fermi’s golden rule type of approaches that have successfully
been applied to describe 1PPE spectra.1 As our simulation is
nonperturbative, the time-dependent wave functions inherently
contain also the higher-order contributions to the photocurrent.
In particular, the 2PPE spectra can easily be derived from
the same kind of simulations. Moreover, we expect that
the direct simulation of the photoemission process in the
time domain may facilitate future studies of multiphoton
photoemission, pump-probe photoemission experiments with
ultrashort laser pulses, and photoemission at high electronic
excitation densities. The purpose of the present study is to
present the technical framework and demonstrate the feasibil-
ity of the nonperturbative direct approach to photoemission.
Improvements of the approximations applied, for example, the
optical potential and the frozen effective potential, are certainly
desirable.
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