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Model of large volumetric capacitance in graphene supercapacitors based on ion clustering

Brian Skinner,1 M. M. Fogler,2 and B. I. Shklovskii1
1Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA

2Department of Physics, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
(Received 27 September 2011; revised manuscript received 3 December 2011; published 21 December 2011)

Electric double-layer supercapacitors (SCs) are promising devices for high-power energy storage based on
the reversible absorption of ions into porous conducting electrodes. Graphene is a particularly good candidate
for the electrode material in SCs due to its high conductivity and large surface area. In this paper, we consider
SC electrodes made from a stack of graphene sheets with randomly inserted spacer molecules. We show that
the large volumetric capacitances C � 100 F/cm3 observed experimentally can be understood as a result of
collective intercalation of ions into the graphene stack and the accompanying nonlinear screening by graphene
electrons that renormalizes the charge of the ion clusters.
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I. INTRODUCTION

Electric double layer (EDL) supercapacitors (SCs) are a
promising class of efficient long-lasting high-power electrical
energy storage devices based on reversible adsorption of ions
onto the surface of a porous electrode. The most common SC
devices use activated carbons as electrode materials because
of their high specific surface area and moderate cost. Recent
improvements in electrode materials have improved the energy
storage capacity of SCs greatly so that SCs are fast becoming
viable candidates to replace conventional batteries in a number
of energy storage applications.1,2

In this paper, we study SC devices made from graphene
electrodes, which have attracted considerable attention in
recent years.3–9 In such devices, individual graphene layers
are stacked to form an electrode and are placed in contact
with a reservoir of ionic liquid (or some other concentrated
electrolyte solution) as shown schematically in Fig. 1. A
functional SC device contains two such electrodes with a
voltage applied between them, usually with a porous separator
between them that isolates the electrodes from each other
electronically while allowing ions to flow from the reservoir to
either electrode. The ionic liquid between the electrodes acts
as a good conductor so that the electronic charge of the anode
or cathode is neutralized within a very short distance, and
thus, all energy stored by the capacitor is concentrated within
the anode and cathode graphene stack (GS) structures. In this
way, the total capacitance of the device can be described as the
series sum of the individual capacitances of the anode/cathode
and its interface with the ionic liquid. For simplicity, we will
refer to these simply as the anode and cathode capacitances.

Experiments on graphene-based SCs have demonstrated3,6,8

volumetric capacitances in excess of 100 F/cm3. These large
capacitances usually are explained within the simple picture
in which the capacitor energy is stored in the EDL that forms
when ions are adsorbed onto the electrode’s active surface. The
volumetric capacitance of a given electrode then is written as

C = ACEDL, (1)

where CEDL is the EDL capacitance per unit area and A is
the surface area per unit volume of the electrode. In order to
perform a conservative estimate of the value of CEDL necessary
to explain the large experimental values of capacitance, one

can imagine that an EDL forms on both sides of every
graphene sheet and that adjacent graphene sheets have just
enough separation to allow ions to fit sterically between
them. In this case for an ion diameter a = 1 nm, one finds
that the value 100 F/cm3 implies an EDL capacitance of,
at least, CEDL ≈ 7 μF/cm2. This value of CEDL is similar
to the reported EDL capacitances of a metal/ionic liquid
interface.10,11 Thus, to explain the large experimental value
of C, one apparently should imagine that each graphene sheet
provides two independent EDLs whose capacitance is as large
as that of a free metal/ionic liquid interface.

Such a large capacitance of graphene SCs is difficult to
understand if one recalls that graphene is not a metal but a
semimetal. Graphene has a relatively small thermodynamic
density of states (TDOS) ν = dne/dμe, where ne is the two-
dimensional (2D) concentration of electrons and μe is their
chemical potential, which is tuned by the capacitor voltage. It
is well known12–16 that, within the mean-field theory, this finite
TDOS modifies the EDL differential capacitance as follows:

C −1
EDL = C −1

EDL,∞ + C −1
q , Cq ≡ e2ν. (2)

That is, one effectively has a quantum capacitance Cq that
adds in series with the ideal EDL capacitance CEDL,∞, which
is achievable only at the surface of a hypothetical perfect metal
with infinite TDOS. Hence, the quantum capacitance imposes
an upper bound on the volumetric capacitance of the system.

This statement has profound implications for graphene
where the TDOS has the form

ν(μe,T ) = 4

π

kBT

h̄2v2
ln

(
2 cosh

μe

2kBT

)
, (3)

where kBT is the thermal energy and v = 1.0 × 106 m/s
is the graphene Fermi velocity. The corresponding quantum
capacitance has a deep minimum at the neutrality point μe = 0
equal to

Cq,min = 4 ln 2

π

e2

h̄2v2
kBT = 0.83 μF/cm2, (4)

at T = 295 K. Therefore, the mean-field theory of Eq. (4)
predicts (i) a minimum value of C that is a factor of 8 smaller
than what is observed and (ii) a strongly varying U-shaped
voltage dependence of the capacitance, which is at odds with
the roughly constant measured C(V ).
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FIG. 1. (Color online) A schematic of a graphene SC electrode.
Graphene sheets are arranged in a stack that is placed in contact
with a reservoir of ionic liquid. As a voltage is applied between
this electrode (which we take to be the negative electrode) and
the opposite electrode (not shown), cations (red circles with +’s)
are driven to intercalate between graphene layers to neutralize the
electrode’s negative electronic charge.

These same inconsistencies have been discussed in Ref. 15
where an EDL capacitance CEDL = 7–10 μF/cm2 was mea-
sured at the interface of a single graphene sheet and ionic
liquid. Reference 15 suggests that in this experiment the
graphene was subjected to randomly positioned charged im-
purities, causing smearing of the ideal TDOS and an increased
Cq,min. By analogy, one can argue that multilayered graphene
SC devices,3–9 which doubtlessly are heavily disordered, also
have higher ν than Eq. (3) predicts.17

In this paper, we explore a more intriguing possibility,
namely, that large enhancement of capacitance can result from
a breakdown of the mean-field theory. We propose a theoretical
model in which ions enter the electrode cooperatively as
dense clusters in analogy to staging in intercalated graphite
compounds.18,19 The effective attraction between the like-
charged ions is mediated by elastic stresses induced in the
GS.20–24 The high charge concentration inside such ion clusters
activates a strong nonlinear screening in layered graphene25–27

that renormalizes the ion charge. We show that, as a result,
the volumetric capacitance is enhanced greatly above the
mean-field value.

Our general approach to calculating the capacitance of a
given electrode (say, the negative electrode) is as follows. We
first compute the total free energy F (N+) per unit volume
associated with the lowest-energy configuration of N+ cations
(and the neutralizing concentration of N+ electrons) per unit
volume in the electrode. The value of the electronic charge
Q = eN+ per unit volume of the electrode is that which
minimizes the system’s total free-energy density F − QV ,
where the term −QV represents the work done by the voltage
source. Using the equilibrium condition d(F − QV )/dQ = 0
gives

V = dF

dQ
= 1

e

dF

dN+
. (5)

The differential capacitance per unit volume of the electrode
C = (dV/dQ)−1, therefore, can be written

C =
(

d2F

dQ2

)−1

= e2

(
d2F

dN2+

)−1

. (6)

In this way, the capacitance is closely related to the charge
compressibility (N2

+ d2F/dN2
+)−1 of the system: Large ca-

pacitance implies high compressibility. The capacitance can
be expressed as a function of voltage C(V ) by combining
Eqs. (5) and (6). These relations give the capacitance of a single
electrode (here, the negative electrode); the total capacitance
of the SC device is the series sum of the anode and cathode
capacitances. In this paper, we concern ourselves with the
capacitance of a single electrode only. For the majority of
this paper, we neglect entropic effects so that in Eqs. (5)
and (6) the free energy F can be replaced by the total
energy U .

The remainder of this paper is organized as follows.
Section II defines the model system to be studied. In Sec. III,
we discuss the capacitance of the graphene electrode in the
mean-field approximation. Section IV overviews the physics
of staging and nonlinear screening in graphite intercalation
compounds and calculates their capacitance. In Sec. V, the
mean-field and staging results for capacitance are united, and
the main results of this paper are derived. We show that
the capacitance of the SC everywhere exceeds the mean-
field quantum capacitance. Finally, in Sec. VI, we provide
additional discussion of the high-voltage regime, at which the
mean-field quantum capacitance manifests itself in a somewhat
enhanced form, and we provide some concluding remarks.

II. GRAPHENE-BASED SC ELECTRODES

Over the past few years, a number of studies have confirmed
the large capacitance per unit volume of SC devices in which
the electrode is made from a stack of graphene sheets3–9,28

as depicted in Fig. 1. Most commonly, in such devices,
the graphene sheets are ordered in the transverse direction
but have random translations or rotations between adjacent
sheets (turbostratic disorder) so that, on average, the electronic
dispersion relation of each graphene sheet is unaltered by
interlayer coupling. Below, we refer to this arrangement as a
GS. In practice, the layered ordering of graphene sheets within
the GS electrode is preserved only over some mesoscopic
length scale, usually on the order of tens of nanometers.9,28

In the remainder of this paper, we make the assumption
that ordering of graphene planes within the electrode is
preserved over arbitrarily large distances. This assumption
does not significantly affect any results, as we demonstrate in
Sec. V.

When the positive and negative electrodes are connected
to opposite terminals of a voltage source, the applied voltage
Vtot between them is related to the system’s free energy Ftot

according to Vtot = dFtot/dQ. In this paper, for simplicity, we
focus only on the negative electrode, employing the definition
of voltage given in Eq. (5). This voltage V is related to the total
voltage applied between the electrodes according to Vtot =
V + dF ′/dQ, where F ′ = Ftot − F is the free-energy density
of the configuration of Q/e anions and electron holes within
the positive electrode. In this way, the SC is equivalent to two
capacitors connected in series with the applied voltage Vtot

being shared between the two halves of the system. One also
can think that the results we derive below correspond to a
device with a very large positive electrode so that the smaller
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FIG. 2. (Color online) A schematic of a portion of the GS
electrode, shown in a side view. The stack of graphene sheets
(black lines), arranged with a separation c between layers, has some
concentration of spacer molecules (tan-colored circles) in it. When
a voltage is applied, ions (red circles with +’s) enter the electrode
collectively in the form of disks whose typical size is determined by
the average distance R between spacers in a given plane.

negative electrode’s capacitance dominates the series sum and
Vtot � V .

When the voltage V is applied, cations are driven to
intercalate into the negative electrode, and they establish a
uniform electrochemical potential throughout the device. In
our treatment below, we make the simplifying assumption that
the central ionic liquid reservoir has a large negative chemical
potential due to the strong Coulomb-based correlation energy
of ions within the ionic liquid reservoir so that, at V = 0,
both electrodes are empty of ions. In this case, the capacitor
only acquires a finite charge when V is larger than some
positive threshold voltage Vt . This behavior has been described
previously for dual-graphite energy cells.29

For practical SC devices, the effectiveness of the electrode
often is limited by the strong binding of graphene sheets to
each other through van der Waals (vdW) attraction.3,5 The
short-ranged vdW interaction between sheets produces a large
contact energy γ = (1.5 ± 0.4) eV/nm2,30 and in the absence
of any modification to the graphene, this interaction results in
dense graphitelike agglomerates whose interior surface area is
not readily accessible to ions. In this case, only a large applied
voltage can induce ions to enter the electrode by forcibly
separating the space between adjacent graphene sheets. This
process often is too slow to meet the fast charging/discharging
requirements of practical devices. Furthermore, such agglom-
eration can require the device to operate at large voltages that
are outside the limited electrochemical stability window of the
electrolyte.

One method of overcoming these difficulties is to fabricate
electrodes from chemically modified graphene in which
graphene sheets are bonded to polymers or some other spacer
molecule before being condensed into a stack similar to the
one shown in Fig. 2. In this arrangement, each spacer provides
sufficient steric hindrance to separate adjacent graphene
layers at a given point. Electrodes with such spacers have
been constructed recently and have been shown to generate
capacitance values in excess of 100 F/cm3 even at relatively
low voltages.5

In the region surrounding each spacer, separated graphene
sheets experience a strong elastic stress that results from the
competition between their attractive vdW interaction and the
elastic energy associated with bending them to bring them
together. The introduction of intercalated ions into the GS
requires additional separation of graphene sheets since the
diameter a of the ions is larger than the spacing c between

adjacent graphene sheets (and typically is comparable to the
size of the spacers). In equilibrium, this separation occurs
in a way that best relieves the elastic stress surrounding the
spacers—namely, through the formation of filled 2D pockets of
ions rather than through the introduction of scattered individual
ions. The size of these pockets is defined by the average
distance R between spacers (see Fig. 2).

One can explain the formation of these pockets of ions using
the language of elastic energy-mediated attraction. When a
single ion enters the GS, it creates a region of intense elastic
stress around itself. If two such ions are introduced to the
GS, they can reduce the total elastic energy of the system by
approaching each other closely so that together, they share the
elastic energy associated with deforming the GS around them.
Thus, there is an effective attraction between ions in the GS
mediated by the elastic strain they induce. This attraction has
been observed experimentally in intercalation experiments19,31

and has been described theoretically as an effective lateral
attractive interaction.26,27

When there is some finite concentration of ions within the
electrode, scattered ions between two adjacent sheets in the
GS attract each other to form a large disk of ionic charge. The
growth of the disk is truncated at size R, at which point, ions fill
the area between neighboring spacers. These spacers generally
are massive enough that they can be considered immobile
on the time scales of charging/discharging of the electrode.
The 2D charge density σ0 of the disk is determined by the
balance between the elastic energy-mediated attraction and
the Coulomb repulsion between ions.

The result is that, as a voltage is applied, the electrode is
charged by the incremental addition of disks of ions (which
may have a somewhat irregular shape) that enter the electrode
collectively, as shown in Fig. 2. In Sec. V, in our derivation of
the capacitance, we assume that the disk size R � a > c so
that every disk contains a large number of ions.

One may well notice that, in the limit where there are no
spacers at all in the GS, the electrode is simply turbostratic
graphite. In this case, the disk size R → ∞, which suggests
that ions enter the GS as infinite uniform planes. In fact, this
phenomenon is well known: It is referred to as staging of
graphite intercalation compounds and has been studied for
more than 80 years.18,19 In such compounds, guest ions, such as
Li+, K+, or Ca2+ are introduced forcibly into pure graphite by
an applied voltage. In most cases, the elastic energy-mediated
attraction causes the intercalated ions to arrange themselves
in an ordered sequence of filled and empty interlayer galleries
with each filled ion layer having some fixed 2D concentration
of ions and the distance between filled layers decreasing with
the overall concentration of intercalated ions. The number of
graphene sheets between two subsequent filled layers is called
the stage of the compound: Low densities of intercalated ions
correspond to a large stage, while the maximum filling of ions
is called stage 1. The concentration σ0/e of ions within a filled
plane depends, in general, on the ion size: Small ions tend
to have stoichiometry XC6 in their stage 1 form, while larger
ions form less dense arrangements, such as XC8 or XC12.32 In
each case, σ0/(e/c2) is of order unity. The physics of staging
and its implications for capacitance are discussed more fully
in Sec. IV.
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III. MEAN-FIELD THEORY OF CAPACITANCE IN A GS

As a first attempt at describing the capacitance of a GS,
one can try to use mean-field theory. This approach ignores
any correlations among ions, such as the clustering described
in Sec. II. In the simplest mean-field model, discrete ions
are replaced by a uniform charge density eN+ that fills the
electrode volume. This primitive picture allows one to derive a
value for the mean-field quantum capacitance Cq , which in the
mean-field approach, imposes an upper limit on the observable
C(V ).

Before calculating the volumetric capacitance in the mean-
field approach, one can consider first the problem of a single
graphene sheet gated by a parallel metal electrode that is
separated by a distance d from the sheet (as in the experiments
of Refs. 15 and 16). Such a system can be described as a
parallel-plate capacitor, and its total energy U per unit area
is equal to Uq + Uel, where Uq is the quantum kinetic energy
per unit area of electrons within the graphene and Uel is the
electrostatic energy.

The quantum kinetic energy Uq can be obtained by
integrating Eq. (3). This produces (at T = 0)

Uq = 2
3μe(ne)ne, (7)

where

μe(ne) = h̄v
√

πne (8)

is the chemical potential of graphene with the 2D electron
concentration ne = σ/e. In terms of the capacitor’s charge per
unit area σ, Uq becomes

Uq =
√

eσ 3

6
√

παε0εr

, (9)

where

α = e2

4πε0εrh̄v
(10)

is the dimensionless interaction constant of graphene. For free-
standing graphene, α ≈ 2.2 so that, for εr = 3.0, we have
α ≈ 0.7.

Using the thermodynamic equations relating the energy
U to the voltage V and the capacitance per unit area C
produces an expression for the quantum capacitance per unit
area Cq . In 2D, the relations analogous to Eqs. (5) and (6)
are V = dU /dσ and C = (d2U /dσ 2)−1 so that the quantum
capacitance is given by

Cq = 32πα2(ε0ε)2V/e. (11)

This quantum capacitance is added in series with the
geometric capacitance,

Cg(d) = ε0εr

d
, (12)

that results from the capacitor’s electrostatic energy,

Uel = σ 2d

2ε0εr

. (13)

Equations (9) and (13) imply that when the charge of the
capacitor is small enough that σ 
 e/9πα2d2 we have Uq �
Uel, and therefore, the quantum capacitance dominates the

e/4 0 rc

C/( 0 r/c
2)

V-Vt

0.31

2.5

~ (R2/c)2

(R2/c)5/2

1

R ~ a

R1 >

R2 > 1

R 

~

ε ε
∞

πε ε

> a

> R

FIG. 3. (Color online) The capacitance as a function of voltage
for the hypothetical case where α = 1 and the disk charge density
σ0 = e/c2, plotted for different values of disk size R. At R/a ∼ 1,
the elastic energy-mediated attraction between ions is eliminated, and
the capacitance follows the mean-field quantum capacitance given by
Eq. (14) (thin black line). At R → ∞, ions enter the GS in stages,
and the capacitance follows the result of Eq. (24) (dashed curve).
The behavior for finite R, derived in Sec. V, is shown schematically
by the red and blue thick lines for two different values of R. Proper
numerical coefficients are shown on the axes for the thin black and
dashed curves, while for the thick curves, the location and height of
the peak capacitance are indicated only by an approximate scaling
relation.

series sum C = (C −1
q + C −1

g )−1 � Cq . Conversely, at σ �
e/9πα2d2 we have C � Cg .

For a stack of many graphene sheets with a uniform
compensating ion charge, the mean-field picture suggests that
the electrode consists of many such single graphene capacitors
connected in parallel. If one assumes that the distance between
graphene sheets is a constant c, then the volumetric capacitance
satisfies C(V ) = C (V )/c. Substituting Eq. (11) gives

Cq(V ) � 8α2 V − Vt

e/4πε0εrc

ε0εr

c2
. (14)

In principle, this quantum capacitance should be added in
series with a constant geometric term Cg that results from
the system’s electrostatic energy. However, the quantum
capacitance Cq rises to the level of the geometrical value
only at very large ion densities N+ ∼ (α2c3)−1, which are not
realistic physically. Therefore, one can say that the mean-field
approach predicts a capacitance C(V ) � Cq(V ) over the entire
relevant range of voltage. Cq(V ) is plotted as the thin line in
Fig. 3.

We note here that Eq. (29) and all subsequent formulas
for the volumetric capacitance are normalized to the volume
of the empty GS where graphene sheets are separated by a
distance c.

IV. CAPACITANCE OF STAGED GRAPHITE

The mean-field picture presented in the previous section
apparently is incompatible with the phenomenon of staging
observed in graphite intercalation compounds as described in
Sec. II. In staged graphite, intercalated ions do not fill the
electrode volume uniformly but instead, form a sequence of
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filled and empty interlayer galleries, periodic in the stacking
direction z. To compute the capacitance of this structure, one
can use the Thomas-Fermi (TF) approximation.25,26 The key
findings of this approach are summarized below, with further
details given in Appendix A.

In order to determine the energy of the staged arrangement
of ions, one can approximate the ion layers as a sequence of
uniform planes with surface-charge density σ0 positioned at

z = (m + 1/2)h, m = 0,±1,±2, . . . , (15)

where h is related to the average ion concentration N+ by

h = σ0/(eN+). (16)

In this description, the discreteness of graphene sheets also
is ignored so that h can take on values that are not integer
multiples of c; this assumption is discussed at the end of this
section.

Within the TF approximation, the electrostatic potential
φ(z) and the three-dimensional (3D) electron density Ne(z) =
ne(z)/c are related by eφ(z) = μe[ne(z)] + const. With the
help of Eq. (8) and a suitable choice of the additive constant,
the Poisson equation for φ(z) can be written as

φ′′(z) = 16πε0εrα
2

ec
φ2(z). (17)

By the Gauss law, φ′(z) exhibits a discontinuity of σ0/(2ε0εr )
across each ionic plane.

For the case of large h, the solution for φ(z) can be
approximated by25,26

φ(z) � 3

2α2

e

4πε0εr

c

(	z + z0)2
, (18)

where 	z is the distance from the nearest ionic plane and

z0 = c

(
3

2πα2

e

σ0c2

)1/3

(19)

is the characteristic thickness of the plane’s screening atmo-
sphere. The corresponding 3D electron density Ne(z) near
ionic planes is given by

Ne(z) � 9c

4πα2(	z + z0)4
. (20)

For large ionic plane separation h � z0, one can talk about
an effective repulsion of the planes26 due to the overlap of
their screening atmospheres. The electron-density perturbation
caused by the overlap is the most significant near the
midplanes, e.g., at z = 0, where the density of the electrons and
their screening ability are strongly diminished. Therefore, the
interaction energy u(h) per plane per unit area can be estimated
as u(h) ∼ eφ(0)Ne(0)h ∝ 1/h5. This estimate is verified by
a detailed calculation (cf. Appendix A), which provides the
numerical coefficient,

u(h) � c1

α4

e2c2

ε0εrh5
, c1 = 1.169 53. (21)

The total energy per unit volume,

F � u(h)

h
+ eVtN+ (22)

includes contributions from both the interplane repulsion and
the self-energy of each plane, which is

u0 =
(

81π2

250

σ 2
0

e2
αc

)1/3

h̄v, (23)

per ion (cf. Appendix A) and which enters into the threshold
voltage Vt . Using these results, we can derive the voltage
V and the capacitance C of the staged compound near the
intercalation threshold as a function of interplane distance h.
For large h, this is performed by substituting the formula N+ =
σ0/eh for the ion concentration and Eq. (22) for the energy
density into the thermodynamic relations (5) and (6). Next,
eliminating h, we obtain

C(V ) � 1.03
ε0εr

c2

(
σ0c

2

e

)6/5 (
αe/4πε0εrc

V − Vt

)4/5

. (24)

We should note that, in the derivation of Eq. (24), it is
assumed that the graphite can be represented as a continuous
electron-filled medium. In a more realistic treatment, one could
treat h not as a continuous variable, but as a distance whose
value is restricted to be an integer multiple of c, known as the
stage number s in graphite.18,19 In this case, the ideal periodic
structure discussed above only would exist for a set of discrete
ion concentrations N+ = σ0/(ecs). At such concentrations, V

would change discontinuously, giving a sharp peak in C(V ).
In between the peaks, the system would be a mixture of two
stages with neighboring stage numbers. Equation (24) then,
would represent C(V ) averaged over an interval of voltages
containing several peaks.

One also could notice that we have assumed ionic planes
to be immersed in the continuum electron background without
any gap between the two. If nonzero gaps of width d0 ∼ a/2 +
c exist at both sides of every plane, then the energy density
acquires an extra term eσ0N+d0/(ε0εr ). Since σ0 is a constant,
this extra term can be absorbed into Vt ,

Vt → Vt + σ0

Cg(2d0)
. (25)

Notably, the geometric capacitance Cg [Eq. (13)] only changes
the threshold voltage but does not reduce C, unlike in the
mean-field theory of Eq. (2) and Sec. III.

The behavior of C(V ) predicted by Eq. (24) is markedly
different from the mean-field theory Eq. (14) as shown by
the dashed line in Fig. 3. Most notably, the capacitance of
staged graphite diverges at the threshold voltage rather than
collapsing to zero, and it remains parametrically larger than
the result given by Eq. (14) up until V − Vt ∼ e/(4πε0εrc).
At those large voltages, the approximate formula of Eq. (24)
becomes inaccurate, and one needs a more careful method
to calculate the capacitance as outlined in Appendix A. The
results of these calculations are discussed in Sec. VI.

V. CAPACITANCE OF A GS

For the main problem of this paper, as defined in Sec. II, the
different results of Eqs. (14) and (24) present something of a
puzzle. One one hand, when the spacers in the GS electrode are
plentiful, the graphene sheets are separated fully, and ions are
free to enter the GS individually and fill its volume uniformly.
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In this case, the capacitance should be similar to the mean-
field result of Eq. (14). On the other hand, when the spacers
in the GS are sparse, the intercalating ionic charges arrange
themselves in the staged structure discussed in Sec. IV, and
the capacitance should follow the prediction of Eq. (24). In
this section, we show that both relations C ∝ (V − Vt ) [as in
Eq. (14)] and C ∝ (V − Vt )−4/5 [as in Eq. (24)] are realized in
suitable ranges of voltage, and we explain how the crossover
between them occurs.

For the purpose of our conceptual discussion in this section,
we drop all numerical coefficients and focus instead on the
scaling behavior of the capacitance as a function of voltage.
For simplicity, we consider the case where α ∼ 1 and a/c

is also of order unity. This second assumption amounts to
assuming that σ0 ∼ (e/a2) ∼ (e/c2). The effect of allowing
α or σ0/(e/c2) to be small is discussed briefly at the end of
the section, but we note here that as long as a/c 
 (R/c)3/4

the scaling relations we derive below are unaffected. A more
thorough derivation of the capacitance is given in Ref. 33,
which includes an analysis of additional regimes that appear
if α 
 1 or σ0 
 e/c2.

Our essential observation is that when disks of charge
enter the GS, each disk draws around itself a strongly bound
nonlinear screening atmosphere of electrons that renormalizes
its charge. To see how this happens, consider first the case
where a single disk is introduced into the GS. At very short
distances z from the surface of the disk, the disk behaves like
an infinite plane, and the electric potential can be described
by Eq. (18). This formula for the potential is derived under
the TF approximation, which neglects any quantum effects
associated with finite electron wavelength, and therefore, its
applicability is limited to regions where the Fermi wavelength
λF is much smaller than the length scale over which the
potential is varying in the transverse direction. Thus, to find
the distance zTF at which TF screening ends, one can equate
λF ∼ 1/

√
ne ∼ e/(ε0εrφ) to the disk size R, which by Eq. (18)

gives

zTF ∼
√

Rc. (26)

Since zTF 
 R, the region over which the TF approximation
is applicable can be described as a disk-shaped volume with
thickness zTF 
 R and diameter ∼R.

The net effect of the strong TF screening at |z| < zTF is to
renormalize the charge of the disk. To see the extent of this
renormalization, one can calculate the charge enclosed within
the region |z| < zTF. In this case, the Gauss law can be written
as q ∼ −ε0εrR

2(dφ/dz)|z=zTF , which gives q ∼ e
√

R/c. This
charge q enclosed within the TF region is much smaller
than the bare disk charge σ0R

2 ∼ e(R/c)2. The screening
atmosphere surrounding the disk is shown schematically in
Fig. 4.

Outside of the TF region, the potential created by the
reduced charge q is not screened strongly. Indeed, at these large
distances, the potential is affected only by the relatively weak
dielectric response of graphene layers with a small TDOS.
Such linear screening is described in detail in Appendix B.
For the purpose of the present calculation of the capacitance,
however, it is sufficient to think that, outside of the TF region,
there is no screening of the disk charge. Instead, the remaining

q ~ e (R/c)1/2

Linear

TFzTF

z0

Charge inside:

R

FIG. 4. (Color online) A schematic of the screening atmosphere
surrounding a disk of ionic charge (rectangle) with diameter R inside
the graphene stack. The limit of TF screening, which corresponds
to a distance zTF from the disk, is shown by the dashed line. The
region outside the TF region corresponds to linear screening. The
characteristic decay length z0 of the nonlinear potential is indicated
by the dotted line. The total amount of charge inside the TF screening
atmosphere is denoted as q and is much smaller than the bare charge
σ0R

2 ∼ e(R/c)2 of the disk of ions.

negative charge −q required to make the system electroneutral
is distributed uniformly throughout the electrode.

Now, we can consider what happens when there is some
finite concentration N of these charge-renormalized disks
within the volume of the electrode. When the concentration
of the disks is low enough that N 
 1/(R2zTF), the disks are
well separated from each other, and their nonlinear screening
atmospheres do not overlap. One can think, then, that in this
low-density limit, the capacitor charge consists of a dilute gas
of disks, each with effective charge q, neutralized by a uniform
background of electronic charge with charge density −qN .

In this configuration, the total capacitor energy U has three
components: the self-energy of the disks with effective charge
q, the electrostatic energy Uel associated with the Coulomb
interaction between the disks and the uniform background,
and the quantum kinetic energy Uq of the uniform neutralizing
electronic charge. The self-energy component affects only the
threshold voltage Vt and does not enter into the capacitance.
The Coulomb energy Uel is much smaller in magnitude than
Uq in the limit N 
 1/(R2zTF); this is shown explicitly in
Appendix B. Thus, in the regime where the disk screening
atmospheres do not overlap, the capacitance is dominated
by the quantum kinetic energy of the uniform electronic
background.

The quantum kinetic energy Uq can be derived in a way that
is similar to the derivation of Eq. (9). Here, the 3D electron
density (in regions outside the TF-screening atmospheres of
the disks) is given by Ne = qN/e. Using q ∼ e

√
R/c and

Eq. (7) for the energy of graphene per unit area gives, for the
energy per unit volume, Uq ∼ (Nc3)3/2(R/c)3/4(e2/ε0εrc

4).
Since N is related to the total capacitor charge Q per unit
volume by Q = σ0R

2N , one can use the thermodynamic
relations for capacitance and voltage in Eqs. (5) and (6) to get

C(V ) ∼
(

R

c

)9/2
V − Vt

e/4πε0εrc

ε0εr

c2
,

if
V − Vt

e/4πε0εrc



(
c

R

)5/2

. (27)
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Corrections to this result associated with the Coulomb inter-
action between disks are discussed in Appendix B [Eq. (B8)].

In Eq. (28), one can see the strong effect of the renor-
malization of the disk charge. This equation is similar to the
mean-field relation of Eq. (14) in the sense that both give C ∝
(V − Vt ), but Eq. (28) has a significantly larger coefficient.
Indeed, the slope of the C(V ) relation in Eq. (28) is larger
than that of the mean-field result by a factor (R/c)9/2 � 1.
This large enhancement of the capacitance can be viewed as
a direct result of the nonlinear screening of each disk. The
strongly bound TF screening atmosphere surrounding each
disk greatly reduces the uniform electron concentration in the
electrode for a given capacitor charge Q and, therefore, leads to
a smaller quantum kinetic energy cost for capacitor charging.

When the capacitor charge is made larger such that
the concentration of disks N � 1/(R2zTF), the nonlinear
screening atmospheres of adjacent disks overlap, and one can
no longer talk about a uniform electron charge −qN filling the
space between disks. Instead, the capacitance is dominated by
the repulsive interaction between neighboring disks, and the
capacitance is described by the staging theory of Eq. (24),

C(V ) ∼
(

e/4πε0εrc

V − Vt

)4/5
ε0εr

c2
,

if
V − Vt

e/4πε0εrc
�

(
c

R

)5/2

. (28)

The resulting C(V ) dependence, which combines Eqs. (28)
and (29), is shown schematically in Fig. 3. Notice that,
in the derivation of these results, it was not necessary to
assume ordering of the graphene sheets over distances larger
than R. Indeed, the low-density result of Eqs. (28) assumes
only that the concentration of graphene sheets is roughly
uniform throughout the GS, while Eq. (29) is based on
disks interacting over a distance z 
 zTF 
 R. Therefore, our
earlier assumption of long-range ordering of the GS does not
significantly alter any results.

In this way, the crossover between Eqs. (14) and (24) can be
understood as follows. At low voltages, one can still think that
the result C ∝ (V − Vt ) is a consequence of uniformly raising
the electron Fermi level throughout the GS in order to provide a
neutralizing electron concentration. However, this neutralizing
concentration should be thought of as a compensation not to the
total ionic charge, but to the much smaller renormalized ionic
charge. It is this renormalization that allows the capacitance
to be large and produces a smooth crossover to the behavior
C ∝ (V − Vt )−4/5 associated with staging.

The most dramatic consequence of this renormalization
is the large peak of the capacitance at low voltage (V −
Vt )/(e/4πε0εrc) ∼ (c/R)5/2 as shown in Fig. 3. Indeed, at
this point, the capacitance attains a value that is larger than
the maximum mean-field capacitance by the parametric factor
(R/c)2. This factor can explain the large difference between
the mean-field estimate and the large observed values of
volumetric capacitance.

In deriving the capacitance maximum, we assumed that
α and σ0/(e/c2) ∼ (c/a)2 were both of order unity. If α or
σ0 are reduced, as should be expected when a > c, then
naturally, this peak in capacitance declines since reducing
either α or σ0 implies a weaker role of Coulomb interactions

relative to the quantum kinetic energy and, therefore, a weaker
renormalization of the ion charge. In fact, one can show33 that,
as long as α � (c/R) and σ0/(e/c2) � (c/R)3/2, the peak in
the capacitance of Fig. 3 should be replaced by the somewhat
smaller value ∼α2(σ0c

2/e)2(R/c)2(ε0εr/c
2), while the overall

qualitative picture of C(V ) is not affected.
Finally, from Fig. 3, one can notice that a sparser ar-

rangement of spacers within the GS, which corresponds to
larger R, results in larger capacitance and, therefore, in greater
energy storage for a given voltage. However, such increased
capacitance comes at the cost of slower capacitor charging.
That is, when spacers within the GS are sparse, the process of
ion intercalation into the GS is slow kinetically, as discussed
in Sec. II, and therefore, the power of the device is reduced.
Thus, one can say that there is a fundamental trade-off between
high energy density and high power in graphene SCs that can
be adjusted by altering the density of spacers within the GS.

VI. DISCUSSION

In the previous section, we showed how the capacitance can
be much larger than the mean-field quantum capacitance Cq

as a result of the elastic energy-mediated attraction between
ions and the nonlinear screening of disklike ion bunches by the
surrounding graphene layers. These effects together produce
a large R-dependent peak in the capacitance at small voltages
as shown schematically in Fig. 3.

At larger voltages, the capacitance is determined by the
physics of staged graphite as described in Sec. IV. In the
present section, we discuss in greater detail the capacitance at
these large voltages, and we show that, near the steric limit
of capacitor charging, where neighboring disks are separated
by only a few graphene sheets, there is a noteworthy deviation
of C(V ) from the result of Eq. (24) toward larger capacitance.
This deviation brings the schematic of Fig. 3 closer in line with
the large mostly constant C(V ) curve observed experimentally.

In our derivation of the approximate C(V ) relation of
Eq. (24), it is assumed that disks of ionic charge are separated
by a distance h � z0 so that their TF-screening atmospheres
overlap only weakly. This assumption becomes invalid when
the capacitor charge is large enough that neighboring disks are
separated by only a few graphene layers. Instead, to calculate
the capacitance at such large voltages, one should employ the
full solution of the TF equation [Eq. (17)] rather than the
asymptotic 1/h5 interaction law given in Eq. (21). Such a
calculation is presented in Appendix A, and the results for
capacitance and the stage number s are shown in Fig. 5 for
εr = 3 and σ0 = e/(1 nm)2. In this plot, the capacitance is
normalized to the volume of the filled electrode at stage s = 1
(which includes the volume of the ions as well as the GS itself)
and assumes an ion size a = 1 nm ≈ 3c. The rightmost point
of Fig. 5 corresponds to stage 1, after which, presumably no
further capacitor charging is possible.

From Fig. 5, one can notice that, at small V − Vt the
capacitance declines with voltage according to the dependence
C ∝ (V − Vt )−4/5 derived in Sec. IV. At larger voltages,
however, the capacitance attains a minimum and then increases
weakly with the voltage. This deviation from Eq. (24) allows
the capacitance to be larger and relatively constant over the
majority of the operating voltage range.
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FIG. 5. (Color online) The volumetric capacitance C (thick black
curve, left axis) and the stage number s (thin blue curve, right axis) as
a function of voltage in the TF approximation for turbostratic graphite
(R = ∞) with σ0 = e/(1 nm)2 and εr = 3. The capacitance in this
plot is normalized to the volume of stage-1 graphite with intercalated
ions of diameter a = 1 nm. The dashed black line is an approximation
for C(V ) at large voltage, given by Eq. (29).

The origin of the upward deviation from Eq. (24) can be
understood as follows. At large enough voltages that h < z0,
the disks’ screening atmospheres overlap strongly, and the
electron density becomes roughly uniform throughout the GS.
As a result, the energy at these large voltages is dominated by
the quantum kinetic energy associated with uniformly raising
the graphene Fermi level. The capacitance, therefore, behaves
similarly to the mean-field quantum capacitance described by
Eq. (14), rising linearly with the voltage. The linear relation
describing this portion of the C(V ) curve is shown as the
dashed line in Fig. 5 and is derived below. Its relatively small
slope is identical to that of the mean-field quantum capacitance
equation in Eq. (14) since, at these large ion densities, there
is no renormalization of the ion charge. Crucially, however,
there effectively is a positive vertical offset of the quantum
capacitance curve that allows the capacitance to be large.

The value of this vertical offset can be calculated by first
noting that the addition of a constant to Eq. (14) is equivalent
to substituting a shifted value of the threshold voltage Vt .
This shift in Vt can be understood intuitively as the effective
elimination of the self-energy of each disk. That is, at h < z0,
each disk no longer has a well-defined screening atmosphere so
that there is no concept of a constant self-energy contributing
to the threshold voltage. Thus, an equation for the dashed line
of Fig. 5 can be obtained by replacing Vt with Vt − u0/e in
Eq. (14), where u0 is the self-energy per ion of an isolated
plane in the GS [Eq. (23)]. Performing this substitution gives
the following expression:

C(V ) �
[ (

20 736π2α4

125

)1/3 (
σ0

e/c2

)2/3

+ 8α2 V − Vt

e/4πε0εrc

]
ε0εr

c2
. (29)

For situations where z0 is as large as a few times c, such as
may result when ions are large enough that σ0 is relatively
small, Eq. (29) can occupy the majority of the SC’s operating
range of voltage. This may help to explain why experiments
on graphene SCs, where z0/c is probably between 1 and 3,

generally report a capacitance that varies only slightly with
voltage and retains a value of ∼100 F/cm3 over the entire
operating range of voltages.3–9,28

At very small voltages, on the other hand, one should still
expect a strongly increasing linear C(V ) relation associated
with the quantum capacitance of the renormalized disk charge
as discussed in Sec. V. This behavior leads to a large peak in
the capacitance at a particular small voltage. The apparent
lack of such a sharp peak in experimental data is likely
the result of finite temperature or disorder in the GS. Both
disorder and finite thermal energy of ions work to diminish
the positional correlations among disks of ionic charge when
these disks are distant from each other, leading to a larger
average interaction energy between disks and, therefore, to a
smaller, somewhat smeared, capacitance peak. Nonetheless,
even if positional correlations between disks are lost at stage
s > 4 or so, as is commonly reported for traditional graphite
intercalation compounds,34 Fig. 5 suggests that a low-voltage
capacitance peak of several hundred F/cm3 may still be
observable. Thus far, no careful systematic studies have been
performed to evaluate the dependence C(V ) at small voltages,
and experiments generally report a capacitance that is constant
to within the variations caused by hysteresis.3–9,28

Long-range elastic interactions between ion bunches also
may play an important role for the capacitance, and these will
be explored in a later publication.
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APPENDIX A: TF THEORY OF THE STAGING REGIME

In this Appendix, we provide the details of the TF theory
of intercalated graphite discussed in Sec. IV. Here, it is con-
venient for our treatment to introduce dimensionless variables
φ̄(z) = eφ(z)/E0, z̄ = z/�, z̄0 = z0/�, and h̄ = h/�, where

E0 = h̄v
√

πσ0/e, � = c

√
3

8f 3
, (A1)

are the energy and length units, and

f =
(

9π

4

σ0

e
α2c2

)1/6

∼ 1 (A2)

is a dimensionless parameter. In further calculations, it is
sufficient to consider a single period −h̄/2 < z̄ < h̄/2 so that
Eq. (17) yields the following boundary-value problem:

φ̄′′(z̄) = φ̄2(z̄), φ̄′(±h̄/2) = ±
√

2f 3/3. (A3)

Its solution can be represented by the inverse function,

z̄(φ̄) = ± 1√
φ̄0

I

(
φ̄

φ̄0

)
, I (x) ≡

∫ x

0

du√
2
3 (u3 − 1)

, (A4)
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where φ̄0 stands for φ̄(0). Note that I (x) can be expressed in
terms of the Gauss hypergeometric function 2F1(a,b; c; x) and
the Euler gamma function (x),

I (x) = I∞ − 2F1

(
1

6
,
1

2
;

7

6
;

1

x3

) √
6

x
, (A5)

I∞ =
√

6π
(7/6)

(2/3)
= 2.974 48. (A6)

For distant planes h̄ � 1, we have φ̄/φ̄0 � 1. Expanding
I (φ̄/φ̄0) in Eq. (A4) to the leading order in this ratio and
going through a simple algebra, we can show that, near the
ionic planes, the potential behaves as

φ̄(z̄) � 6(
1
2 h̄ − |z̄| + z̄0

)2 , z̄0 =
(

6

f

)3/2

, (A7)

which is equivalent to Eq. (A7). The potential at the middle
point z = 0 is given by

φ̄0 � 4I 2
∞/h̄2, (A8)

which implies that, at this point, Eq. (A7) errs by the factor
I 2
∞/6 ≈ 1.47. This deviation is caused by the overlap of the

screening atmospheres of the planes mentioned in Sec. IV. The
3D electron density in physical units can be computed from

Ne(z) = σ0

ec
φ̄2(z̄), (A9)

which leads to Eq. (20).
Let us now compute the capacitance. First, we need to

calculate the free-energy density F of the system. Keeping the
electrostatic energy and electron kinetic energy but neglecting
the entropy, we have

F = σ0

2d
φ

(
h

2

)
+

∫ h/2

−h/2

dz

h
eφ(z)n(z)

(
−1

2
+ 2

3

)
. (A10)

Evaluating the integral following Ref. 26, we get

F = σ0E0

5ec

(
2

h̄
φ̄h

√
6f 3 + φ̄3

0

3

)
, φ̄h = (

f 3 + φ̄3
0

)1/3
,

(A11)

where φ̄h denotes the potential at the ionic plane: φ̄h ≡ φ̄(h̄/2).
Below, we also use the shorthand notation Ih ≡ I (φ̄h/φ̄0).
Considering again the limit of large interplane distance, we
can write the result of Eq. (A11) as Eq. (22) with

eVt = 3
5E0f, (A12)

which is equivalent to Eq. (23). The exact numerical coefficient
in the interplane interaction energy u(h) per unit area [Eq. (21)]
is c1 = I 6

∞/(60π2), which is about 10% smaller than what was
obtained in Ref. 26.

In order to compute the voltage V , we take the derivative
of F with respect to the ion concentration,

eV = dF

dN+
= dF/dφ̄0

dN+/dφ̄0
. (A13)

This concentration can be expressed in terms of our variables
using Eq. (A4). The result is

N+ = σ0

eh
, s ≡ h

c
= Ih

√
3

2f 3φ̄0

, (A14)

where s is the dimensionless stage number. Equations (A11),
(A13), and (A14) imply

V = h̄v
√

πσ0/e

5

(
3φ̄ + Ih

√
6φ̄5

0

f 3

)
. (A15)

Taking another derivative, we get the capacitance,

Cq = e
dN+
dV

= 2πε0εrα
2 σ0

e

Ihφ̄
2
h +

√
6f 3φ̄0

I 3
h φ̄2

hφ̄
2
0

. (A16)

It is easy to check that, in the limiting cases of high- and
low-ion concentrations N+, we recover Eqs. (11) and (24),
respectively.

By virtue of Eqs. (A5), (A6), (A11), and (A14)–(A16), all
quantities of interest are functions of φ̄0. Then, it is possible
to graph the dependencies of the capacitance Cq and the stage
number s on the voltage as parametric plots. An example is
shown in Fig. 5 and is discussed in Sec. VI.

APPENDIX B: LINEAR SCREENING AND
RENORMALIZED MEAN-FIELD THEORY IN A GS

In this Appendix, we compute the screened potential of a
Coulomb charge in the undoped GS and use it to calculate the
correction to the renormalized mean-field theory expression
for the volumetric capacitance [Eq. (28)]. We assume a
relatively sparse filling of the GS by ions so that the volume
of the GS is not expanded significantly, and we still can think
of the GS as a stack of graphene sheets with separation c.

Due to the anisotropy of the system, the screened electric
potential φs(ρ,z) surrounding a point charge q is anisotropic
as well. Here, ρ is the radial coordinate in the x-y plane.
The starting point of the calculation is the electron dielectric
function of the GS, which can be written as

εe(k,kz) = 1 − eφ̃C(k,kz)P (k,kz), (B1)

where k =
√

k2
x + k2

y is the in-plane momentum,

φ̃C(k,kz) = q

ε0εr

1

k2 + k2
z

(B2)

is the Coulomb potential in the Fourier space, P (k,kz) is
the polarization function, and henceforth, the tilde marks the
Fourier transform of the corresponding quantity without the
tilde.

If adjacent graphene layers are assumed to have no
electronic interlayer coupling, as in turbostratic graphite, then
P (k,kz) is related to the polarization function of 2D monolayer
graphene P2 simply by P (k,kz) = P2(k)/c. The polarization
function P2(k) has been calculated previously35,36 to be

P2 = −1

4

|k|
h̄v

= −παε0εr |k|
e2

. (B3)
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With this result, one can define the potential φ̃s(k,kz) in Fourier
space,

φ̃s(k,kz) = φ̃C(k,kz)

εe(k,kz)
= q

ε0εr

[
k2 + k2

z + πα|k|/c]
� q

ε0εr

[
k2
z + πα|k|/c] . (B4)

The last approximate relation in Eq. (B4) is valid for distances
ρ � c so that k2 
 |k|/c. Taking the Fourier transform of this
equation gives the following result for the potential:

φs(ρ,z) � q

4πε0εrc

[
A−2/3

ρ

ρ

c
+ A−2/3

z

z2

c2

]−3/2

, (B5)

where Aρ and Az are numeric coefficients of order unity, given
by Aρ = (3/4)2/

√
π3α and Az = 4/(π2α2).

For the case of a disk of charge within the GS, Eq. (B5)
can be used to describe the potential outside the TF screening
atmosphere by substituting the renormalized disk charge q ∼
e
√

R/αc for q. It is worth noting that, to within numerical
coefficients, Eq. (B5) smoothly matches the TF result of
Eq. (18) at the boundary of the TF region. That is, Eqs. (18) and
(B5) are equal at the points ρ = 0, z = zTF ∼ √

Rc/α, and
z = 0, ρ ∼ R, which lie on the same equipotential contour.
Thus, the potential surrounding a charged disk can be described
by the TF result of Eq. (18) at |z| < zTF, ρ < R, and by
the linear-response result of Eq. (B5) otherwise, with no
parametric intermediate regime.

Using the linear potential of Eq. (B5), one can calculate
the Coulomb energy associated with a finite concentration
of disks that are separated sufficiently from each other that
their TF screening atmospheres do not overlap. This Coulomb
energy was ignored in our calculations of the capacitance in
Sec. V at small V − Vt . Indeed, the expression of Eq. (28) is
based on the quantum kinetic energy of electrons and neglects
the electrostatic energy associated with the configuration of
positively charged disks residing on a negatively charged
background. This approach is justified because, when the con-
centration of disks N is smaller than 1/(R2zTF), the Coulomb
interaction energy between disks is much lower than the
quantum kinetic energy associated with the uniform electron
charge. In the remainder of this Appendix, we explicitly
calculate the Coulomb energy and prove this inequality. We
also find the small correction to the capacitance associated with
the disks’ Coulomb interaction; this is presented in Eq. (B8).

As explained in Sec. V, when the concentration of disks
is very small, the capacitor charge consists of a sparse
arrangement of charge-renormalized disks with charge q and
concentration N surrounded by a uniform electron charge with
density −qN . The quantum kinetic energy per unit volume
associated with the uniform electron charge is roughly

Uq ∼ (Nc3)3/2

(
R

c

)3/4
e2

ε0εrc4
, (B6)

as presented in Sec. V. In the remainder of this Appendix, as
in Sec. V, we drop all numeric coefficients and focus instead
on parametric dependencies. We also again assume that α ∼ 1
and σ0 ∼ e/c2; the general case of small α and σ0 is examined
in Ref. 33.

In order to estimate the magnitude of the Coulomb energy,
one can consider that, in their lowest-energy configuration, the
disks form a correlated arrangement in the uniform background
such that the disks minimize their repulsive energy while
maintaining the fixed concentration N . This arrangement is
characterized by the average spacing between disks in the ρ

and z directions, which we denote as dρ and dz, respectively.
The repulsive interaction between disks is dictated by the
linear potential given in Eq. (B5). Since this potential is
anisotropic, one can expect that the spacing between disks
also is anisotropic. In other words, the minimum-energy
arrangement of disks is that of an anisotropic Wigner crystal.
(This situation is similar to the better-studied system of
colloidal particles that form a charge-renormalized 3D Wigner
crystal.37)

The distances dρ and dz can be found by noting that, in their
minimum-energy configuration, disks are arranged within the
GS so that all nearest-neighbor interaction energies are equal
in magnitude. This implies that dρ and dz are determined by the
relation φs(dρ,0) ∼ φs(0,dz). Since the concentration of disks
N ∼ (d2

ρdz)−1, one can solve for dρ and dz as a function of N .
This process gives dρ/c ∼ (Nc3)−2/5 and dz/c ∼ (Nc3)−1/5 so
that the typical nearest-neighbor interaction energy is unn ∼
qφs(dρ,0) = qφs(0,dz) ∼ (Nc3)3/5(R/c)(e2/ε0εc).

From the nearest-neighbor interaction energy unn, one can
estimate the total Coulomb energy of the anisotropic Wigner
crystal. This Coulomb energy is, in fact, negative, as in the case
of an ordinary isotropic Wigner crystal,38 since the attraction
of each disk to its Wigner-Seitz cell of negative background
charge is stronger than the repulsion between neighboring
disks. The magnitude of the Coulomb energy per disk is
on the order of the nearest-neighbor interaction energy unn

and, therefore, the total Coulomb energy per unit volume
Uel ∼ −Nunn so that

Uel ∼ −(Nc3)8/5

(
R

c

)
e2

ε0εc4
. (B7)

Comparing Eqs. (B6) and (B7) suggests that |Uel| 
 |Uq |
whenever N 


√
1/cR5 ∼ 1/(R2zTF). Thus, our assumption

that the Coulomb interaction is unimportant for the main term
of the capacitance is justified.

Since the Coulomb energy of Eq. (B7) is parametrically
smaller than the quantum kinetic energy over the relevant
range of voltage (V − Vt )/(e/4πε0εrc) 
 (c/R)5/2, its effect
is only to provide a small correction to the main term of
the capacitance Cq , which is given by Eq. (28). Specifically,
since the Coulomb energy is negative and small, one can say
that it produces a large negative capacitance per unit volume
that is added in series with the relatively smaller main term.
This negative capacitance is an extension of the well-known
negative compressibility of a conventional Wigner crystal,38

and it produces a small positive correction to Eq. (28). Taking
the appropriate derivatives of the total energy Uq + Uel gives

C ∼ Cq

{
1 +

[(
R

c

)5/2
V − Vt

e/4πε0εrc

]1/5}
, (B8)

where Cq is given by Eq. (28). Notice that the correction
term in Eq. (B8) grows to order unity precisely at the
crossover point (V − Vt )/(e/4πε0εc) ∼ (c/R)5/2 where the
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TF-screening atmospheres of neighboring disks begin to
overlap and the capacitance transitions to the staging result
C ∝ (V − Vt )−4/5 of Eq. (24).

It should be emphasized that the above derivation of
Eq. (B8) is schematic and misses any numeric coeffi-
cients multiplying the Coulomb correction. Such numeric

coefficients may increase the magnitude of the Coulomb cor-
rection at small voltages and, potentially, are quite important.
A more careful calculation is the subject of a later publication.
Nonetheless, our main conclusion that C should collapse to
zero at (V − Vt ) = 0, as does the quantum capacitance Cq ,
remains valid.
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