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Quantum phases with different orders exist with or without breaking the symmetry of the system. Recently, a
classification of gapped quantum phases which do not break time reversal, parity, or on-site unitary symmetry
has been given for 1D spin systems by X. Chen, Z.-C. Gu, and X.-G. Wen [Phys. Rev. B 83, 035107 (2011)].
It was found that such symmetry-protected topological (SPT) phases are labeled by the projective representations
of the symmetry group which can be viewed as a symmetry fractionalization. In this paper, we extend the
classification of 1D gapped phases by considering SPT phases with combined time reversal, parity, and/or on-site
unitary symmetries and also the possibility of symmetry breaking. We clarify how symmetry fractionalizes
with combined symmetries and also how symmetry fractionalization coexists with symmetry breaking. In this
way, we obtain a complete classification of gapped quantum phases in 1D spin systems. We find that in general,
symmetry fractionalization, symmetry breaking, and long-range entanglement (present in 2 or higher dimensions)
represent three main mechanisms to generate a very rich set of gapped quantum phases. As an application of our
classification, we study the possible SPT phases in 1D fermionic systems, which can be mapped to spin systems
by Jordan-Wigner transformation.
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I. INTRODUCTION

Quantum phases of matter with exotic types of order
have continued to emerge over the past decades. Examples
include fractional quantum Hall states,1,2 the 1D Haldane
phase,3 chiral spin liquids,4,5 Z2 spin liquids,6–8 non-Abelian
fractional quantum Hall states,9–12 quantum orders charac-
terized by projective symmetry group (PSG),13 topological
insulators,14–19 etc. Why are there different orders? What is
a general framework to understand all these seemingly very
different phases? How to classify all possible phases and
identify new ones? Much effort has been devoted to these
questions, yet the picture is not complete.

First, we want to emphasize that quantum phase is a prop-
erty of a class of Hamiltonians, not of a single Hamiltonian. We
call such a class of Hamiltonians an H class. For an H class of a
certain dimension and with possible symmetry constraints, we
ask whether the Hamiltonians in it are separated into different
groups by phase transition and hence form different phases.
Two Hamiltonians in an H class are in the same/different
phase if they can/cannot be connected within the H class
without going through phase transition. We see that without
identifying the class of Hamiltonians under consideration, it is
not meaningful to ask which phase a Hamiltonian belongs to.
Two Hamiltonians can belong to the same/different phases if
we embed them in different H classes.

For an H class with certain symmetry constraints, one mech-
anism leading to distinct phases is symmetry breaking.20,21

Starting from Hamiltonians with the same symmetry, the
ground states of them can have different symmetries, hence
resulting in different phases. This symmetry-breaking mecha-
nism for phases and phase transitions is well understood.20,22

However, it has been realized that systems can be in
different phases even without breaking any symmetry. Such
phases are often said to be “topological” or “exotic.” However,

the term “topological” in literature actually refers to two
different types of quantum order.

The first type has “intrinsic” topological order. This type of
order is defined for the class of systems without any symmetry
constraint, which corresponds to the original definition of
“topological order.”23,24 That is, it refers to quantum phases in
an H class which includes all local Hamiltonians (of a certain
dimension). If we believed that Landau symmetry-breaking
theory describes all possible phases, this whole H class would
belong to the same phase as there is no symmetry to break.
However, in two and three dimensions, there are actually
distinct phases even in the H class that has no symmetries.
These phases have universal properties stable against any
small local perturbation to the Hamiltonian. To change these
universal properties, the system has to go through a phase
transition. Phases in this class include quantum Hall systems,25

chiral spin liquids,4,5 Z2 spin liquids,6–8 the quantum double
model,26 and the string-net model.27 Ground states of these
systems have “long-range entanglement” as discussed in
Ref. 28.

The “topological” quantum order of the second type is
“symmetry protected.” The class of systems under consid-
eration have certain symmetry and the ground states have only
short-range entanglement,28 like in the symmetry-breaking
case. However, unlike in the symmetry-breaking phases,
the ground states have the same symmetry as the Hamil-
tonian and, even so, the ground states can be in different
phases. This quantum order is protected by symmetry; as
according to the discussion in Ref. 28, if the symmetry
constraint on the class of systems is removed, all short-
range entangled states belong to the same phase. Only when
symmetry is enforced can short-range entangled states with
the same symmetry belong to different phases. Examples
of this type include the Haldane phase3 and topological
insulators.14–19
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Phases in these two classes share some similarities. For
example, they both are beyond Landau symmetry-breaking
theory. Also quantum Hall systems and topological insulators
both have stable gapless edge states.29–31 However, the latter
requires symmetry protection while the former do not.

Despite the similarities, these two classes of topological
phases are fundamentally different, as we can see from
quantities that are sensitive to long-range entanglement. For
example, “intrinsic” topological order has a robust ground-
state degeneracy that depends on the topology of the space.23,24

The ground states with “intrinsic” topological order also have
nonzero topological entanglement entropy,32,33 while ground
states in “symmetry protected” topological phases are short-
range entangled and therefore have zero topological entangle-
ment entropy. Also, the low-energy excitations in “symmetry
protected” topological phases do not have nontrivial anyon
statistics, unlike in “intrinsic” topological phases.5,34,35

In the following discussion, we will use “topological phase”
to refer only to the first type of phases (i.e. “intrinsic”
topological phases). For the second type, we will call them
“symmetry-protected topological” (SPT) phases, as in Ref. 36.
Similar to the quantum orders characterized by PSG,13

different SPT phases are also characterized by the projective
representations of the symmetry group of the Hamiltonian.37

The PSG and projective representations of a symmetry group
can be viewed as a “fractionalization” of the symmetry. Thus,
we may say that different SPT phases are caused by “symmetry
fractionalization.”

Long-rang entanglement, symmetry fractionalization, and
symmetry breaking represent three different mechanisms to
separate phases and can be combined to generate a very rich
quantum-phase diagram. Figure 1 shows a phase diagram with
possible phases generated by these three mechanisms. In order
to identify the kind of quantum order in a system, we first need
to know whether topological orders exist, that is, whether the
ground state has long-range entanglement. Next, we need to
identify the symmetry of the system (of the Hamiltonian and
allowed perturbation). Then we can find out whether all or
part of the symmetry is spontaneously broken in the ground
state. If only part is broken, what is the SPT order due to
the fractionalization of the unbroken symmetry? Combining
these data together gives a general description of a quantum

FIG. 1. (Color online) (a) The possible phases for class of
Hamiltonians without any symmetry. (b) The possible phases for class
of Hamiltonians with some symmetries. Each phase is labeled by the
phase-separating mechanisms involved. The shaded regions in (a) and
(b) represent the phases with long-range entanglement. SRE stands
for short-range entanglement, LRE for long-range entanglement, SB
for symmetry breaking, SF for symmetry fractionalization.

phase. Most of the phases studied before involve only one of
the three mechanisms. Examples where two of them coexist
can be found in Refs. 5 and 38 which combine long-range
entanglement (the intrinsic topological order) and symmetry
breaking and in Refs. 13,39–41 which combine long-range
entanglement and symmetry fractionalization. In fact, the
PSG provides a quite comprehensive framework for symmetry
fractionalization in topologically ordered states.13,39,40

Based on this general understanding of quantum phases, we
address the following question in this paper: What quantum
phases exist in one-dimensional gapped spin systems? The
systems we consider can have any finite-strength finite-range
interactions among the spins.

In Ref. 37, we gave a partial answer to this question.
We first showed that one-dimensional gapped spin systems
do not have nontrivial topological order. So to understand
possible 1D gapped phases, we just need to understand
symmetry fractionalization and symmetry breaking in short-
range entangled states. In other words, quantum phases are
only different because of symmetry breaking and symmetry
fractionalization.

In Ref. 37, we then considered symmetry fractionalization,
and gave a classification of possible SPT phases with time
reversal, parity, and on-site unitary symmetry, respectively.
In this paper, we complete the classification by considering
SPT phases of combined time reversal, parity, and/or on-site
unitary symmetry and finally incorporate the possibility of
symmetry breaking. We find that in 1D gapped spin systems
with on-site symmetry of group G, the quantum phases are
basically labeled by

(1) the unbroken symmetry subgroup G′,
(2) the projective representation of the unbroken part of

on-site unitary and antiunitary symmetry, respectively, and
(3) the “projective” commutation relation between repre-

sentations of unbroken symmetries.
Here the projective representation and the “projective”

commutation relation represent the symmetry fractionaliza-
tion. Parity is not an on-site symmetry and its SPT phases are
not characterized by projective representations. The classifica-
tion involving parity does not fall into the general framework
above, but proceeds in a very similar way, as we will show
in Sec. III. Actually, (2) and (3) combined give the projective
representation of G′ and if parity is present, it should be treated
as an antiunitary Z2 element. Our result is consistent with that
obtained by Schuch et al.42

Our discussion is based on the matrix product state
representation43,44 of gapped 1D ground states. The matrix
product formalism allows us to directly deal with interacting
systems and its entangled ground state. In particular, the SPT
order of a system can be identified directly from the way
matrices in the representation transform under symmetries.45

Moreover, symmetry breaking in entangled systems can be
represented in a nice way using matrix product states.43,44,46

The traditional understanding of symmetry breaking in quan-
tum systems actually comes from intuition about classical
systems. For example, in the ferromagnetic phase of the
classical Ising model, the spins have to choose between two
possible states: either all pointing up or all pointing down. Both
states break the spin-flip symmetry of the system. However, for
quantum system, the definition of symmetry breaking becomes

235128-2



COMPLETE CLASSIFICATION OF ONE-DIMENSIONAL . . . PHYSICAL REVIEW B 84, 235128 (2011)

a little tricky. In the ferromagnetic phase of the quantum
Ising model, the ground space is twofold degenerate with
basis states |↑↑...↑〉, |↓↓...↓〉. Each basis state breaks the
spin-flip symmetry of the system. However, quantum systems
can exist in any superposition of the basis states and in fact
the superposition 1√

2
| ↑↑ ... ↑〉 + 1√

2
| ↓↓ ... ↓〉 is symmetric

under spin flip. What is meant when a quantum system is
said to be in a symmetry-breaking phase? Can we understand
symmetry breaking in a quantum system without relying on
its classical picture?

In matrix product representation, the symmetry-breaking
pattern can be seen directly from the matrices representing the
ground state. If we choose the symmetric ground state in the
ground space and write it in matrix product form, the matrices
can be reduced to a block diagonal “canonical form.” The
canonical form contains more than one block if the system is
in a symmetry-breaking phase. If symmetry is not broken, it
contains only one block.43,44,46 Hence, the canonical form of
the matrices gives a nice illustration of the symmetry breaking
pattern of the system. This relation will be discussed in more
detail in Sec. IV.

Our classification is focused on 1D interacting spin systems;
however it also applies to 1D interacting fermion systems
as they are related by Jordan-Wigner transformation. As an
application of our classification result, we study quantum
phases (especially SPT phases) in gapped 1D fermion systems.
Our result is consistent with previous studies.47,48

The paper is organized as follows: In Sec. II, we review
the previous classification results of SPT phases with time
reversal, parity, and on-site unitary symmetry, respectively.
We also introduce notations for matrix product representation;
in Sec. III, we present classification results of SPT phases
with combined time reversal, parity, and/or on-site unitary
symmetry; in Sec. IV, we incorporate the possibility of
symmetry breaking; in Sec. V, we apply classification results
of spins to the study of phases in 1D fermion systems; and
finally we conclude in Sec. VI.

II. REVIEW: MATRIX PRODUCT STATES
AND SPT CLASSIFICATION

In Ref. 37, we considered the classification of SPT phases
with time reversal, parity, and on-site unitary symmetry, re-
spectively. Instead of starting from Hamiltonians, we classified
1D gapped ground states which do not break the symmetry
of the system. The set of states under consideration can be
represented as short-range correlated matrix product states and
we used the local unitary equivalence between gapped ground
states, which was established in Ref. 28, to classify phases.
Here we introduce the matrix product representation and give
a brief review of previous classification result and how it was
achieved.

Matrix product states give an efficient representation of 1D
gapped spin states49,50 and hence provide a useful tool to deal
with strongly interacting systems with many-body entangled
ground states. A matrix product state (MPS) is expressed as

|φ〉 =
∑

i1,i2,...,iN

Tr
(
Ai1Ai2 ...AiN

)|i1i2...iN 〉, (1)

where ik = 1...d with d being the physical dimension of
a spin at each site; the Aik ’s are D × D matrices on site
k with D being the inner dimension of the MPS. In our
previous studies37 and also in this paper, we consider states
which can be represented with a finite inner dimension D and
assume that they represent all possible phases in 1D gapped
systems. In our following discussion, we will focus on states
represented with site-independent matrices Ai and discuss
classification of phases with or without translational symmetry.
Non-translational-invariant systems have in general ground
states represented by site-dependent matrices. However, site
dependence of matrices does not lead to extra features in the
phase classification and their discussion involves complicated
notation. Therefore, we will not present the analysis based on
site-dependent MPS. A detailed discussion of site-dependent
MPS can be found in Ref. 37 and all results in this paper can
be obtained using similar methods.

A mathematical construction that will be useful is the
double tensor

Eαγ,βχ =
∑

i

Ai,αβ × (Ai,γχ )∗ (2)

of the MPS. E is useful because it uniquely determines
the matrix product state up to a local change of basis on
each site.44,51 Therefore, all correlation and entanglement
information of the state is contained in E and can be extracted.

First we identify the set of matrix product states that need to
be considered for the classification of SPT phases. The ground
state of SPT phases does not break any symmetry of the system
and hence is nondegenerate. The unique ground state must be
short-range correlated due to the existence of the gap, which
requires that E has a nondegenerate largest eigenvalue (set to
be 1).43,44 This is equivalent to an “injectivity” condition on
the matrices Ai . That is, for large enough n, the set of matrices
corresponding to physical states on n consecutive sites AI =
Ai1 ...Ain (I ≡ i1...in) span the space of D × D matrices.44 On
the other hand, all MPSs satisfying this injectivity condition
are the unique gapped ground states of a local Hamiltonian
which has the same symmetry.43,44 Therefore, we only need to
consider states in this set.

The symmetry of the system and hence of the ground state
sets a nontrivial transformation condition on the matrices Ai .
With on-site unitary symmetry of group G, for example, the
Ai’s transform as45,52∑

j

u(g)ijAj = α(g)R−1(g)AiR(g), (3)

where u(g) is a linear representation of G on the physical
space, and α(g) is a one-dimensional representation of G.
One important realization from this equation is that in order to
satisfy this equation, R(g) only has to satisfy the multiplication
rule of group G up to a phase factor.45 That is, R(g1g2) =
ω(g1,g2)R(g1)R(g2), |ω(g1,g2)| = 1. ω(g1,g2) is called the
factor system. R(g) is hence a projective representation of
group G and belongs to different equivalence classes labeled
by the elements in the second cohomology group of G, {ω|ω ∈
H 2(G,C)}.

We showed in Ref. 37 that two matrix product states
symmetric under G are in the same SPT phase if and only
if they are related to R(g) in the same equivalence class ω. For
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FIG. 2. (Color online) Representative states for different SPT
phases. Each box represents one site, containing four spins. Every
two connected spins form an entangled pair.

two states with equivalent R(g), we constructed explicitly a
smooth path connecting the Hamiltonian for the first state to
that for the second state without closing the gap or breaking
the symmetry of the system. In this way, we gave a “local
unitary transformation” as defined in Ref. 28 connecting the
two state and showed that they are in the same SPT phase.
On the other hand, for two states associated with inequivalent
R(g), we showed that no “local unitary transformation” could
connect them without breaking the symmetry. Therefore, they
belong to different SPT phases.

If translation symmetry is required in addition to symmetry
G, α(g) is also a good quantum number and cannot be changed
without breaking translation symmetry. Therefore, SPT phases
with on-site unitary symmetry and translation symmetry
are labeled by {α(g),ω}, where α(g) is a one-dimensional
representation of G and ω is an element in H 2(G,C).

The projective representation can be interpreted in terms
of boundary spins. A representative state in the phase labeled
by {α(g),ω} can be given as in Fig. 2. Each box represents
one site, containing four spins. The symmetry transformations
on the two black spins form projective representations of G,
belonging to class ω, ω′ respectively. The factor systems of
the two classes are related by ω(g1,g2) × ω′(g1,g2) = 1; that
is, ω′ = ω∗. Therefore, the intersite black pair can form a
singlet under symmetry G. Suppose that the pair forms a 1D
representation α1(g) of G. The on-site white pair also forms
a 1D representation α2(g) of G. α1(g)α2(g) = α(g). It can be
checked that, if written in matrix product representation, the
matrices satisfy condition (3). Now look at any finite segment
of the chain. There are unpaired black spins at each end of
the chain, transforming under G as projective representation
ω and ω∗. Different ω cannot be smoothly mapped to each
other if the on-site linear symmetry is maintained. Therefore,
by looking at the boundary of a finite chain, we can distinguish
different SPT phases with on-site unitary symmetry.

For projective representations in the same class, we can
always choose the phases of R(g) such that ω(g1,g2) is the
same. In the following discussion we will always assume that
ω(g1,g2) is fixed for each class and the phase of R(g) is chosen
accordingly. But this does not fix the phase of R(g) completely.
For any 1D linear representation α̃(g), α̃(g)R(g) always has
the same factor system ω(g1,g2) as R(g). This fact will be
useful in our discussion of the next section.

The classifications for SPT phases with time reversal and
parity symmetry proceed in a similar way.

For time reversal, the physical symmetry operation is T =
v ⊗ v... ⊗ vK , where K is complex conjugation and v is an
on-site unitary operation satisfying vv∗ = I ; that is, T 2 = I

on each site. (We showed in Ref. 37 that if T 2 = −I on each
site, there are no gapped symmetric phases with translation
symmetry. Without translation symmetry, it is equivalent to
the T 2 = I case.) The symmetry transformation of matrices

Ai is ∑
j

vijA
∗
j = M−1AiM, (4)

where M satisfies MM∗ = β(T )I = ±I . It can be shown, in a
way similar to the on-site unitary case, that states with the same
β(T ) can be connected with local unitary transformations that
do not break time reversal symmetry while states with different
β(T ) cannot. Therefore, β(T ) labels the two SPT phases for
time reversal symmetry. We can again understand this result
using boundary spins. Time reversal on the boundary spin
can be defined as T̂ = MK . It squares to ±I depending on
β(T ). Therefore, while time reversal acting on the physical
spin at each site always squares to I , it can act in two different
ways on the boundary spin, hence distinguishing two phases.
T̂ = MK forms a projective representation of time reversal on
the boundary spin, with T̂ 2 = ±I . The result is unchanged if
translational symmetry is required.

For parity symmetry, the physical symmetry operation is
P = w ⊗ w... ⊗ wP1, where P1 is exchange of sites and w is
on-site unitary satisfying w2 = 1. As parity symmetry cannot
be established in disordered systems, we will always assume
translation invariance when discussing parity. The symmetry
transformation of matrices Ai is∑

j

wijA
T
j = α(P )N−1AiN, (5)

where α(P ) = ±1 labels parity even/odd and NT = β(P )N =
±N . The four SPT phases are labeled by {α(P ),β(P )}. A
representative state can again be constructed as in Fig. 2.
The black spins form an entangled pair (N ⊗ I )

∑
i |i〉 ⊗ |i〉,

i = 1...D, D being the dimension of N . (|i〉 ⊗ |j 〉 denotes a
product state of two spins in state |i〉 and |j 〉 respectively.
This is equivalent to notation |i〉|j 〉 and |ij 〉 in different
literatures.) The white spins form an entangled pair |0〉 ⊗ |1〉 +
α(P )β(P )|1〉 ⊗ |0〉. Parity is defined as reflection of the whole
chain. It can be checked that if written as matrix product states,
the matrices satisfy condition (5) and parity of the black pair
is determined by β(P ). Therefore, β(P ) can be interpreted as
even/oddness of parity between sites and α(P ) represents total
even/oddness of parity of the whole chain.

III. CLASSIFICATION WITH COMBINED SYMMETRY

In this section we are going to consider the classification
of SPT phases with combined translation, on-site unitary, time
reversal, and/or parity symmetry in 1D gapped spin systems.
The ground state does not break any of the combined symmetry
and can be described as a short-range correlated matrix product
state. For each combination of symmetries, we are going to list
all possible SPT phases and give a label and representative state
for each of them. At the end of this section, we comment on
the general scheme to classify SPT phases with all possible
kinds of symmetries in 1D gapped spin systems.

A. Parity + on-site G

Consider a system symmetric under both parity P = w ⊗
w... ⊗ wP1 and on-site unitary of group G u(g) ⊗ u(g)... ⊗
u(g). Equations (3) and (5) give transformation rules of
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matrices Ai under the two symmetries separately in terms
of α(g), R(g), α(P ), N . α(g) labels the 1D representation the
state forms under G, R(g) ∈ ω is the projective representation
of G on the boundary spin, α(P ) labels parity even or odd, and
NT = β(P )N = ±N corresponds to parity even/odd between
sites.

Moreover, parity and on-site u(g) commute. First, it is easy
to see that P1 and u(g) ⊗ u(g)... ⊗ u(g) commute. Therefore,
P2 = w ⊗ w... ⊗ w must also commute with u(g) ⊗ u(g)... ⊗
u(g). Without loss of generality, we will consider the case
where w and u(g) commute, wu(g) = u(g)w. This leads to
certain commutation relation between N and R(g) as shown
below.

If we act parity first and on-site symmetry next, the matrices
are transformed as

Ai
P−→ A′

i =
∑

j

wijA
T
j = α(P )N−1AiN,

A′
i

G−→ A′′
i =

∑
j

uij (g)A′
j = α(P )N−1

( ∑
j

uijAj

)
N

= α(g)α(P )N−1R−1(g)AiR(g)N. (6)

Combining the two steps together we find that∑
j

∑
k

uij (g)wjkA
T
k = α(g)α(P )N−1R−1(g)AiR(g)N. (7)

If on-site symmetry is acted first and then parity follows, the
matrices are transformed as

Ai
G−→ A′

i =
∑

j

uij (g)Aj = α(g)R−1(g)AiR(g),

A′
i

P−→ A′′
i =

∑
j

wij (A′)Tj

= α(g)RT (g)

(∑
j

wijA
T
j

)
(RT )−1(g)

= α(P )α(g)RT (g)N−1AiNR∗(g). (8)

The combined operation is then∑
j

∑
k

wijujk(g)AT
k = α(P )α(g)RT (g)N−1AiNR∗(g). (9)

Because w and u(g) commute,
∑

j uij (g)wjk =∑
j wijujk(g). Therefore, the combined operation in

Eqs. (7) and (9) should be equivalent:

N−1R−1(g)AiR(g)N = RT (g)N−1AiNR∗(g). (10)

This condition is derived for matrices on each site, i = 1...d.
However, it is easy to verify that it also holds if n consecutive
sites are combined together with representing matrices AI =
Ai1Ai2 ...Ain :

N−1R−1(g)AIR(g)N = RT (g)N−1AINR∗(g). (11)

As AI is injective (spans the whole space of D × D matrices),
we find R(g)NRT (g)N−1 ∝ I . That is,

N−1R(g)N = eiθ(g)(RT )−1(g) = eiθ(g)R∗(g). (12)

Different eiθ(g) corresponds to different “projective” commuta-
tion relations between parity and on-site unitary. It must satisfy
certain conditions. As

N−1R(g1g2)N = eiθ(g1g2)R∗(g1g2)

= eiθ(g1g2)ω−1(g1,g2)R∗(g1)R∗(g2),

N−1R(g1g2)N = ω(g1,g2)N−1R(g1)NN−1R(g2)N

= ω(g1,g2)eiθ(g1)R∗(g1)eiθ(g2)R∗(g2). (13)

Therefore

eiθ(g1g2)e−iθ(g1)e−iθ(g2) = ω2(g1,g2). (14)

Hence, ω2 must be trivial. Without loss of generality, assume
that the factor systems we have chosen (as discussed in Sec. II)
satisfy ω2 = 1 and eiθ(g) forms a linear representation of G,
denoted by γ (g).

Let us interpret this result. First we see that the combination
of parity with on-site G restricts the projective representation
that can be realized on the boundary spin to those ω that square
to identity. This can be clearly seen from the structure of the
representative state as in Fig. 2. Because of on-site symmetry
G, the left and right black spins in a pair form projective
representation in class ω and ω∗, respectively. If the chain has
further reflection symmetry, ω∗ = ω and therefore ω2 = 1.
However, if ω2 = 1, then ω∗ = ω. The chain has a direction
and cannot have reflection symmetry.

Different γ (g) corresponds to different “projective” com-
mutation relation between parity and on-site G on the boundary
spin. For example, suppose G = Z2. Consider the state as in
Fig. 2 where each black pair consists of two qubits. Suppose
that parity on the black pair is defined as exchange of the
two qubits (P1) and unitary operation P2 = Z ⊗ Z on the two
qubits. Z2 symmetry on the pair can be defined as Z ⊗ Z

or X ⊗ X. They both commute with parity. However, if we
only look at one end of pair, Z2 either commutes or anticom-
mutes with P2. Hence these two cases correspond to two differ-
ent γ (Z2). Because of this, the two phases cannot be connected
without breaking the symmetry group generated by parity
and Z2.

However, γ (g) can be changed by changing the phase of
R(g). Remember that the phase of R(g) is only determined
(by fixing ω) up to a 1D representation, α̃(g). From Eq. (12),
we can see that if the phase of R(g) is changed by α̃(g), γ (g)
is changed to γ (g)/α̃2(g). Therefore, γ (g) and γ ′(g) which
differ by the square of another 1D representation α̃(g) are
equivalent. On the other hand, for a fixed ω(ω2 = 1) any γ (g)
can be realized as the “projective” commutation relation, as
we will show in Appendix B.

Therefore, with commuting parity and on-site unitary
symmetry, SPT phases in a 1D spin chain can be classified
by the following data:

(1) α(P ), parity even/odd;
(2) β(P ), parity even/odd between sites;
(3) α(g), 1D representation of G;
(4) ω, projective representation of G on boundary spin,

ω2 = 1;
(5) γ (g) ∈ G/G2, 1D representation of G related to com-

mutation relation between parity and on-site G, where G is
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FIG. 3. (Color online) Representative states for different SPT
phases. Each box represents one site, containing six spins. Every
two connected spins form an entangled pair.

the group of 1D representation of G, G2 is the group of 1D
representation squared of G.

Following the method used in Appendix G of Ref. 37, we
can show that states symmetric under parity and on-site G are
in the same SPT phase if and only if they are labeled by the
same set of data as given above. We will not repeat the proof
here.

A representative state for each phase labeled by α(P ), β(P ),
α(g), ω, and γ (g) can be constructed as in Fig. 3. We will
describe the state of each pair and how it transforms under
symmetry operations. The parameters describing the state will
then be related to the phase labels.

Each entangled pair is invariant under P and on-site G.
First, the on-site white pair forms 1D representations η(P )
and η(g) of parity and G. For projective representation class
ω that satisfies ω2 = 1 and any 1D representation λ(g), we
show in Appendices A and B that there always exist projective
representation R(g) ∈ ω and symmetric matrix N (NT = N )
such that N−1R(g)N = λ(g)R∗(g). Suppose that R(g) and N

are D-dimensional matrices; choose the intersite black pair to
be composed of two D-dimensional spins. Define parity on this
pair to be exchange of two spins and define on-site symmetry
to be R(g) ⊗ R(g). If the state of the black pair is chosen to be
(N ⊗ I )

∑
i |i〉 ⊗ |i〉, i = 1,...,D, it is easy to check that it is

parity even, forms 1D representation λ(g) for on-site G, and
contains projective representation ω at each end. Finally, define
the state of the intersite gray pair to be |0〉 ⊗ |1〉 + ρ(P )|1〉 ⊗
|0〉, ρ(P ) = ±1. Parity acts on it as exchange of spins. On-site
G acts trivially on it. The 1D spin state constructed in this way
is symmetric under parity and on-site unitary G and belongs to
the SPT phase labeled by α(P ) = η(P )ρ(P ), β(P ) = ρ(P ),
α(g) = η(g)λ(g), ω, and γ (g) = λ(g).

Finally, we consider some specific cases:
(1) For translation + parity + SO(3), there are 2 × 2 × 1 ×

2 × 1 = 8 types of phases.
(2) For translation + parity + D2, there are 2 × 2 × 4 ×

2 × 4 = 128 types of phases.

B. Time reversal + on-site G

Now consider a 1D spin system symmetric under both
time reversal T = v ⊗ v... ⊗ vK and on-site unitary u(g) ⊗
u(g)... ⊗ u(g). On each site, T 2 = vv∗ = I and u(g) forms a
linear representation of G. Equations (3) and (4) are satisfied
due to the two symmetries separately with some choice of α(g),
R(g), and M . α(g) labels the 1D representation the state forms
under G, R(g) ∈ ω is the projective representation of G on the
boundary spin, and T̂ = MK is the time reversal operator on
the boundary spin which squares to β(T )I = ±I . Note that
while T̂ 2 = ±I on the boundary spin, T always squares to I

on the physical spin at each site.
Moreover, the two symmetries commute; i.e., u(g)v =

vu∗(g). This leads to nontrivial relations between R(g) in

Eq. (3) and M in Eq. (4). In particular, suppose we act G

first followed by T ; the matrices Ai transform as

Ai
G−→ A′

i =
∑

j

uij (g)Aj = α(g)R−1(g)AiR(g),

A′
i

T−→ A′′
i =

∑
j

vij (A′)∗j

= α∗(g)(R∗)−1(g)

⎛
⎝∑

j

vijA
∗
j

⎞
⎠ R∗(g)

= α∗(g)(R∗)−1(g)M−1AiMR∗(g). (15)

Acting T first followed by G gives

Ai
T−→ A′

i =
∑

j

vijA
∗
j = M−1AiM,

A′
i

G−→ A′′
i =

∑
j

uij (g)A′
j = M−1

⎛
⎝∑

j

uij (g)Aj

⎞
⎠ M

= α(g)M−1R−1(g)AiR(g)M. (16)

Because u(g)v = vu∗(g), the previous two transformations
should be equivalent. That is,

α∗(g)(R∗)−1(g)M−1AiMR∗(g)

= α(g)M−1R−1(g)AiR(g)M. (17)

Denote Q = MR∗M−1R−1. It follows that Ai =
α2(g)QAiQ

−1. Suppose that the MPS is injective with
blocks larger than n sites, hence AI = Ai1Ai2 ...Ain satisfies
AI = α2n(g)QAIQ

−1. But AI spans the whole space of
D × D matrices, therefore Q ∝ I . That is

M−1R(g)M = eiθ(g)R∗(g). (18)

Moreover, it follows from Eq. (17) that α2(g) = 1. That is, the
1D representation of G must have order 2.

Similar to the parity + on-site G case, we find, ω2 = 1,
and eiθ(g) forms a 1D representation, denoted by γ (g). Two
γ (g)’s that differ by the square of a third 1D representation are
equivalent.

Therefore, different phases with translation, time reversal,
and on-site G symmetries are labeled by

(1) β(T ), T̂ 2 = ±I on the boundary spin;
(2) α(g), 1D representation of G, α2(g) = 1;
(3) ω, projective representation of G on boundary spin,

ω2 = 1;
(4) γ (g) ∈ G/G2, 1D representation of G related to com-

mutation relation between time reversal and on-site G, where
G is the group of 1D representation of G, G2 is the group of
1D representation squared of G.

Representative states are again given by Fig. 3. The on-site
white pair forms 1D representation η(g) for G and is invariant
under T . Similar to the parity + on-site symmetry case, we can
show that for any ω(ω2 = 1) and 1D representation λ(g) there
exist D-dimensional projective representation R(g) ∈ ω and
matrix M such that MM∗ = I and M−1R(g)M = λ(g)R∗(g).
Choose the intersite black pair to be composed of two D-
dimensional spins. Define time reversal on this pair to be (M ⊗
M)K and define on-site symmetry to be R(g) ⊗ R(g). If the
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state of the black pair is chosen to be (M ⊗ I )
∑

i |i〉 ⊗ |i〉,
i = 1,...,D, it is easy to check that it is invariant under time
reversal and forms 1D representation λ(g) for G and contains
projective representation ω at each end. Finally, define the
state of the intersite gray pair to be |0〉 ⊗ |1〉 + ρ(T )|1〉 ⊗ |0〉,
ρ(T ) = ±1. Time reversal acts on it as (|0〉〈1| + ρ(T )|1〉〈0|) ⊗
(|0〉〈1| + ρ(T )|1〉〈0|)K . On-site G acts trivially on it. The 1D
spin state constructed as this is symmetric under time reversal
and on-site unitary G and belongs to the SPT phase labeled by
β(T ) = ρ(T ), α(g) = η(g)λ(g), ω, and γ (g) = λ(g).

Applying the general classification result to specific cases
we find the following:

(1) For translation + T + SO(3), there are 2 × 1 × 2 × 1 =
4 types of phases.

(2) For translation + T + D2, there are 2 × 4 × 2 × 4 = 64
types of phases.

If translation symmetry is not required, different phases
with time reversal and on-site G symmetries are labeled by

(1) β(T ), time reversal even/odd on the boundary spin;
(2) ω, projective representation of G on boundary spin,

ω2 = 1;
(3) γ (g) ∈ G/G2, 1D representation of G related to com-

mutation relation between time reversal and on-site G, where
G is the group of 1D representation of G, G2 is the group of
1D representation squared of G.
α(g) can no longer be used to distinguish different phases. We
find the following:

(1) For T + SO(3), there are 2 × 2 × 1 = 4 types of phases.
(2) For T + D2, there are 2 × 2 × 4 = 16 types of phases.

C. Parity + time reversal

When parity is combined with time reversal, what SPT
phases exist in 1D gapped spin systems? First we realize
that due to parity and time reversal separately, different SPT
phases exist labeled by different α(P ), β(P ), β(T ) as defined
in Eqs. (4) and (5). α(P ) labels parity even or odd, β(P )
labels parity even/odd between sites, and T̂ 2 = β(T )I on the
boundary spin.

Does the commutation relation between parity and time
reversal give more phases? The combined operation of parity
first and time reversal next gives

Ai
P−→ A′

i =
∑

j

wijA
T
j = α(P )N−1AiN,

A′
i

T−→ A′′
i =

∑
j

vij (A′)∗j = α(P )(N−1)∗

⎛
⎝∑

j

vijA
∗
j

⎞
⎠ N∗

= α(P )(N−1)∗M−1AiMN∗, (19)

and the operation with time reversal first and parity next gives

Ai
T−→ A′

i =
∑

j

vijA
∗
j = M−1AiM,

A′
i

P−→ A′′
i =

∑
j

wij (A′)Tj = MT

⎛
⎝∑

j

wijA
T
j

⎞
⎠ (MT )−1

= α(P )MT N−1AiN (MT )−1. (20)

As parity and time reversal commute, wv = vw∗. The above
two operations should be equivalent:

(N−1)∗M−1AiMN∗ = MT N−1AiN (MT )−1. (21)

As Ai is injective, MN∗MT N−1 ∝ I . That is,

MN †MN † = eiθ I. (22)

But eiθ can be set to be 1 by changing the phase of M or
N ; therefore, the commutation relation does not lead to more
distinct phases.

There are hence eight SPT phases with both parity and time
reversal symmetry, labeled by

(1) α(P ), parity even/odd;
(2) β(P ), parity even/odd between sites;
(3) β(T ), T̂ 2 = ±I on boundary spins.
The representative states of each phase can be given as in

Fig. 3. Each pair of spins forms a 1D representation of parity
and time reversal. The on-site white pair is in the state |0〉 ⊗
|1〉 + η(P )|1〉 ⊗ |0〉 with η(P ) = ±1. Parity on this pair is
defined as exchange of spins and time reversal as K . Therefore,
this pair has parity η(P ) and is invariant under T . The intersite
black pair is in the state |0〉 ⊗ |1〉 + λ|1〉 ⊗ |0〉 with λ = ±1.
Parity acts on it as exchange of spins and time reversal as
(|0〉〈1| + λ|1〉〈0|) ⊗ (|0〉〈1| + λ|1〉〈0|)K . This pair therefore
has parity λ(P ) = λ and is invariant under time reversal. Time
reversal on one of the spins squares to λ(T )I = λI . Finally,
the intersite gray pair is in state |0〉 ⊗ |1〉 + ρ(P )|1〉 ⊗ |0〉 with
ρ(P ) = ±1. Parity on this pair is defined as exchange of spins
and time reversal as K . Therefore this pair has parity ρ(P )
and is invariant under T . Time reversal on one of the spins
squares to I . This state is in the SPT phase labeled by α(P ) =
η(P )λ(P )ρ(P ), β(P ) = λ(P )ρ(P ), β(T ) = λ(T ).

D. Parity + time reversal + on-site G

Finally we put parity, time reversal, and on-site unitary
symmetry together and ask how many SPT phases exist
if the ground state does not break any of the symmetries.
From Eqs. (3), (4), and (5), we know that due to the three
symmetries separately, states with different α(g), ω, α(P ),
β(P ), β(T ) belong to different SPT phases. α(g) labels the
1D representation the state forms under G, ω is the projective
representation of G on the boundary spin, α(P ) labels parity
even or odd, β(P ) labels parity even/odd between sites, and
T̂ 2 = β(T )I on the boundary spin.

Moreover, the commutation relation between parity, time
reversal, and on-site G yields further conditions. The commu-
tation relation between parity and on-site G constrains ω2 = 1
and gives

N−1R(g)N = γ (g)R∗(g). (23)

γ (g) is a 1D representation of G. γ1(g) and γ2(g) correspond
to different SPT phases if and only if they are not related by the
square of a third 1D representation. The commutation relation
between time reversal and on-site G constrains α2(g) = 1 and
gives,

M−1R(g)M = γ ′(g)R∗(g). (24)

γ ′(g) is a 1D representation of G. γ ′
1(g) and γ ′

2(g) correspond
to different SPT phases if and only if they are not related by the
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square of a third 1D representation. The commutation relation
between time reversal and parity gives

MN †MN † ∝ I, (25)

which is equivalent to, because NT = ±N and MT = ±M ,

MN∗ ∝ NM∗. (26)

Therefore, MN∗ and NM∗ conjugating R(g) should give the
same result:

(MN∗)R(g)(MN∗)−1 = γ (g)MR∗(g)M−1

= γ (g)/γ ′(g)R(g). (27)

On the other hand,

(NM∗)R(g)(NM∗)−1 = γ ′(g)NR∗(g)N−1

= γ ′(g)/γ (g)R(g). (28)

As R(g) is nonzero, γ ′(g) = ±γ (g).
γ (g) and γ ′(g) are hence related by a 1D representation

χ (g) which squares to 1. As shown in Appendix C, for fixed ω,
if N and R(g) exist that satisfy N−1R(g)N = γ (g)R∗(g), then
any choice of γ ′(g) = χ (g)γ (g)(χ2(g) = 1) can be realized.
The freedom in χ (g) is G/G2. Considering the degree of
freedom in choosing γ (g), the total freedom in {γ (g),γ ′(g)}
is (G/G2) × (G/G2).

The SPT phases with parity, time reversal, and on-site
unitary symmetries are labeled by

(1) α(g), 1D representation of G, α2(g) = 1;
(2) ω, projective representation of G on boundary spin,

ω2 = 1;
(3) α(P ), parity even/odd;
(4) β(P ), parity even/odd between sites;
(5) β(T ), T̂ 2 = ±I on the boundary spin;
(6) {γ (g),γ ′g} ∈ (G/G2) × (G/G2), 1D representations of

G, related to commutation relation between time reversal,
parity, and on-site G.

Representative states can be constructed as in Fig. 3.
Each pair is invariant(up to phase) under G, T , and P .
White pair: forms a 1D representation η(g) of G, η(P ) of

P , and is invariant under time reversal.
Black pair: G acts nontrivially on it as R(g) ⊗ R(g).

R(g) is a D-dimensional projective representation and
belongs to class ω. According to Appendices A, B,
and C, for any 1D representation λ(g) and order 2 1D
representation χ (g), we can find matrices N and M

such that NT = N , N−1R(g)N = λ(g)R∗(g), MM∗ = I ,
M−1R(g)M = λ′(g)R∗(g) = χ (g)λ(g)R∗(g), MN∗ = NM∗.
Now set the state of this pair to be N

∑
i |i〉 ⊗ |i〉, where

i = 1...D. Define parity as exchange of sites and time reversal
as (M ⊗ M)K . It can be checked that the state forms a 1D
representation λ(g) for G, has even parity, and is invariant
under time reversal. Time reversal squares to I at each end.

Gray pair: G acts trivially on it. The pair is in state
|0〉 ⊗ |1〉 + ρ(P )|1〉 ⊗ |0〉 with ρ(P ) = ±1. Parity on this
pair is defined as exchange of spins and time reversal as
(Y ⊗ Y )(ρ(T )+1)/2K with ρ(T ) = ±1. Therefore this pair has
parity ρ(P ) and is invariant under T . Time reversal on one of
the spins squares to ρ(T )I .

TABLE I. Numbers of different 1D gapped quantum phases that
do not break any symmetry. T stands for time reversal, P stands for
parity, and “Trans.” stands for translational symmetry.

Symmetry of Hamiltonian Number of Different Phases

None 1
SO(3) 2
D2 2
T 2
SO(3) + T 4
D2 + T 16
Trans. + U (1) ∞
Trans. + SO(3) 2
Trans. + D2 4 × 2 = 8
Trans. + P 4
Trans. + T 2
Trans. + P + T 8
Trans. + SO(3) + P 8
Trans. + D2 + P 128
Trans. + SO(3) + T 4
Trans. + D2 + T 64
Trans. + SO(3) + P + T 16
Trans. + D2 + P + T 1024

This state is representative of the SPT phase labeled
by α(g) = η(g)λ(g), ω, α(P ) = η(P )ρ(P ), β(P ) = ρ(P ),
β(T ) = ρ(T ), γ (g) = λ(g), γ ′(g) = λ′(g).

When G = SO(3) or G = D2, the classification result gives
the following:

(1) For translation + T + P + SO(3), there are 1 × 2 ×
2 × 2 × 2 × (1 × 1) = 16 types of phases.

(2) For translation + T + P + D2, there are 4 × 2 × 2 ×
2 × 2 × (4 × 4) = 1024 types of phases

In Table I, we summarize the results obtained above and in
Ref. 37.

E. General classification for SPT phases

Besides the cases discussed above, it is possible to have
other types of symmetries in 1D spin systems. For example,
there could be systems where time reversal and parity are
not preserved individually but the combined action of them
together defines a symmetry of the system. The general rule
for classifying SPT phases under any symmetry is to classify
all the projective representations of the total symmetry group,
where on-site unitary symmetries should be represented with
unitary matrices, on-site antiunitary symmetries should be
represented with antiunitary matrices, and parity should be rep-
resented with antiunitary matrices. Moreover, if translational
symmetry is present, another independent label for SPT phases
exists which corresponds to different 1D representations
of the total symmetry group. In calculating this label, the
representation of the total symmetry group is slightly different
from the one for calculating projective representations. In
particular, parity should be represented unitarily, i.e., as a
complex number, while on-site unitary/antiunitary symmetries
should still be represented unitarily/antiunitarily.
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IV. CLASSIFICATION WITH SYMMETRY BREAKING

In Ref. 37 and previous sections we have only considered
1D gapped phases whose ground state does not break any
symmetry and hence is nondegenerate. These SPT phases
correspond to one section(labeled “SF” in Fig. 1) in the
phase diagram for short-range entangled states. Of course
apart from SPT phases, there are symmetry-breaking phases.
It is also possible to have phases where the symmetry is only
partly broken and the nonbroken symmetry protects nontrivial
quantum order. In this section, we combine symmetry breaking
with symmetry protection and complete the classification for
gapped phases in 1D spin systems. We find that 1D gapped
phases are labeled by (1) the unbroken symmetry subgroup
and (2) SPT order under the unbroken subgroup. This result is
the same as that in Ref. 42.

A. Matrix product representation of symmetry breaking

Before we try to classify, we need to identify the class
of systems and their gapped ground states that are under
consideration. As we briefly discussed in the introduction,
while the meaning of symmetry breaking is straightforward in
classical system, this concept is more subtle in the quantum
setting. A classical system is in a symmetry-breaking phase
if each possible ground state has lower symmetry than the
total system. For example, the classical Ising model has a
spin-flip symmetry between spin up |↑〉 and spin down |↓〉
which neither of its ground states |↑↑...↑〉 and |↓↓...↓〉 has.
However, in quantum Ising model H = ∑

〈i,j〉 −σ i
zσ

j
z , the

ground space contains not only these two states but also any
superposition of them, including the state |↑↑...↑〉 + |↓↓...↓〉
which is symmetric under spin flip. This state is called the
“cat” state or the GHZ state in quantum-information literature.
In fact, if we move away from the exactly solvable point by
adding symmetry-preserving perturbations (such as transverse
field Bx

∑
i σ

i
x) and solve for the ground state at finite system

size, we will always get a state symmetric under spin flip. Only
in the thermodynamic limit does the ground space become two
dimensional. How do we tell then whether the ground states
of the system spontaneously break the symmetry?

With matrix product representation, the symmetry-breaking
pattern can be easily seen from the matrices.43,44,46 Suppose
that we solved a system with certain symmetry at finite size
and found a unique minimum energy state which has the
same symmetry. To see whether the system is in symmetry-
breaking phase, we can write this minimum energy state in
matrix product representation. The matrices in the represen-
tation can be put into a “canonical” form44 which is block
diagonal:

Ai =

⎡
⎢⎣

A
(0)
i

A
(1)
i

. . .

⎤
⎥⎦, (29)

where the double tensor for each block E(k) = ∑
i A

(k)
i ⊗

(A(k)
i )∗ has a nondegenerate largest eigenvalue λi . If in the

thermodynamic limit the canonical form contains only one
block, this minimum energy state is short-range correlated and
the system is in a symmetric phase as discussed in Ref. 37 and

the previous section. However, if the canonical form splits into
more than one block with equal largest eigenvalue (set to be 1)
when system size goes to infinity, then we say the symmetry
of the system is spontaneously broken in the ground states.

The symmetry-breaking interpretation of block diagonal-
ization of the canonical form can be understood as follows.
Each block of the canonical form A

(k)
i represents a short-range

correlated state |ψk〉. Note that here by correlation we always
mean connected correlation 〈O1O2〉 − 〈O1〉〈O2〉. Therefore,
the symmetry-breaking states |↑↑...↑〉 and |↓↓...↓〉 both have
short-range correlation. Two different short-range correlated
states |ψk〉 and |ψk′ 〉 have zero overlap 〈ψk′ |ψk〉 = 0 and
any local observable has zero matrix elements between them
〈ψk′ |O|ψk〉 = 0. The ground state represented by Ai is an
equal weight superposition of them |ψ〉 = ∑

k |ψk〉. Actually
the totally mixed state ρ = ∑

k |ψk〉〈ψk| has the same energy
as |ψ〉 as 〈ψk′ |H |ψk〉 = 0 for k′ = k. Therefore, the ground
space is spanned by all |ψk〉’s. Consider the operation which
permutes |ψk〉’s. This operation keeps ground space invariant
and can be a symmetry of the system. However, each short-
range correlated ground state is changed under this operation.
Therefore, we say that the ground states spontaneously break
the symmetry of the system.

This interpretation allows us to study symmetry breaking
in 1D gapped systems by studying the block diagonalized
canonical form of matrix product states. Actually, it has been
shown that for any such state a gapped Hamiltonian can
be constructed having the space spanned by all |ψk〉’s as
ground space.46 Therefore, we will focus on finite dimensional
matrix product states in block diagonal canonical form for our
classification of gapped phases involving symmetry breaking.

B. Classification with combination of symmetry breaking and
symmetry fractionalization

We will consider class of systems with certain symmetry
and classify possible phases. For simplicity of notation, we will
focus on on-site unitary symmetry. With slight modification,
our results also apply to parity and time reversal symmetry
and their combination. Suppose that the system has on-site
symmetry of group G which acts as u(g) ⊗ u(g)... ⊗ u(g). It
is possible that this symmetry is not broken, totally broken,
or partly broken in the ground state. In general, suppose
that there is a short-range correlated ground state |ψ0〉 that
is invariant under only a subgroup G′ of G. Of course,
different G′’s represent different symmetry-breaking patterns
and hence lead to different phases. Moreover, |ψ0〉 could have
different symmetry protected order under G′ which also leads
to different phases. In the following we are going to show
that these two sets of data: (1) the invariant subgroup G′ and
(2) the SPT order under G′ describe all possible 1D gapped
phases. Specifically we are going to show that if two systems
symmetric under G have short-range correlated ground states
|ψ0〉 and |ψ̃0〉 which are invariant under the same subgroup
G′ and |ψ0〉 and |ψ̃0〉 have the same symmetry protected order
under G′, then the two systems are in the same phase. We
are going to construct explicitly a path connecting the ground
space of the first system to that of the second system without
closing the gap and breaking the symmetry of the system.
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Assume that |ψ0〉 has a D-dimensional MPS representation
A

(0)
i which satisfies∑

ij

u(g′)ijA
(0)
j = α(g′)M−1(g′)A(0)

i M(g′), (30)

where g′ ∈ G′, α(g′) is a 1D representation of G′, and M(g′)
forms a projective representation of G′.

Suppose that {h0,h1,...,hm} are representatives from each of
the cosets of G′ in G, h0 ∈ G′. Define |ψk〉 = u(hk) ⊗ u(hk) ⊗
... ⊗ u(hk)|ψ0〉, k = 1,...,m. |ψk〉 are hence each short-range
correlated and orthogonal to each other. The ground space
of the system is spanned by |ψk〉. The MPS representation
of |ψk〉 is then A

(k)
i = ∑

j u(hk)ijA
(0)
j , which satisfies similar

symmetry conditions∑
ij

u
(
hkg

′h−1
k

)
ij
A

(k)
j = α(g′)M−1(g′)A(k)

i M(g′). (31)

To represent the whole ground space, put all A
(k)
i into a

block diagonal form and define

Ai =

⎡
⎢⎣

A
(0)
i

. . .

A
(m)
i

⎤
⎥⎦. (32)

The state represented by Ai is then the superposition of all
|ψk〉, which is equivalent to the maximally mixed ground state
with respect to any local observable.

Under any symmetry operation g ∈ G, Ai changes as∑
j

u(g)ijAj = P (g)�(g)Q(g)AiQ
−1(g)P −1(g), (33)

where

�(g) =

⎡
⎢⎣

α(g′
g,0)

. . .
α(g′

g,m)

⎤
⎥⎦ ⊗ In, (34)

P (g) = p(g) ⊗ In, (35)

with p(g) m × m permutation matrices and forming a linear
representation of G:

Q(g) =

⎡
⎢⎣

M(g′
g,0)

. . .
M(g′

g,m)

⎤
⎥⎦. (36)

To classify phases, we first deform the state into a simpler
form by using the double tensor. Define the double tensor for
the whole state as

E =
∑

i

Ai ⊗ A∗
i . (37)

As Ai = ⊕kA
(k)
i

E = (⊕kE
(k)) ⊕ (⊕k =k′E(kk′)), (38)

where E(k) = ∑
i A

(k)
i ⊗ (A(k)

i )∗, E(kk′) = ∑
i A

(k)
i ⊗ (A(k′)

i )∗.
As A

(k)
i for different k only differ by a local unitary on the

physical index i, E(k) all have the same form with a single
nondegenerate largest eigenvalue. Without loss of generality,
we set it to be 1 and denote the corresponding eigensector as

E(k)
0 . On the other hand, 〈ψ ′

k|ψk〉 = limn→∞ Tr(E(kk′))n = 0;
therefore, E(kk′) all have eigenvalues strictly less than 1. Define

E0 = ⊕kE
(k)
0 . (39)

E0 is the eigenvalue 1 sector of E and E1 = E − E0 has
eigenvalues strictly less than 1.

The symmetry condition on Ai can be translated to E as

E = P̄ (g)�̄(g)Q̄(g)EQ̄−1(g)P̄ −1(g), (40)

where P̄ (g) = P (g) ⊗ P (g) [P (g) is real], �̄(g) = �(g) ⊗
�∗(g), Q̄(g) = Q(g) ⊗ Q∗(g).

Matching the eigenvalue 1 sector on the two side of Eq. (40),
it is clear that

E0 = P̄ (g)�̄(g)Q̄(g)E0Q̄
−1(g)P̄ −1(g). (41)

It follows that

E1 = P̄ (g)�̄(g)Q̄(g)E1Q̄
−1(g)P̄ −1(g). (42)

That is, E0 and E1 satisfy the symmetry condition separately.
Now define the deformation path of the double tensor

analogous to Ref. 37 as

E(t) = E0 +
(

1 − t

T

)
E1. (43)

We will show that as t increases from 0 to T , this corresponds
to a deformation of the ground space to a fixed point form
while the system remains gapped and symmetric under G.

First, it can be checked that for 0 � t � T , E(t) remains a
valid double tensor and satisfies symmetry condition Eq. (40).
Decomposing E(t) back into matrices, Ai(t) necessarily
contains m blocks each with finite correlation length. The
fact that the total state remains gapped is proven by Ref. 46.
Because two equivalent double tensors can only differ by a
unitary transformation on the physical index, the symmetry
condition Eq. (40) for E(t) gives that there exist unitary
transformations u(g)(t) such that Ai(t) transform in the same
way as Ai in Eq. (33). The symmetry operation can be defined
continuously for all t .

At t = T , the state is brought to the fixed point form
E(T ) = E0 = ∑

k E
(k)
0 . Each block k represents a dimer state

as in Fig. 2 with entangled pairs between neighboring sites sup-
ported on dimension 1k,...,Dk , |EPk〉 = λik |ikik〉. For different
blocks k and k′, |ik〉 ⊥ |ik′ 〉. The total Hilbert space on one site
is (D × m)2 dimensional. The symmetry operation on one site
can then be defined as u(g) = P (g)Q∗(g)�(g) ⊗ P (g)Q(g).
With continuous deformation that does not close the gap
or violate symmetry, every gapped ground space is mapped
to such a fixed point form. If we can show that two fixed
point states with the same unbroken symmetry G′ and SPT
order under G′ are in the same phase, we can complete the
classification for combined symmetry breaking and SPT order.

Suppose that |ψ0〉 and |ψ̃0〉 are short-range correlated
fixed point ground states of two systems symmetric under G.
Symmetry operations are defined as u(g) and ũ(g) respectively.
|ψ0〉 and |ψ̃0〉 are symmetric under the same subgroup G′
and have the same SPT order. As shown in Ref. 37, |ψ0〉
and |ψ̃0〉 can be mapped to each other with local unitary
transformation W0 that preserves G′ symmetry. The other
short-range correlated ground states can be obtained as |ψk〉 =
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u(hk)|ψ0〉 and |ψ̃k〉 = ũ(hk)|ψ̃0〉. At fixed point, |ψk〉(|ψ̃k〉)
are supported on orthogonal dimensions for different k and
u(hk) and ũ(hk) maps between these support spaces. Therefore,
we can consistently define local unitary operations mapping
between |ψk〉 and |ψ̃k〉 as Wk = ũ(hk)W0u

†(hk) and the total
operation is W = ⊕kWk . W as defined is a local unitary
transformation symmetric under G that maps between two
fixed point gapped ground states with the same unbroken
symmetry G′ and SPT order under G′. Combined with the
mapping from a general state to its fixed point form, this
completes our proof that 1D gapped phases are labeled by
unbroken symmetry G′ and SPT order under G′.

V. APPLICATION: 1D FERMION SPT PHASES

Although our previous discussions have been focused on
spin systems, it actually also applies to fermion systems.
Because in 1D, fermion systems and spin systems can be
mapped to each other through the Jordan-Wigner transfor-
mation, we can classify fermionic phases by classifying
corresponding spin phases. Specifically, for a class of fermion
systems with certain symmetry we are going to (1) identify the
corresponding class of spin systems by mapping the symmetry
to spin, (2) classify possible spin phases with this symmetry,
including symmetry breaking and symmetry fractionalization,
and (3) map the spin phases back to fermions and identify
the fermionic order. In the following we are going to apply
this strategy to 1D fermion systems in the following four
cases respectively: no symmetry (other than fermion parity),
time reversal symmetry for spinless fermions, time reversal
symmetry for spin half integer fermions, and U (1) symmetry
for fermion number conservation. Our classification result
is consistent with previous studies in Refs. 47 and 48. One
special property of fermionic system is that it always has a
fermionic parity symmetry. That is, the Hamiltonian is a sum of
terms composed of even numbers of creation and annihilation
operators. Therefore, the corresponding spin systems we
classify always have an on-site Z2 symmetry. Note that this
approach can only be applied to systems defined on an open
chain. For systems with translation symmetry and periodic
boundary conditions, the Jordan-Wigner transformation could
lead to nonlocal interactions in the spin system.

A. Fermion parity symmetry only

For a 1D fermion system with only fermion parity symme-
try, how many gapped phases exist?

To answer this question, first we do a Jordan-Wigner
transformation and map the fermion system to a spin chain.
The fermion parity operator Pf = ∏

(1 − 2a
†
i ai) is mapped to

an on-site Z2 operation. On the other hand, any 1D spin system
with an on-site Z2 symmetry can always be mapped back to a
fermion system with fermion parity symmetry (expansion of
local Hilbert space may be necessary). As the spin Hamiltonian
commutes with the Z2 symmetry, it can be mapped back to a
proper physical fermion Hamiltonian. Therefore, the problem
of classifying fermion chains with fermion parity is equivalent
to the problem of classifying spin chains with Z2 symmetry.

There are two possibilities in spin chains with Z2 symmetry:
(1) The ground state is symmetric under Z2. As Z2 does

not have nontrivial projective representation, there is one
symmetric phase. (If translational symmetry is required,
systems with even numbers of fermions per site are in a
different phase from those with odd numbers of fermions per
site. This difference is somewhat trivial and we will ignore
it.) (2) The ground state breaks the Z2 symmetry. The ground
state will be twofold degenerate. Each short-range correlated
ground state has no particular symmetry (G′ = I ) and they are
mapped to each other by the Z2 operation. There is one such
symmetry-breaking phase. These are the two different phases
in spin chains with Z2 symmetry.

This tells us that there are two different phases in fermion
chains with only fermion parity symmetry. But what are they?
First of all, fermion states cannot break the fermion parity
symmetry. All fermion states must have a well-defined parity.
Does the spin symmetry-breaking phase correspond to a real
fermion phase?

The answer is yes and actually the spin symmetry-breaking
phase corresponds to a Z2 symmetric fermion phase. Suppose
that the spin system has two short-range correlated ground
states |ψ0〉 and |ψ1〉. All connected correlations between spin
operators decay exponentially on these two states. Mapped
to fermion systems, |ψf

0 〉 and |ψf

1 〉 are not legitimate states
but |ψ̃f

0 〉 = |ψf

0 〉 + |ψf

1 〉 and |ψ̃f

1 〉 = |ψf

0 〉 − |ψf

1 〉 are. They
have even/odd parity respectively. In spin systems, |ψ̃0〉 and
|ψ̃1〉 are not short-range correlated states but mapped to
fermion systems they are. To see this, note that any correlator
between bosonic operators on the |ψ̃f

0 〉 and |ψ̃f

1 〉 is the same
as that on |ψ0〉 and |ψ1〉 and hence decays exponentially.
Any correlator between fermionic operators on the |ψ̃f

0 〉 and
|ψ̃f

1 〉 gets mapped to a string operator on the spin state; for
example a

†
i aj is mapped to (X − iY )iZi+1...Zj−1(X − iY )j ,

which also decays with separation between i and j . Therefore,
the symmetry-breaking phase in spin chains corresponds to a
fermionic phase with symmetric short-range correlated ground
states. The degeneracy can be understood as isolated Majorana
modes at the two ends of the chain.53,54

On the other hand, the short-range correlated ground state
in the spin symmetric phase still correspond to the short-range
correlated fermion state after JW transformation. Therefore,
the symmetric and symmetry-breaking phases in spin systems
both correspond to symmetric phases in fermion systems. The
two fermion phases cannot be connected under any physical
fermion perturbation.

B. Fermion parity and T 2 = 1 time reversal

Now consider the more complicated situation where aside
from fermion parity, there is also a time reversal symmetry T .
T acts as an antiunitary T = UK on each site. In this section
we consider the case where T 2 = 1 (spinless fermion).

So now the total symmetry for the fermion system is the
Z2 fermion parity symmetry Pf and T 2 = 1 time reversal
symmetry. T commutes with Pf . The on-site symmetry group
is a Z2 × Z2 group and has four elements G = {I,T ,Pf ,T Pf }.
Mapped to the spin system, the symmetry group structure is
kept.

The possible gapped phases for a spin system with on-site
symmetry G = {I,T ,Pf ,T Pf } include (1) G′ = G. Following
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the discussion in Sec. III we find that it has four different pro-
jective representations. Examples of the four representations
are (a) {I,K,Z,KZ}, (b) {I,iYK,Z,iYKZ}, (c) {I,iYKZ ⊗
I,I ⊗ Z,iYKZ ⊗ Z}, (d) {I,K,Y,KY }. There are hence four
different symmetric phases. [If translational symmetry is
required, the number is multiplied by 2 due to α(Z2).] (2)
G′ = {I,Pf } with no nontrivial projective representation; the
time reversal symmetry is broken. There is one such phase.
(If translational symmetry is required, there are two phases.)
(3) G′ = {I,T }, with two different projective representations
(time reversal squares to ±I on boundary spin). The Z2

fermion parity is broken. There are two phases in this case.
(4) G′ = {I,T Pf }, with two different projective representa-
tions. The fermion parity symmetry is again broken. There are
two different phases. (5) G′ = I , no projective representation;
all symmetries are broken.

Mapped back to fermion systems, fermion parity symmetry
is never broken. Instead, the Pf symmetry-breaking spin
phases are mapped to fermion phases with Majorana boundary
mode on the edge as discussed in the previous section.
Therefore the above spin phases correspond in the fermion
system to (1) four different symmetric phases; (2) one time
reversal symmetry breaking phase; (3) two symmetric phases
with Majorana boundary mode; (4) another two symmetric
phases with Majorana boundary mode; (5) one time reversal
symmetry breaking phase. (1), (3), and (4) contain the eight
symmetric phases for time reversal invariant fermion chains
with T 2 = 1. This is consistent with previous studies in
Refs. 47 and 55.

C. Fermion parity and T 2 �= I time reversal

When T 2 = I , the situation is different. This happens when
we take the fermion spin into consideration and for a single
particle, time reversal is defined as eiπσy K . With half integer
spin, (eiπσy K)2 = −I . Note that for every particle the square
of time reversal is −I ; however, when we write the system
in second quantization as creation and annihilation operator
on each site, the time reversal operation defined on each site
satisfies T 2 = Pf . Therefore, the symmetry group on each site
is a Z4 group G = {I,T ,Pf ,T Pf }. To classify possible phases,
we first map everything to spin.

The corresponding spin system has on-site symmetry G =
{I,T ,Pf ,T Pf }. T 2 = Pf , P 2

f = I . The possible phases are
(1) G′ = G, with two possible projective representations,
one with T 4 = I , the other with T 4 = −I . Examples for
the latter include T = (1/

√
2)(X + Y )K . Therefore, there are

two possible symmetric phases. (If translational symmetry
is required, there are four phases.) (2) G′ = {I,Pf }; the
time reversal symmetry is broken. There is one phase. (If
translational symmetry is required, there are two phases.)
(3) G′ = I ; all symmetries are broken. There is one phase.

Therefore, the fermion system has the following phases:
(1) two symmetric phases; (2) one time reversal symmetry
breaking phase; (3) one time reversal symmetry breaking
phase with Majorana boundary mode. (1) contains the time
reversal symmetry protected topological phase. Models in
this phase can be constructed by first writing out the spin
model in the corresponding spin phase and then mapping

it to a fermion system with the Jordan-Wigner transforma-
tion.

D. Fermion number conservation

Consider the case of a gapped fermion system with
fixed fermion number. This corresponds to an on-site U (1)
symmetry, eiθN . Mapped to spins, the spin chain will have an
on-site U (1) symmetry. This symmetry cannot be broken and
U (1) does not have a nontrivial projective representation. One
thing special about U (1) symmetry, though, is that it has an
infinite family of 1D representations. If translational symmetry
is required, the fermion number per site is a good quantum
number and labels different phases. Therefore, mapped back
to fermions, there is an infinite number of phases with different
average number of fermions per site.

VI. CONCLUSION

In this paper, we complete the classification of gapped
phases in 1D spin systems with various symmetries. Based on
our classification of symmetry-protected topological phases
with on-site unitary, parity, or time reversal symmetry in
Ref. 37, we give explicit results in this paper for the
classification of SPT phases with combined on-site unitary,
parity, and/or time reversal symmetry. A general rule is
also given for the classification of SPT phases with any
symmetry group. Moreover, we considered the classification
of phases with possible (partial) symmetry breaking. We find
that 1D gapped spin phases with symmetry of group G are
basically labeled by (1) the unbroken symmetry subgroup
G′ and (2) projective representations of G′. Note that in
calculating projective representations of G′, on-site unitary
symmetries are represented unitarily while parity and on-site
antiunitary symmetries are represented antiunitarily. We apply
this classification result to interacting 1D fermion systems,
which can be mapped to spin systems with the Jordan-Wigner
transformation, and classify possible gapped phases with no
symmetry, time reversal symmetry, and also fermion number
conservation.
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APPENDIX A: EXISTENCE OF N SUCH THAT
N−1 R(g)N = R∗(g)

In this section we will show that for any class ω of projective
representation of group G which satisfies ω2 = 1, there is a
projective representation R(g) ∈ ω and a symmetric matrix
N (NT = N ) such that N−1R(g)N = R∗(g).

Suppose that R0(g) is a d-dimensional projective represen-
tation in class ω. Because ω2 = 1, R∗

0 (g) is also a projective
representation in this class, and so is

R(g) =
[

R0(g)
R∗

0 (g)

]
. (A1)

235128-12



COMPLETE CLASSIFICATION OF ONE-DIMENSIONAL . . . PHYSICAL REVIEW B 84, 235128 (2011)

Define

N =
[

I

I

]
, (A2)

where I is a d-dimensional identity matrix. It can be checked
that NT = N and N−1R(g)N = R∗(g).

APPENDIX B: FREEDOM IN COMMUTATION RELATION
BETWEEN PARITY/TIME REVERSAL AND ON-SITE G

We will show in this section that for a fixed factor system
ω(ω2 = 1), if there exists projective representation R(g) and
symmetric or antisymmetric matrix N (NT = ±N ), such that
N−1R(g)N = γ (g)R∗(g) for one 1D representation γ (g), then
there are other R′(g) and N ′ which satisfy the relation for any
other γ ′(g).

Suppose that γ ′(g) = α(g)γ (g).
Define

R′(g) =
[

R(g)
α(g)R(g)

]
, N ′ =

[
N

N

][
I

I

]
.

(B1)

R′(g) is another projective representation with factor
system ω and N ′T = ±N ′.

Moreover it can be checked that

N ′−1
R′(g)N = α(g)γ (g)R′ = γ ′(g)R′. (B2)

APPENDIX C: FREEDOM IN COMMUTATION RELATION
BETWEEN ON-SITE G, TIME REVERSAL, AND PARITY

We will show in this section that for a fixed factor system
ω(ω2 = 1), if there exists projective representation R(g) and
symmetric or antisymmetric matrix N (NT = ±N ), such that
N−1R(g)N = γ (g)R∗(g) for one 1D representation γ (g),
then there exist R′(g), N ′(N ′T = ±N ′), M ′(M ′T = ±M ′),
such that M ′N ′∗ = N ′M ′∗, N ′−1

R′(g)N ′ = γ (g)R′∗(g),
M ′−1

R′(g)M ′ = γ ′(g)R′∗(g), for any γ ′(g) = χ (g)γ (g),
χ2(g) = 1.

Define

R′(g) =
[

R(g)
χ (g)R(g)

]
, (C1)

N ′ =
[

N

N

]
, (C2)

M ′ =
[

N

N

]
. (C3)

It can be checked that R′(g) is a projective representation
with factor system ω. N ′T = ±N ′, and M ′T = ±M ′. More-
over,

M ′N ′∗ =
[

NN∗
NN∗

]
= N ′M ′∗, (C4)

N ′−1
R′(g)N ′ = γ (g)R′∗(g), (C5)

M ′−1
R′(g)M ′ = χ (g)γ (g)R′∗(g) = γ ′(g)R′∗(g). (C6)
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