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Spontaneous PT symmetry breaking in Dirac-Kronig-Penney crystals

Stefano Longhi
Dipartimento di Fisica, Politecnico di Milano, and Istituto di Fotonica e Nanotecnologie—Consiglio Nazionale delle Ricerche, Piazza

Leonardo da Vinci 32, IT-20133 Milano, Italy

Francesco Cannata
Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, IT-40127 Italy

Alberto Ventura
Italian National Agency for New Technologies, Centro Ricerche Ezio Clementel, Bologna, Italy, and

Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, IT-40129 Italy
(Received 8 September 2011; revised manuscript received 7 November 2011; published 21 December 2011)

We introduce a non-Hermitian PT invariant extension of the Dirac-Kronig-Penney model, describing the
motion of a Dirac quasiparticle in a locally periodic sequence of imaginary δ-Dirac barriers and wells, and
propose its optical realization using superstructure fiber Bragg gratings with alternating regions of optical gain
and absorption. For the infinite crystal, we determine the band structure and show that the PT phase is always
broken. For a finite crystal, we derive analytical expressions for reflection and transmission probabilities, and
show that the PT phase is unbroken below a finite threshold of the δ-barrier area. In the proposed optical
realization, the onset of PT symmetry breaking in the finite crystal corresponds to the lasing condition for the
grating superstructures.
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I. INTRODUCTION

The Kronig-Penney (KP) model,1 describing the band
structure of an electron in an ideal one-dimensional crystal,
has been widely regarded as a standard reference model in
solid-state physics for more than half a century. The KP model
has served on many occasions as a paradigmatic model to
study at a basic level important physical phenomena, including
band-structure properties, localization effects in disordered
lattices, electronic properties of superlattices, and Peierls
transitions. Since the (quasi)particles addressed in condensed-
matter systems are typically nonrelativistic, the KP model
has been more often considered for the Schrödinger equation.
Relativistic extensions of the KP model [also referred to as the
Dirac-Kronig-Penney (DKP) model2] have been introduced
long ago as well (see, for instance, Refs. 2–5 and references
therein). Earlier works on the DKP model were mainly focused
on the study of the impact of relativity on the band structure
and on localization phenomena, such as the shrinkage of the
bulk bands with increasing band number. Photonic analogs of
the DKP model, based on light scattering in superstructure
optical Bragg gratings,6 have been also recently proposed
by one of the present authors in Ref. 7. In such previous
works, the main aim was to provide experimentally accessible
classical simulators of the physics of relativistic ordinary
crystals, offering the possibility to observe, e.g., relativistic
band shrinkage or relativistic Tamm surface states. In the
past recent years, the motion of relativistic Dirac particles
in periodic potentials has seen a significant and renewed
interest because the quasiparticles in honeycomb lattices, such
as electrons in graphene,8,9 cold atoms in optical lattices,10

ultracold atoms in a light-induced gauge field,11 trapped ions,12

and light waves in photonic lattices,13,14 may be described in
the framework of the relativistic Dirac equation. In particular,
DKP models have been recently introduced and investigated

by several authors to study electron transport in graphene
with applied periodic potentials.15 In such DKP models, the
underlying periodic potential is real and the electron dynamics
is governed by an Hermitian Hamiltonian. In recent years,
an increasing attention has been devoted to investigating the
band structure and transport properties of complex crystals,
i.e., a kind of metamaterials in which the underlying periodic
potential is complex valued (see, for instance, Refs. 16–23
and references therein). Early works on complex crystals16,17

were framed in the context of non-Hermitian extensions
of nonrelativistic quantum mechanics24 and were mainly
regarded as curious mathematical models. In particular, a
nonrelativistic KP model for a complex crystal was proposed
in Ref. 17, in which an unusual band structure was found. Since
the recent proposals and demonstrations of complex periodic
potentials using matter18 or optical waves,19 culminating in
the first experimental demonstration of parity-time (PT )
symmetric breaking in an optical directional coupler,25 the
study of complex crystals has gained a renewed interest.
Complex crystals exhibit rather unique and distinct scattering
and transport properties as compared to ordinary crystals, such
as the violation of the Friedel’s law of Bragg scattering,18,20

double refraction and nonreciprocal diffraction,19 anomalous
transport,21 and unidirectional invisibility.23 Like for scattering
in complex barrier potentials, unitarity is generally lost and
reflection probabilities are distinct for the two incidence
sides.26 Hence, they can be regarded as a kind of novel
metamaterials. Exact results of PT symmetry breaking in
complex crystals have been recently presented in Refs. 27
and 28 using a tight-binding dimer lattice model with spatially
separated gain and loss regions. In such works, it was
suggested that symmetry breaking can be suppressed for binary
modulation of distances between gain and loss regions. The
possibility of simulating in optical structures the scattering of
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relativistic particles from a complex potential barrier or well
has been discussed in Ref. 29. In that work, it was shown that
light propagation in a distributed-feedback optical structure
with loss and/or gain regions mimics the evolution of the Dirac
spinor wave function in a complex potential. The analysis of
Ref. 29 was limited to considering relativistic scattering from
single complex potential “wells” or “barriers,” highlighting
the existence of two distinct types of spectral singularities
and discussing their physical meaning. However, the physics
and symmetry breaking properties of periodic and complex
potentials in the framework of a relativistic wave equation
were not investigated in such a preliminary work.

In this paper we propose a relativistic Kronig-Penney model
of a complex crystal with PT invariance, which provides a
simple and exactly solvable model describing the dynamics
of Dirac quasiparticles in a periodic sequence of alternating
imaginary δ-Dirac barriers and wells. The main results of our
analysis can be summarized as follows: (i) for the infinite DKP
crystal the PT phase is always broken and (ii) for a finite
crystal containing a number N of unit cells the PT phase is
unbroken below a finite threshold of the δ-barrier area, which
scales as ∼1/N . The former result, which is rigorously proved
by a perturbative analysis of the band dispersion curve of the
DKP crystal, is a nontrivial result that shows that, as opposed to
other exactly solvable models of PT symmetric crystals (like
the sinusoidal PT symmetric crystal19,20), for the complex
extension of the DKP model the PT phase is always broken.
The latter result provides an important scaling law defining the
dependence of the unbroken PT phase on the number N of
crystal cells.

II. PT SYMMETRIC DIRAC-KRONIG-PENNEY MODEL
AND ITS OPTICAL REALIZATION

A. The model

We consider the motion of a Dirac particle in a one-
dimensional locally periodic system whose elementary cell
of size 2d = 2(a + b) consists of an imaginary well of depth
−iV1 and width a and an imaginary barrier of height iV1 and

width a, separated by a distance b [see Fig. 1(a)]. Note that in
the b → 0 limit the elementary cell reduces to aPT symmetric
barrier,30 whereas when a → 0 and V1 → ∞, with aV1 = Q

a finite number, it reduces to a PT symmetric combination
of Dirac delta functions. Owing to the boundary conditions
that will be imposed to the system, it is convenient to solve
the time-independent one-dimensional Dirac equation with a
scalar potential S(x) and a vector potential V (x):

Eψ(x) = −iαx

∂ψ

∂x
+ βm(x)ψ(x) + V (x)ψ(x)≡Ĥψ, (1)

in the Weyl representation (see, for instance, Ref. 31):

αx = σz =
(

1 0
0 −1

)
, β = σx =

(
0 1
1 0

)
, (2)

where m(x) = m + S(x), m is the particle rest mass, and
ψ(x) = (ψ1,ψ2)T is the two-component spinor wave function.
In the following, we will consider either the infinite periodic
crystal or a finite crystal composed by a number N of cells.
In both cases, the band-structure and scattering properties of
the crystal are mainly determined by the elements of the 2 × 2
transfer matrix of the unit cell, M(cell)(E), that relates the
wave function ψ(x) at the input (x = 0 ) and output (x = 2d)
planes of the unit cell (see, for instance, Ref. 32). It is worth
remarking that there is an alternative definition of the transfer
matrix, which connects the two-dimensional vector of the
coefficients of ψ(2d) with the corresponding vector of ψ(0)
(see, for instance, Ref. 31). The two definitions of the transfer
matrix are obviously related in a simple way. For stepwise
constant values of V (x) and S(x), as in the DKP model, the
transfer matrix can be calculated analytically as the cascading
of the transfer matrices of each slice in which both m(x) and
V (x) are constants. For the unit cell shown in Fig. 1(a) and
assuming m(x) = m (i.e., S = 0 inside the crystal), one can
readily calculate the transfer matrix M(cell)(E) as the ordered
product

M(cell)(E) = M0(E)M+(E)M0(E)M−(E), (3)

where

M0(E) =
(

cosh(ρb) + i(E/ρ) sinh(ρb) −i(m/ρ) sinh(ρb)
i(m/ρ) sinh(ρb) cosh(ρb) − i(E/ρ) sinh(ρb)

)
, (4)

M±(E) =
(

cosh(ρ±a) + i(σ±/ρ±) sinh(ρ±a) −i(m/ρ±) sinh(ρ±a)
i(m/ρ±) sinh(ρ±a) cosh(ρ±a) − i(σ±/ρ±) sinh(ρ±a)

)
(5)

are the transfer matrices of the various sections of the unit cell
shown in Fig. 1(a), and where

σ± = E ∓ iV1, ρ =
√

m2 − E2, ρ± =
√

m2 − σ 2±. (6)

Note that M(cell)(E) is a unimodular matrix, i.e.,
detM(cell) = M11M22 − M12M21 = 1. A particularly sim-
ple expression of M(cell) is obtained in the δ-Dirac limit of the

barrier and well. In fact, in the limit V1 → ∞, a → 0 with
V1a = Q a finite number, one simply has

M± =
(

exp(±Q) 0
0 exp(∓Q)

)
. (7)

Substitution of Eqs. (4) and (7) into Eq. (3) yields the following
explicit expressions for the elements of the unit cell matrix:

M(cell)
11 (E) = [cosh(ρd) + i(E/ρ) sinh(ρd)]2

+ (m/ρ)2 exp(−2Q) sinh2(ρd), (8)
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FIG. 1. (Color online) (a) Schematic behavior of the complex
vector potential V (x) in the unit cell for the PT invariant DKP
crystal and (b) its optical realization based on a superstructure FBG
with alternating regions of gain and absorption. The 2 × 2 transfer
matrix M(cell) of the unit cell, describing the propagation of the wave
function ψ from x = 0 to 2d , is obtained as the ordered product
of the four matrices M−, M0, M+, and M0 shown in (a) and
describing propagation in the four sections of the unit cell with V (x)
constant.

M(cell)
12 (E) = −2im exp(Q)

ρ
sinh(ρd)[cosh(ρd) cosh(Q)

+ i(E/ρ) sinh(ρd) sinh(Q)], (9)

M(cell)
21 (E) = 2im exp(−Q)

ρ
sinh(ρd)[cosh(ρd) cosh(Q)

+ i(E/ρ) sinh(ρd) sinh(Q)], (10)

M(cell)
22 (E) = [cosh(ρd) − i(E/ρ) sinh(ρd)]2

+ (m/ρ)2 exp(2Q) sinh2(ρd). (11)

In the following we will focus our analysis mainly on the
δ-Dirac limit of the potential wells and barriers.

B. Photonic realization

A physical realization of the PT symmetric DKP Hamilto-
nian is provided by propagation and scattering of light waves
in engineered superstructure fiber Bragg gratings (FBGs),
or more generally in distributed-feedback optical structures
with balanced optical gain and loss regions. Such optical
structures have been recently shown to provide an accessible
test bed to mimic in optics non-Hermitian relativistic quantum
mechanics.29 As compared to the photonic realization of the
DKP with a real potential recently proposed in Ref. 7 and based
on a superstructure FBG with a periodic sequence of π phase
slips in the grating profile, in the PT symmetric DKP model
considered in the present work the complex potential V (x) is
realized by means of a periodic sequence of alternating regions
of optical gain and absorption superimposed to the uniform

modulation of the refractive index [see Fig. 1(b)]. Hence the
superstructure is obtained by superimposing to the primary
(small-period 
) index modulation a secondary (long-period
2d) modulation of the gain/absorption. The formal analogy
between light scattering in the superstructure FBG and the PT
invariant DKP model [Eq. (1)] can be established following the
analysis of Ref. 29, which is here briefly reviewed for the sake
of clearness. Let us consider propagation of a monochromatic
optical wave at frequency ω in a one-dimensional periodic
FBG with an effective refractive index profile

n(z) = n0 − �n m(z) cos(2πz/
), (12)

where n0 is the modal refractive index in the absence of
the grating, �n � n0 and 
 are the peak index change and
the spatial period of the grating, respectively, and m(z) is the
normalized amplitude profile of the index grating. The periodic
modulation of the refractive index leads to Bragg scattering
between two counterpropagating waves at frequencies ω close
to the Bragg frequency ωB = πc/(
n0), where c is the speed
of light in vacuum. The optical fiber is assumed to include
regions of optical gain and absorption, which can be realized
by, e.g., rare-earth ion doping with optical pumping of the
gain regions. The linear space-dependent gain coefficient of
counterpropagating waves in the structure is indicated by g(x)
(g < 0 in the absorption regions, g > 0 in the gain regions).

Indicating by

E(z) = ψ1(z) exp(iπz/
) + ψ2(z) exp(−iπz/
) (13)

the spatial part of the electric field propagating in the fiber
grating, the envelopes ψ1 and ψ2 of counterpropagating waves
satisfy coupled-mode equations, which are obtained from the
scalar Helmholtz equation by standard averaging or multiple-
scale asymptotic methods (see, for instance, Refs. 6,29,33).
After introduction of the normalized spatial variable x = z/Z

with the length scale Z defined by

Z = 2n0


π�n
, (14)

the coupled-mode equations take the form

Eψ1 = −i
dψ1

dx
+ m(x)ψ2(x) + V (x)ψ1(x), (15)

Eψ2 = i
dψ2

dx
+ m(x)ψ1(x) + V (x)ψ2(x), (16)

where V (x) and E are given by

V (x) = iZg(x) , E = Z
(ωn0

c
− π




)
. (17)

In their present form, Eqs. (15) and (16) are formally analogous
to the coupled equations for the two components ψ1 and ψ2

of the spinor wave function of the dimensionless Dirac Eq. (1)
in the Weyl representation, in which the particle energy E and
the (imaginary) vector potential V (x) are defined by Eq. (17).
Hence a periodic alternation of uniform regions of gain and
absorption in the fiber realizes the complex potential of the
DKP model, as shown in Fig. 1(b). Note that the δ-function
limit of the DKP model corresponds to lumped regions of gain
and absorption. In practice, this case is achieved whenever
the physical length of the gain/loss regions is smaller than
the characteristic length Z of optical feedback induced by the
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grating [defined by Eq. (14)] and the gain/loss coefficient g is
much larger than 1/Z.

III. THE INFINITE CRYSTAL: BAND STRUCTURE AND
PT SYMMETRY BREAKING

In this section we consider the case of an infinite crystal
and determine the band structure and the PT symmetry
breaking threshold of the DKP Hamiltonian Ĥ . Owing to the
periodicity of the potential V (x), the eigenfunctions ψE(x) of
the Dirac Hamiltonian Ĥ are of the Bloch-Floquet type; i.e.,
they satisfy the condition ψE(x + 2d) = ψE(x) exp(2ikd),
where k is a real number (quasimomentum) that varies in the
first Brillouin zone −π/(2d) < k � π/(2d). The dispersion
relation E = E(k), which is generally a multivalued function,
defines the band structure of the crystal. If complex energies
do exist for some real quasimomentum k, the PT phase is
broken. At Q = 0, i.e., in the absence of the crystal, the
energy spectrum of Ĥ is real and composed by the positive
and negative energy branches of the freely moving relativistic
Dirac particle. As Q is increased from zero, complex energies
do appear at some critical value Q = Qc, which defines the
PT symmetry breaking point. As we will show below, for the
DKP model one has Qc = 0; i.e., the infinite complex crystal
is always in the broken PT phase.

The dispersion curve E = E(k) of the various crys-
tal bands can be determined in a standard man-
ner by observing that, since ψE(2d) = M(cell)(E)ψE(0)
and ψE(2d) = ψE(0) exp(2ikd), one has M(cell)(E)ψE(0) =
exp(2ikd)ψE(0); i.e., ψE(0) is an eigenvector of M(cell)(E)
with eigenvalue exp(2ikd). Taking into account that
detM(cell) = 1, one then obtains

exp(4ikd) − (
M(cell)

11 + M(cell)
22

)
exp(2ikd) − 1 = 0. (18)

After introduction of the complex angle θ = θ (E) defined by
cos θ = �(E), where the discriminant �(E) is defined as the
semitrace of M(cell)(E),

�(E) ≡ M(cell)
11 + M(cell)

22

2
= 1

2
Tr(M(cell)), (19)

one has exp(2ikd) = exp(±iθ ), i.e.,

cos(2kd) = �(E). (20)

Substitution of Eqs. (8) and (11) into Eq. (19) yields for the
semitrace �(E) the explicit expression

�(E) = m2

ρ2
cosh(2Q) sinh2(ρd) + cosh2(ρd)

− E2

ρ2
sinh2(ρd), (21)

where ρ = (m2 − E2)1/2. Equations (20) and (21) implicitly
define the dispersion curves E = E(k) for the PT invariant
DKP crystal in the complex energy plane. The spectrum of
Ĥ is defined by the complex energies E such that �(E)
is a real number and −1 � �(E) � 1. Note that for Q = 0
Eq. (21) reduces to cos(2kd) = cos(2d

√
E2 − m2), which

yields the two real energy branches E = ±√
m2 + k2 of the

Dirac equation for a free particle. For Q 	= 0, the spectrum of
Ĥ can become complex. It can be readily shown that the PT

phase of Ĥ is broken at Qc = 0, and that for an infinitesimally
small value of the area Q of the δ-barrier complex energies
emanate from the points

En = ±
√

m2 + (π/2 + nπ )2/d2 (22)

on the real axis, with n = 0, ± 1, ± 2, . . .. To prove such a
statement, let us consider the explicit form of the discriminant
�, given by Eq. (21), as a function of both complex energy E

and area Q of the δ barrier, and let us consider its asymptotic
behavior by assuming E = En + δE, with δE small of order
∼ε and Q small of order ∼√

ε. The Taylor expansion of
�(E,Q) around E = En and Q = 0 yields

�(E,Q) = �(0) + ε�(1) + ε2�(2) + o(ε3), (23)

where we have set

�(0) = −1, (24)

�(1) = 2m2d2Q2

(π/2 + nπ )2
, (25)

�(2) = 4d4E2
n(δE)2

(π/2 + nπ )2
+ 2m2d2Q4

3(π/2 + nπ )2
− 4Q2End

4δE

(π/2 + nπ )4
. (26)

Note that �(0) and �(1) are real numbers, with �(1) > 0,
whereas �(2) is in general a complex number. Indicating by
δER and δEI the real and imaginary parts of δE, respectively,
let us choose δER such that �(2) is a real number, i.e., δER =
Q2/[2En(π/2 + nπ )2]. In this case, for an arbitrary δEI (of
order ∼ε), it turns out that �(E) at E = En + δER + iδEI is a
real number and |�(E)| < 1; i.e., E belongs to the spectrum of
Ĥ . This proves that, for an infinitesimal value of Q, complex
energy branches emanate from the energies En on the real
axis. Hence the PT invariant DKP Hamiltonian is always in
the broken PT phase.

IV. THE FINITE CRYSTAL: SCATTERING PROPERTIES
AND SPECTRAL SINGULARITIES

Let us consider a locally periodic crystal of finite length
containing a finite number N of unit cells. In the optical
realization discussed in Sec. II B, such a complex crystal is
realized in a periodic grating of finite length L = 2dNZ.
Owing to the boundary conditions that apply to the grating
structure, we will assume m(x) = 0 [i.e., S(x) = −m] for
x < 0 and x > 2dN . In this case, indicating by M(E) =
[M(cell)(E)]N the transfer matrix that connects the spinor wave
function ψ(x) from the plane x = 0 to the plane x = 2dN

[i.e., ψ(L) = M(E)ψ(0)], the transmission (tN ) and reflection
(rN ) amplitude probabilities for left (L) and right (R) particle
incidence are related to the elements of the transfer matrix M
by the simple relations (see, for instance, Ref. 29)

t
(L)
N (E) = t

(R)
N (E) ≡ tN (E) = 1

M22
, (27)

r
(L)
N (E) = −M21

M22
, r

(R)
N (E) = M12

M22
. (28)

Since M(cell) is a unimodular matrix, the transfer matrix M =
[M(cell)]N can be calculated by means of the Cayley-Hamilton
theorem according to Ref. 32:

M = UN−1(cos θ )M(cell) − UN−2(cos θ )I, (29)
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where I is the 2 × 2 identity matrix, cos θ = �(E) is
the semitrace of M(cell) [see Eq. (19)], and UN (ξ ) are
the Chebychev polynomials of the second kind, defined
by the recursion relation

UN+2(ξ ) − 2ξUN+1(ξ ) + UN (ξ ) = 0, (30)

with U0(ξ ) = 1 and U1(ξ ) = 2ξ . Chebychev polynomials
of the second kind can be written in terms of sinusoidal
functions,32 yielding

UN (cos θ ) = sin[(N + 1)θ ]

sin θ
. (31)

Using Eqs. (29) and (31) to compute the N th power of M(cell),
the transmission and reflection probability amplitudes tN and
r

(L,R)
N of the crystal made of N cells can be readily written

in terms of the transmission and reflection coefficients t1 and
r

(L,R)
1 of the unit cell crystal as

tN = t1 sin θ

sin(Nθ ) − t1 sin[(N − 1)θ ]
, (32)

r
(L,R)
N = sin(Nθ )r (L,R)

1

sin(Nθ ) − sin[(N − 1)θ ]
. (33)

Hence the scattering properties of the N -cell crystal can
be simply calculated from the ones of the unit cell crystal
using Eqs. (32) and (33). In the photonic realization of the
DKP model discussed in Sec. II B, Eqs. (32) and (33) provide
the transmission and reflection amplitudes of transmitted
and reflected optical waves from the superstructure FBG
shown in Fig. 1(b) when the grating is probed from the
left or right sides with a monochromatic wave at frequency
ω near the Bragg resonance frequency ωB . For Q = 0,
i.e., in the absence of the gain and loss regions, Eqs. (32)
and (33) give the well-known relations of the transmission
and reflection coefficients of a passive and periodic FBG of
length L = 2dNZ (see, for instance, Ref. 33), with r

(L)
N = r

(R)
N

and |r (L,R)
N |2 + |tN |2 = 1 owing to power conservation. In the

presence of the gain and absorption regions, i.e., for Q 	= 0,
the reflection probabilities (reflectance) R

(L,R)
N = |r (L,R)

N |2 for
left- and right-side incidence are generally distinct, according
to the general results of wave scattering from complex potential
barriers,26 and both reflectance R

(L,R)
N and transmittance TN =

|tn|2 can be larger than one (owing to loss of unitarity).
In particular, as Q is increased from zero, a critical value
Qc can be reached such that the transmission and reflection
probabilities become singular at some real energy E0. At such
a critical point, a resonance of Ĥ crosses the real energy axis,
and at Q = Q+

c a bound state with complex energy appears in
the spectrum of Ĥ ;29 i.e., Q = Qc defines the PT symmetry
breaking point of the finite complex crystal. As discussed
in previous works (see, for instance, Refs. 29 and 34 and
references therein), at Q = Qc the Hamiltonian Ĥ shows a
spectral singularity at the energy E = E0. The coexistence of
spectral singularities and complex bound states as a signature
of PT symmetry breaking in nonrelativistic versions of PT
symmetric pairs of delta functions has been elucidated in
Ref. 36. In our photonic realization of the DKP model, the
onset of PT symmetry breaking and the appearance of a
spectral singularity correspond to the threshold for lasing of

the active FBG superstructure.29,35,37 Taking into account that
t1 = 1/M(cell)

22 , from Eq. (32) it follows that the PT symmetry
breaking point Qc for the finite crystal can be calculated by
imposing

sin[(N − 1)θ ] = sin(Nθ )M(cell)
22 . (34)

Using the expression of M(cell)
22 given by Eq. (11), it can be

readily shown that Eq. (34) can be satisfied at the energies En,
defined by Eq. (22), provided that Q satisfies the nonlinear
equation

m2d2

(π/2 + nπ )2
sinh(2Q) = − sin[θ (Q)] cos[Nθ (Q)]

sin[Nθ (Q)]
, (35)

with

θ (Q) = acos

{
−1 + m2d2

(π/2 + nπ )2
[cosh(2Q) − 1]

}
. (36)

For an assigned value of the integer n, the roots of Eq. (35) can
be numerically computed as the intersections of the two curves
on the left- and right-hand sides of Eq. (35). Qc is obtained
as the smallest root to Eq. (35) when n is varied. Numerical
analysis shows that, for a given value of n, Eq. (35) admits
of a finite number of acceptable roots (Q real and Q � 0),
and that the smallest root Qc corresponds to the choice n = 0.
From a physical viewpoint, n = 0 corresponds to the passive
mode (resonance of Ĥ ) of the FBG superstructure with the
lowest lasing threshold. An approximate expression of Qc can
be derived from Eqs. (35) and (36) by asymptotic expansions
for small Q and θ 
 π , and reads

Qc 
 3

4N

[√
1 + 4

3

( π

2md

)2
− 1

]
. (37)

As an example, Fig. 2 shows the PT symmetry breaking
value Qc versus the number N of unit cells for md = 1 as
obtained by numerical analysis of Eq. (35) (dots) and by the
approximate relation (37) (continuous curve). Note that Qc

FIG. 2. (Color online) PT symmetry breaking point Qc of the
finite DKP crystal for md = 1 and for increasing number N of unit
cells (dots). The solid curve is the approximate value of Qc as given
by Eq. (37).
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FIG. 3. (Color online) Behavior of (a) spectral transmittance and
spectral reflectance for (b) left- and (c) right-side particle incidence in
a PT symmetric DKP crystal made of N = 5 unit cells for increasing
values of Q and for m = d = 1. Curve 1: Q = 0; curve 2: Q = 0.05;
curve 3: Q = 0.1; curve 4: Q = 0.15. The PT symmetry breaking
is attained at Qc 
 0.1556.

goes to zero as 1/N for N → ∞. Such a result is consistent
with the analysis of Sec. III, in which we proved that the infinite
DKP crystal is always in the broken PT phase.

Typical examples of reflection and transmission proba-
bilities in a finite crystal composed by N = 5 unit cells
are depicted in Fig. 3 for increasing values of Q and for
m = d = 1. The curves have been obtained using Eqs. (32) and
(33), where the spectral transmission and reflection amplitude
probabilities t1 and r

(L,R)
1 of the unit cell crystal are computed

using Eqs. ((8)–(10)) and ((27)–(28)). Note that, according
to the previous analysis, a narrow and strong resonance peak
does appear in the transmission and reflection spectra as Q

approaches the PT symmetry breaking value Qc 
 0.1556 at
the energy E0 =

√
m2 + π2/(4d2) 
 1.862.

It should be finally briefly mentioned that the previous
analytical results hold for the δ-Dirac limit of the potential
barriers and wells in the comb, however similar results are
obtained by assuming a rectangular shape for the barriers and

FIG. 4. (Color online) Behavior of spectral transmittance (solid
curve), numerically computed using Eqs. ((3)–(5)), in a crystal
composed by N = 5 cells for parameter values m = 1, d = 1,
a = 0.2, and V1 = 0.5. The dashed curve depicts the behavior of
the spectral transmittance as computed for the δ-Dirac limit of the
potential wells and barriers with an area Q = V1a = 0.1.

wells with a finite length a [see Fig. 1(a)]. As an example, Fig. 4
shows the numerically computed transmission probability for
a crystal composed of N = 5 unit cells for d = 1, a = 0.2,
and V1 = 0.5. In the same figure, the curve corresponding to
the δ-Dirac limit of the DKP crystal, with S = V1a = 0.1,
is also depicted for comparison. The main effect of a finite
length a is the introduction of a small shift in the onset of
PT symmetry breaking, i.e., in the lasing threshold of the
superstructure FBG. In the photonic realization discussed in
Sec. II B, assuming a FBG at the wavelength λB 
 1.55 μm
of optical communications, a typical index change �n =
0.5 × 10−4 and refractive index n0 = 1.5 of the fiber,6 the
grating period 
 turns out to be 
 = λB/(2n0) 
 516.7 nm.
Correspondingly, the characteristic spatial length Z, defined
by Eq. (14), turns out to be Z 
 9.87 mm. Hence the physical
grating length corresponding to the simulation of Fig. 4 is
L = 2dNZ = 9.87 cm, the length of gain/absorption regions
is Za = 1.97 mm, and the gain/absorption coefficient is
[see Eq. (17)] Êg = V1/Z 
 0.5 cm−1 
 4.34 dB/cm. Such
levels of gain/absorption can be achieved using erbium-doped
phosphate fibers38 or glass waveguides39 at high doping
concentrations.

V. CONCLUSIONS

In this work we have introduced a complex extension of
the Dirac-Kronig-Penney model for a PT symmetric crystal
describing the dynamics of Dirac quasiparticles in a periodic
sequence of alternating imaginary δ-Dirac barriers and wells,
and investigated analytically the onset of PT symmetry
breaking for both the infinite crystal and the finite crystal
as the number N of cells is increased. The main result of
our analysis is that the PT phase is unbroken below a finite
threshold of the δ-barrier area which scales as ∼1/N . Hence
for the infinitely long crystal the PT phase is always broken,
a result which is different from, e.g., the symmetry breaking
properties of other exactly solvable models (like the sinusoidal
PT symmetric crystal19,20). A perturbative analysis of the
band dispersion curve of the infinite crystal shows that the
broken PT phase is associated with a countable number of
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complex energy branches that emanate from the positive and
negative energy branches of the freely moving Dirac particle.

Our complex extension of the standard Kronig-Penney
model of solid-state physics can find applications in scattering
problems of optical or matter waves from complex optical
potentials, and can motivate further theoretical and experi-
mental investigations of the scattering and transport properties
of complex crystals. For example, an extension of the complex
DKP model presented in this work to two-dimensional
honeycomb lattices with superimposed gain and loss regions

could be of interest in the study of the scattering and transport
properties of relativistic quasiparticles in graphenelike systems
with superimposed complex potential wells and barriers.
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