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We present a study of “nodal-semimetal” phases in which nondegenerate conduction and valence bands touch
at points (the “Weyl semimetal”) or lines (the “line-node semimetal”) in three-dimensional momentum space. We
discuss a general approach to such states by perturbation of the critical point between a normal insulator (NI) and
a topological insulator (TI), breaking either time-reversal (TR) or inversion symmetry. We give an explicit model
realization of both types of states in a NI-TI superlattice structure with broken TR symmetry. Both the Weyl and
the line-node semimetals are characterized by topologically protected surface states, although in the line-node
case, some additional symmetries must be imposed to retain this topological protection. The edge states have
the form of “Fermi arcs” in the case of the Weyl semimetal: these are chiral gapless edge states, which exist in
a finite region in momentum space, determined by the momentum-space separation of the bulk Weyl nodes. The
chiral character of the edge states leads to a finite Hall conductivity. In contrast, the edge states of the line-node
semimetal are “flat bands”: these states are approximately dispersionless in a subset of the two-dimensional edge
Brillouin zone, given by the projection of the line node onto the plane of the edge. We discuss unusual transport
properties of the nodal semimetals and, in particular, point out quantum critical-like scaling of the dc and optical
conductivities of the Weyl semimetal and similarities to the conductivity of graphene in the line-node case.
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I. INTRODUCTION

The study of systems, distinguished by topology rather
than symmetry, is an increasingly important theme in modern
condensed matter physics. This paradigm shift has gained
more momentum recently, with the discovery of the time-
reversal (TR) invariant topological insulator (TI).1–5 Apart
from reinvigorating the interest in topological phenomena in
solids generally, this discovery has drawn particular attention
to the momentum-space topology of the electronic band
structure of solid crystalline materials, or, in a more general
context, to the momentum-space topology of fermionic ground
states. The most common view of topologically nontrivial
electronic phases is that these are states of matter, which are
insulators in the bulk, yet have metallic edge or surface states,
which result from the nontrivial momentum-space topology of
the bulk band structure. The gap in the bulk electronic spectrum
is what makes the topological ground state insensitive to
small perturbations and protects (perhaps in combination
with a discrete symmetry, such as TR) the metallic surface
states. The appearance of such a robust metallic surface state
in a bulk insulator is the main experimentally observable
manifestation of topological order. This, however, is an
oversimplified view. Very recent work has shown that certain
special types of gapless band structures can in fact also be
topologically nontrivial and give rise to robust gapless surface
states.6–12 Gapless topologically nontrivial band structures are
characterized by the presence of point or line nodes, i.e.
points or lines in the three-dimensional (3D) momentum space,
at which two distinct bands touch each other accidentally.
While such accidental band touchings have been known to
exist and studied since the early days of the band theory
of solids,13 only much more recently have their nontrivial
topological properties been noticed and their significance
appreciated, starting, in particular, with the pioneering work of
Volovik.14,15

Topological properties of the accidental band-touching
nodes depend crucially on their co-dimension.16 The point
nodes, which have an odd co-dimension 3 = 3 − 0, are the
most robust variety. The band structure near such point nodes
is described by a massless two-component Dirac (Weyl)
Hamiltonian and is topologically equivalent to a hedgehog
in momentum space.14 The only way to eliminate such
a momentum-space hedgehog is to annihilate it with an
antihedgehog, i.e., Dirac point of opposite chirality. The
theorem of Nielsen and Ninomiya17 guarantees that Weyl
nodes always occur in pairs of opposite chirality. Such pairs
are topologically stable if the opposite-chirality partners are
separated in momentum space, thus precluding their mutual
annihilation. When both TR and inversion symmetry are
present, however, energy bands are twofold degenerate at all
momenta, and nontrivial contact is between pairs of bands.
This has vanishing probability at generic points in momentum
space, and occurs only by tuning one parameter at special
time-reversal-invariant momenta. In the latter case, the four
bands crossing can be viewed as a pair of opposite chirality
Weyl nodes, which occur at the same point in momentum
space, and are thus not stable, hence, the need for a tuning
parameter. The separation of the two Weyl nodes in momentum
space is achieved by breaking TR (Refs. 6 and 9) or inversion
symmetry.18 The resulting topological Weyl semimetal phase
can then be shown to possess chiral edge states6,8,9 (this is the
only known example of a state with topological chiral edge
states, which is intrinsically three dimensional) and a nonzero
Hall conductivity, proportional to the separation of the Dirac
nodes in momentum space.8,9,19

A line node has an even co-dimension 2 = 3 − 1 and does
not possess the absolute topological stability of a point node
(this even-odd dichotomy is an example of Bott periodicity and
can be understood within K theory16). However, imposing
certain discrete symmetries can stabilize line nodes, i.e.,
they may be stable with respect to all perturbations, not
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violating a specific discrete symmetry.7,20 As for point band
touching, imposition of both TR and inversion symmetries is
too restrictive for line touchings to occur. Thus, we consider
here the case where TR is broken. However, the role of
symmetry in the case of the line nodes is more complex than
for Weyl nodes, and we will see that, while the line contact
between bands can be stabilized, this requires a delicate, but
physically achievable, combination of discrete symmetries
(other than TR). Moreover, the conditions, which stabilize
a line contact between two bands, are distinct from those that
force this line contact to have constant energy (and are in
general insufficient to guarantee constant energy). Thus, we
will argue that, by physical symmetries, a line node can not be
stabilized at the Fermi level. Interestingly, even a line contact,
which is not at constant energy (which we will continue to
call a line node although it is a slight abuse of terminology in
this case), has topological properties and can be related to the
surface spectrum. The distinguishing characteristic of these
surface states is that they exist inside the “direct gap” between
conduction and valence bands in a finite area in the 2D surface
Brillouin zone (BZ), the boundary of which is determined by
the projection of the bulk nodal line onto the plane of the
surface. In the simplest models, which may be a reasonable
approximation in some cases, these surface states are entirely
dispersionless, i.e., form a “topological” flat band.7

In this paper, we discuss a particularly simple realization of
both a Weyl and a line-node semimetal phase, which obtains in
a multilayer heterostructure material, composed of alternating
layers of a TI and a normal insulator (NI) material.9 This
can be understood as a simple means of constructing an
underlying four-component Dirac point with both TR and
inversion symmetry, describing the (unstable) critical point
between a bulk NI and TI phase. Then, by a judicious choice
of TR-breaking perturbation, we can realize both stable nodal
phases (the alternative case, in which inversion symmetry is
broken, has recently been discussed in Ref. 12). Here, we
imagine doping with magnetic impurities, which are presumed
to ferromagnetically align, but applying an external magnetic
field will also serve, although this introduces some changes
in low-energy properties due to the influence of the orbital
component of the field. We provide a characterization of
the edge states in the two topological semimetal phases and
also discuss their transport and optical properties, which are
unusual and should be a focus for experimental studies. Our
results for the transport and optical properties of the Weyl
semimetal apply equally well to proposed bulk realizations of
the state, such as in pyrochlore iridates.6

The paper is organized as follows. In Sec. II, we discuss
the general theory of perturbed four-component Dirac points,
and classify the perturbations, which give rise to point nodes,
line nodes, and Fermi-surface phases. These results may apply
very generally, and allow design of any desired nodal state,
once a physical meaning, appropriate to a specific system, is
given to each of the Dirac matrices. In Sec. III, we review the
point-node, or Weyl, semimetal, discussed previously in Ref. 9
in this context, and discuss the effects of an orbital magnetic
field on this state. In Sec. IV, we give a detailed discussion
of the line-node semimetal, including its unusual “flat-band”
surface states and effects of an orbital field. Section V discusses
the conductivity of both the Weyl and line-node states. We

conclude in Sec. VI with a brief summary and discussion of
our results.

II. GENERAL THEORY: PERTURBED DIRAC POINTS

In this section, we consider generally how semimetallic
phases may emerge from perturbations of a system close to
a TI to NI transition in a nearly time-reversal and inversion-
symmetric system. The result is that point-node, line-node, and
metallic Fermi-surface states are possible, depending upon the
nature of the perturbation.

A. Dirac equation and matrices

When both TR and inversion (I) symmetry are present,
a direct NI-TI transition is possible by the formation of a
massless 3 + 1 dimensional four-component Dirac fermion
at the critical point.18 This occurs at a time-reversal-invariant
momentum, which for simplicity we take to be at the � point
k = 0. The k · p expansion about the � point then generically
takes the form

H0 =
3∑

a=1

kaγa + mγ4, (1)

where γμ (μ = 1, . . . ,5) are the five 4 × 4 Dirac matrices
in an appropriate basis. We have rescaled coordinates to set
the Dirac velocity to unity for simplicity. Since the momentum
components ka are odd under both TR and I, γ1,γ2, and γ3 must
also be odd under both TR and I, while γ4 is even under both.
Then, since γ5 may be obtained as the product of the four other
gamma matrices, it is odd under both TR and I. The full space
of Hermitian 4 × 4 Hamiltonians is spanned by including the
identity and another 10 matrices γab = − i

2 [γa,γb] with a < b.
One can deduce their transformation properties from those of
the γμ. The gamma matrices can be separated into three vectors
b,b′,p and one scalar ε, with transformation properties given
in Table I. When both TR and I symmetry are preserved, all 10
of these matrices are prohibited from entering the Hamiltonian
by symmetry. Only the mass m is allowed, and there is thus
a single tuning parameter to access the massless Dirac point,
which separates the TI and NI phases.

B. TR-breaking perturbations

Let us now consider what happens to this critical point when
either TR or I symmetry is relaxed. First, consider relaxing TR,
but preserving I. In this case, the terms b and b′ may be added,
and the most general Hamiltonian, which involves constant
coefficients perturbing the Dirac point, is

H1 = H0 + u · b + v · b′. (2)

TABLE I. Transformation properties of Dirac operators.

Operator TR I

b = (γ23,γ13,γ12) −1 +1
p = (γ14,γ24,γ34) +1 −1
b′ = (γ15,γ25,γ35) −1 +1
ε = γ45 +1 −1
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In general, this is too difficult to diagonalize analytically. For
several simple cases, however, it is possible.

1. b perturbation

For v = 0, by an O(3) rotation, we may choose the
Hamiltonian in the form H1 = H0 + ub1. This gives the
spectrum

ε1(v = 0) = ±
√(√

m2 + k2
1 ± u

)2 + k2
2 + k2

3 . (3)

This gives two stable Weyl nodes with ε1 = 0 when |u| > m,
with k1 = ±√

u2 − m2 and k2 = k3 = 0.

2. b′ perturbation

Next, consider the case u = 0. In this case, by a similar
rotation, we have H1 = H0 + vb′

1, and

ε1(u = 0) = ±
√(√

m2 + k2
2 + k2

3 ± v
)2 + k2

1 . (4)

In this case, when |v| > m, there are two bands whose energies
touch along a circle, defined by k2

2 + k2
3 = u2 − m2, k1 = 0.

3. u · v = 0 perturbation

When both u and v are nonzero, the spectrum depends upon
their relative angle. When u · v = 0, it can still be diagonalized
analytically. Taking u = (u,0,0),v = (0,v,0),

ε1(u · v = 0) = ±[
u2 + v2 + m2 + k2

±2
√

(u2 + v2)
(
m2 + k2

1

) + v2k2
3

]1/2
. (5)

From Eq. (5), one finds that when u2 + v2 > m2, there are two
Weyl nodes at k2 = k3 = 0, k1 = ±√

u2 + v2 − m2, and when
u2 + v2 < m2, there is a full gap.

4. u ‖ v perturbation

For u · v �= 0, in general, H1 can not be diagonalized
analytically. An exception is the case m = 0 and u ‖ v, in
which case we can take, e.g., u = (u,0,0) and v = (v,0,0) by
an O(3) rotation, and the spectrum is

ε1(m = 0) = ±[
u2 + v2 + k2

±2
√

u2v2 + u2k2
1 + v2

(
k2

2 + k2
3

)]1/2
. (6)

From Eq. (6), if |u| > |v|, one has two Weyl points at k1 =
±√

u2 − v2, k2 = k3 = 0, while for |u| < |v|, there is a ring
node at k1 = 0, k2

2 + k2
3 = v2 − u2. While we can no longer

find the spectrum analytically when m �= 0, in this case, we
find numerically that the response to such a mass is distinct
from the situations above. For small m �= 0, the point and line
nodes expand into Fermi surfaces: small pockets for |u| > |v|
and a torus for |u| < |v|. As m is increased, these surfaces
evolve and eventually shrink to a point at some threshold m∗,
above which there is again a gap. Thus, in this case, neither
point nor ring nodal states are stable, and instead the NI-TI
transition is converted to an intermediate metallic state.

C. I-breaking perturbations

If inversion symmetry is broken, but time reversal is
preserved, the most general Hamiltonian with constant co-
efficients is of the form

H2 = H0 + w · p + λε. (7)

Without loss of generality, we can use an O(3) rotation to
choose w = (w,0,0), and the resulting Hamiltonian can be
diagonalized to obtain

ε2 = ±[
m2 + w2 + λ2 + k2

±2
√

λ2k2
1 + (w2 + λ2)

(
k2

2 + k2
3

)]1/2
. (8)

Here, the spectrum is fully gapped whenever m �= 0. For
m = 0, there is a gapless nodal line located at k1 = 0,
k2

2 + k2
3 = w2 + λ2. Thus, at this level of approximation, there

remains a direct NI-TI transition when m = 0, but with a
critical nodal line formed at the transition. In fact, this is
an artifact of the approximation we have made, that the
coefficients m,λ,w are momentum independent. As shown
in Ref. 12, when proper momentum dependence is included,
this transition point broadens into a Weyl semimetal phase,
with a minimum of four nodal points.

III. POINT-NODE (WEYL) SEMIMETAL
IN A TI MULTILAYER

A. Model and connection to Dirac equation

In the previous section, we observed that a point-node
state could be generated by certain time-reversal-symmetry
breaking perturbations of the TI-NI Dirac critical point
(e.g., Sec. II B 1). Here, we discuss the specific case of this
mechanism in a model of a TI multilayer heterostructure,
introduced by two of us in Ref. 9:

H =
∑
k⊥,ij

[
vF τ z(ẑ × σ ) · k⊥δi,j + 	Sτ

xδi,j

+ 1

2
	Dτ+δj,i+1 + 1

2
	Dτ−δj,i−1

]
c
†
k⊥ick⊥j . (9)

Here, i,j label individual TI layers, separated by NI spacers,
	S is the tunneling matrix element between the top and
bottom surfaces within the same TI layer, 	D is the tunneling
matrix element between the top and bottom surfaces of
nearest-neighbor TI layers, and k⊥ is the momentum in the 2D
surface BZ of each TI layer. Without loss of generality, we will
assume that 	S,	D > 0. Such a multilayer structure exhibits
a critical point between a strong 3D TI, when 	D > 	S

and an ordinary 3D insulator when 	S > 	D . The critical
point 	S = 	D realizes the four-component Dirac fermion,
which is the starting point of the previous section. It occurs
here when the gap vanishes at a single point in the 3D BZ
kx = ky = 0, kz = π/d, where d is the superlattice period of
the multilayer. The momentum-space Hamiltonian, expanded
to leading nontrivial order near this point, is given by

H(k) = vF τ z(ẑ × σ ) · k + ṽF τ ykz, (10)

where ṽF = d
√

	S	D . This is the Hamiltonian of a four-
component massless Dirac fermion, equivalent to Eq. (1) in
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Sec. II, after a rescaling of coordinates kx → kx/vF , ky →
ky/vF , kz → kz/ṽF . We can identify from it a specific physical
realization of the first three gamma matrices

γ1 = −τ zσ y, γ2 = τ zσ x, γ3 = τ y. (11)

A small deviation from criticality m ∝ 	S − 	D introduces a
term proportional to τ x (to zeroth order in the small momentum
kx), which identifies the remaining two gamma matrices

γ4 = τ x, γ5 = τ zσ z, (12)

where γ5 = γ1γ2γ3γ4 was used to determine the last gamma
matrix. It is now indeed clear that γ5 is odd under both time
reversal (because it is proportional to spin σ z) and inversion (it
is odd under layer exchange τ z → −τ z), as argued on general
grounds in the previous section.

From that general analysis, we can view the critical Dirac
state as the “parent” state of the topologically stable nodal
semimetal phases, which we will consider below. The simplest
and most robust such phase is the Weyl semimetal, which
we consider first. We saw in Sec. II B 1 that the vector
TR-symmetry-breaking perturbation b robustly splits the Dirac
point into two Weyl points along the axis, parallel to b. Split-
ting the nodes along the z axis therefore is accomplished, from
Table I, by adding a term proportional to bz = γ12 = σ z, using
Eq. (11). This is precisely the spin-splitting term considered
by two of us in Ref. 9. After a canonical transformation

σ± → τ zσ±, τ± → σ zτ±, (13)

the momentum-space Hamiltonian of the multilayer can be
written in a block-diagonal form, with two independent 2 × 2
blocks:

H(k) = vF kyσ
x − vF kxσ

y + m±(kz)σ
z, (14)

where m±(kz) = b ± 	(kz), b is the coefficient of the bz term
(magnitude of the spin slitting), and

	(kz) =
√

	2
S + 	2

D + 2	S	D cos(kzd). (15)

Taking b > 0, the m+ mass is always nonzero, corresponding
to a pair of fully gapped bands. The m− mass, on the other
hand, changes sign at kz = π/d ± k0, where

k0 = 1

d
arccos

{
1 − [b2 − (	S − 	D)2]/2	S	D

}
. (16)

The two points, where m− vanishes, correspond to the two
Weyl fermions, separated in momentum space. The Weyl
semimetal phase exists as long as

b2
c1 = (	S − 	D)2 < b2 < b2

c2 = (	S + 	D)2. (17)

As discussed in Ref. 9, the Weyl semimetal is characterized
by a finite Hall conductivity, proportional to the separation
between the Dirac nodes

σxy = e2k0

πh
, (18)

and chiral edge states, which exist only in a finite subset π/d −
k0 < kz < π/d + k0 of the 2D BZ of any sample surface, not
normal to the z axis. For more details on this, we refer the
reader to Ref. 9.

B. Effect of orbital field

The realization of a Weyl semimetal, which we have
described above, requires doping the TI layers with magnetic
impurities. This is needed to produce the spin splitting b, which
breaks TR symmetry and splits the massive Dirac fermion into
two massless Weyl fermions. In practice, it is easier to break
TR by simply applying an external magnetic field instead of
doping the multilayer material with magnetic impurities. In
this section, we will explore this route in some detail.

Let us assume that an external magnetic field of magnitude
B is applied along the z axis, i.e., the growth direction of the
multilayer. The Hamiltonian is given by

H = vF τ z(ẑ × σ ) ·
(

− i∇ + e

c
A

)
+ gμB

2
Bσz + 	̂, (19)

where

	̂ = 	Sτ
xδi,j + 	D

2
(τ+δj,i+1 + τ−δj,i−1) (20)

is the tunneling operator in real space. We choose Landau
gauge for the vector potential A = xBŷ. Since the vector
potential does not enter in the tunneling term 	̂, it can still
be partially diagonalized by Fourier transform. Then, after the
canonical transformation of Eq. (13), and after diagonalizing
the tunneling term, we obtain

H = vF (ẑ × σ ) ·
(

− i∇ + e

c
A

)
+ m±(kz)σ

z, (21)

where m±(kz) = b ± 	(kz) and b ≡ gμBB/2. This is identical
to the problem of 2D Dirac fermions with masses m±(kz),
which depend on a parameter kz, in a perpendicular magnetic
field. The solution for the spectrum is well known and is given
by21–24

εnλ±(kz) = λ

√
2ω2

Bn + m2±(kz), (22)

where λ = ± labels the electron and holelike sets of Landau
levels, ωB = vF /
 is the analog of the cyclotron frequency for
Dirac fermions, 
 = √

c/eB is the magnetic length (we will be
using h̄ = 1 units throughout, restoring explicit h̄ in some of
the final results), and n = 1,2, . . . are non-negative integers.
As is well known, the n = 0, i.e., the lowest Landau level
(LLL), is special and needs to be considered separately. The
energy of the LLL, corresponding to the mass m+(kz), which
is always positive, is given by

ε0+(kz) = −m+(kz), (23)

i.e., the 0+ level is always holelike and lies below the zero
energy line for any value of the momentum kz. The situation is
different for the LLL of the Dirac fermion with the m−(kz)
mass. m−(kz) = b − 	(kz) changes sign from negative to
positive as the momentum kz crosses the locations of the
Dirac nodes kz = π/d ± k0. This means that the 0 LLL is
electronlike when |kz − π/d| > k0, while it is holelike, i.e.,
dips below the zero-energy line when |kz − π/d| < k0 or, in
other words, when kz is in the interval between the Dirac
nodes. This corresponds to a jump in the Hall conductivity
of the corresponding fictitious system of 2D Dirac fermions,
parametrized by kz, from 0 to e2/h. The total Hall conductivity
of the multilayer is obtained by integrating the 2D Hall
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conductivity between the Dirac nodes and is still given by
the same expression, as in the case of the magnetic-impurity-
induced spin splitting, without any orbital component of the
field, i.e., σxy = e2k0/πh. The edge states also retain their
character: these are chiral topologically protected edge states,
which exist in the interval π/d − k0 < kz < π/d + k0 in the
2D edge BZ. Thus, some of the defining and most interesting
properties of the Weyl semimetals can be observed by
simply applying external magnetic field to a TI-NI multilayer
structure, without any doping by magnetic impurities. Also,
note that the magnetic field dependence of σxy , which is
given by Eq. (16), since σxy ∼ k0, is quite different from what
would be expected in a regular metal. Indeed, k0 is a highly
nonlinear function of B, vanishing as

√
b2 − (	S − 	D)2

near the transition from the Weyl semimetal to the
insulator.

Finally, we remark that recent work has suggested a
magnetoconductivity, i.e., diagonal conductivity for current
and electric field parallel to an applied magnetic field, for a
Weyl semimetal.25 This was argued to be a manifestation of a
“quantum anomaly” for Weyl fermions. While interesting, we
note that a significant effect occurs only in the ultra-quantum
limit in which ωBτ � 1, where τ is the scattering time.
Moreover, a large conductivity, parallel to an applied magnetic
field (relative to the orthogonal components) is in fact a
rather generic consequence of the ultra-quantum limit, due to
the quenching of kinetic energy in the transverse directions
and the suppression of backscattering in the effectively
one-dimensional transport regime, resulting from high field.
Thus, association of this magnetoconductivity, parallel to
the applied field, with Weyl physics, seems challenging
experimentally.

IV. LINE-NODE SEMIMETALS

In this section, we will describe a realization in the
same physical system of a TI multilayer of a line-node
semimetal: a distinct topological semimetal phase, with zeros
in the spectrum, forming continuous lines in momentum
space.

A. Parallel-field-induced nodal line

We consider a TI multilayer system in the presence of a
magnetic field, parallel to the layers. This can be a real external
magnetic field, or, as in the previous section, an exchange field,
arising from ferromagnetic ordering of magnetic impurities,
introduced into the TI material. In the case of an externally
applied field, we, for now, neglect the orbital effect of
the field, but will discuss it in detail later. We anticipate
the presence of nodal lines from the Dirac calculations in
Sec. II B 2. Indeed, from Table I and Eqs. (11) and (12),
an in-plane field corresponds to x and y components of the
b′ perturbation, which leads to a circular node in a plane
containing the z axis.

Let us consider this in more detail. Without loss of
generality, we assume the field is applied in the x direction.
The momentum-space Hamiltonian is given by

H(k) = vF τ z(ẑ × σ ) · k + bσx + 	̂(kz), (24)

where

	̂(kz) = 	Sτ
x + 1

2 (	Dτ+eikzd + H.c.). (25)

The corresponding band dispersion, obtained by diagonalizing
Eq. (24), is given by

ε2
±(k) = v2

F k2
x + [

b ±
√

v2
F k2

y + 	2(kz)
]2

, (26)

where 	(kz) is given by Eq. (15). The ε− branch exhibits a
line node in the yz plane, given by the solution of the equation

v2
F k2

y + 	2(kz) = b2. (27)

As above, for concreteness, we assume that 	S,D > 0. Then,
the node will be centered at ky = 0,kz = π/d. The node exists
as long as

b > |	S − 	D|. (28)

B. Stability of the parallel-field-induced nodal line

1. Nodal lines in general

While we do not expect complete stability of the nodal line,
it could be stabilized if extra symmetries are imposed upon
the Hamiltonian. We need to distinguish two types of stability.
First, we can ask whether the line contact of conduction and
valence bands is stable. Second, we can ask whether, if this
is stable, the line contact is degenerate and coincides with the
Fermi energy. The answer will be that the former is possible
with some discrete symmetries, while the latter can not be
guaranteed by any set of discrete symmetries, although it will
be approximately degenerate, and perhaps to a high degree of
precision, under most reasonable circumstances.

First, we discuss the question of band touching from a
general point of view. Since the nodal line occurs in a system
with nondegenerate bands (away from the node itself), it is
sufficient to consider a two-band Hamiltonian. This in general
takes the form

H2b(k) = h0(k) + h1(k)σx + h2(k)σy + h3(k)σ z, (29)

where the Pauli matrices σ act in the two-band space. By
simple counting of the degrees of freedom and constraints,
nodal lines may occur when, for instance, one of the ha , for
a = 1,2,3, vanishes for all k. Then, as a function of k, two
parameters must be tuned to obtain band degeneracy, i.e., to
make the other two ha vanish, which results in line nodes
in momentum space. Note however, that even in this case,
any momentum dependence of h0(k), which in general is not
constant along the contact line, means that the line touching
does not have a constant energy and therefore can not coincide
with the Fermi level. In general, there are an infinite number
of functions h0(k), consistent with any discrete symmetries,
so that this requires an “infinite” degree of fine tuning. This
means that a line-node semimetal, i.e., a semimetal with a
linelike Fermi “surface” in 3D is nongeneric.

Nevertheless, line contacts, even with nonconstant energy,
have a robustness associated with them, which can be traced to
the existence of a topological invariant characterizing the line
contact. For concreteness, and without loss of generality, let us
take h1 = 0. Then, we may form a complex order parameter
h = h2 + ih3, the phase of which is well defined everywhere
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except at a node. Away from the node, we define h = |h|eiθ ,
and then, since h is single valued, we have∮

C
dkμ∂μθ = 2πn, (30)

where n is an integer for any closed curve C in momentum
space on which the bands are nondegenerate. Since this
winding number is quantized, it can not change as this curve
is smoothly deformed. If the curve does not contain any
singularity inside it (i.e., points where h vanishes: nodes), then
it can be shrunk to a point and the winding number n must
vanish. Generically, however, a curve that encircles a nodal
line has n = ±1, depending upon the sense of circulation.
The nodal line can therefore be viewed as a vortex line in
momentum space. So long as vanishing h requires a band
degeneracy, this is the case. However, if we allow the third
component h1 �= 0, then h = h2 = h3 = 0 does not require a
band degeneracy, and a curve with nonzero n need not enclose
a node.

This can be understood in a yet more general context.
Specifically, the line integral in Eq. (30) can be viewed
more generally as a Berry phase. Whenever the bands are
nondegenerate, we can define a U(1) Berry gauge field (Berry
connection) from the periodic part of the Bloch wave functions
ukα(r), where α is the “spin index,” associated with the Pauli
matrices in Eq. (29):

Aμ(k) = − i

2

∫
r∈u.c.

[
u∗

kα(r)
∂

∂kμ

ukα(r) − ∂

∂kμ

u∗
kα(r)ukα(r)

]
,

(31)

where the integral is taken over the unit cell of the crystal. The
Berry curvature is the flux of this gauge field:

Bμ(k) = εμνλ∂νAλ = −iεμνλ

∫
r∈u.c.

∂

∂kν

u∗
kα(r)

∂

∂kλ

ukα(r).

(32)

Stable nodal lines occur when the Berry curvature is generi-
cally (i.e., for nondegenerate points) vanishing. This is because
one may write the line integral as∮

C
dkμAμ(k) =

∫
S

dnμBμ(k) (33)

by Stokes’ theorem, where S is a surface in reciprocal space,
the boundary of which is C. For any surface for which there
is no band touching, Bμ = 0 would imply a vanishing “vor-
ticity.” Conversely, nonvanishing vorticity within C implies
nonvanishing Berry curvature on S. If the Berry curvature is
generically zero, then this in turn requires a singularity on S,
i.e., that S is crossed by a nodal line. However, if there is no
such requirement of vanishing Berry curvature, there need be
no singularity, and the curvature may be spread out over the
region of integration.

The vanishing Berry curvature condition holds in the
above example because, when h1 = 0, the Hamiltonian obeys
σ zH∗(k)σ z = H(k). When this condition is obeyed, the Bloch
functions satisfy u∗

kα = σ z
αβukβ , which implies a vanishing

Bμ from Eq. (32). One can see that such a vanishing-
Berry-curvature condition generally requires some discrete
symmetry, involving conjugation of the Hamiltonian at a single

momentum point. Without both inversion and time-reversal
symmetry present, this is, in general, artificial. Nevertheless,
it may be imposed in toy models, or may be approximately the
case for some physical situations, such as discussed here.

2. Superlattice case

We now return to the specific case of the nodal line, induced
in the TI-NI superlattice by an in-plane field. It is instructive
to reduce the Hamiltonian to a two-band form, containing just
the bands involved in the line node. To do so, we first rotate
the spin quantization axis by π/2 around the y axis, taking
H → H̃:

H̃(k) = (b + vF τ zky)σ z + 	̂(kz) − vF τ zσ ykx, (34)

and then make the canonical transformation of Eq. (13), under
which H̃ → H′, with

H′(k) = [b + vF τ zky + 	̂(kz)]σ
z − vF σ ykx. (35)

The term in the square brackets is now a constant of motion
and can be replaced by its eigenvalues

m±(k) = b ±
√

v2
F k2

y + 	2(kz). (36)

Then, we obtain two independent blocks of the Hamiltonian

H′
±(k) = m±σ z − vF kxσ

y. (37)

The low-energy block containing the node corresponds to H′
−

and indeed has the form described in Sec. IV B 1. It has a
symmetry W (for “wishful thinking”):

W : σ z[H′
±(k)]∗σ z = H′

±(k). (38)

But is this symmetry physical?
Complex conjugation occurs physically only through time

reversal, which we denote by T . T acts on the original
Hamiltonian, Eq. (24), as H(k) → σyH∗(−k)σy . It is not
a symmetry due to the applied Zeeman field b. However, if
combined with a π rotation about the z axis,Rz

π , the invariance
is restored. So, a physical symmetry is

T ◦ Rz
π : H(kx,ky,kz) → σxH∗(kx,ky, − kz)σ

x. (39)

Carrying through the transformations from H(k) to H′
±(k),

invariance under T ◦ Rz
π requires

T ◦ Rz
π : σ z[H′

±(kx,ky,kz)]
∗σ z = H′

±(kx,ky, − kz). (40)

This is close to, but not precisely, the required condition to
protect the node because it involves a sign change of kz.
We can attempt to reverse this sign change by imposing an
additional z → −z reflection symmetry on the problem, which
might naturally be associated with reflection with respect to a
constant z plane at the center of the TI or NI layers. However,
because spin is a pseudovector, this will flip the in-plane
components of the spin σx → −σx , σy → −σy . This does
not leave the in-plane field bσx invariant, so can not be a
symmetry of Eq. (24).

Because the growth direction and applied field fully
break any possible threefold or fourfold rotation axes, only
some discrete Z2-type symmetries remain as candidates. One
possible remaining symmetry consistent with the applied field
is inversion I through a center midway through a TI or NI
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layer. Since spin is a pseudovector, this leaves σ invariant.
Upper and lower layers of each TI layer are interchanged, and
k → −k, so this condition gives

I : H(k) → τ xH(−k)τ x, (41)

which is indeed an invariance of Eq. (24). After the changes
of basis, I implies for Eq. (35) that

I : σ zτ xH′(k)τ xσ z = H′(−k). (42)

Finally, after projection into the 2 × 2 blocks, the final
condition, imposed by inversion symmetry I, is

I : σ zH′
±(k)σ z = H′

±(−k). (43)

Another possible symmetry is a twofold (π ) rotation about
the axis of the field Rx

π . This acts as

Rx
π : H(kx,ky,kz) → σxτ xH(kx, − ky, − kz)τ

xσ x, (44)

which can be verified to be a symmetry of Eq. (24). Mapping
this to the rotated frame, we obtain

Rx
π : H′(kx,ky,kz) → τ xH′(kx, − ky, − kz)τ

x. (45)

Projecting down to the 2 × 2 blocks, this gives

Rx
π : H′

±(kx,ky,kz) = H′
±(kx, − ky, − kz). (46)

Even if invariance under all three symmetries (T ◦ Rz
π , I,

and Rx
π ) is imposed, this is not equivalent to Eq. (38), and

the nodal line is, at first sight, not guaranteed to be stable. In
particular, a nonzero h1(k) (proportional to σx) is allowed to
enter H′

− in Eq. (37), which could destabilize the nodal line.
However, one may show that h1(k) must, according to these
three symmetries, be an odd function, separately of kx , ky , and
kz. In particular, this implies that the h1(kx = 0,ky,kz) = 0
term vanishes on the y-z plane, where the nodal line exists.
Therefore, the band contact along the nodal line is indeed
protected when all three symmetries are present.

We may also consider, however, the constant part of the
two-band Hamiltonian h0(k). This is required, by the same
symmetries, to be an even function separately of kx , ky ,
and kz, and hence does not vanish nor need be a constant
at kx = 0. Physically, this term would arise, for example,
from the always-present particle-hole asymmetry of the TI
surface states. Generically, this splits the zero-energy Fermi
line into a set of small electron and hole Fermi surfaces,
converting the line-node state into a conventional low-carrier-
density semimetal. However, the topological surface state,
associated with the nodal line, survives the addition of the
h0(k) term, although acquires a dispersion [while it is strictly
dispersionless in the absence of h0(k)].

C. Surface states

While the line node at the Fermi energy is not generic,
it may well be a good approximation, and regardless, the
line band contact itself is more robust, as we have seen
above. It is interesting to understand the consequences of this
bulk band topology for the boundary. Indeed, Heikkilä and
Volovik have shown in another context that unusual surface
states are related to a nodal degeneracy.7,20 To uncover the
nontrivial surface effects of the line node, it is useful to view

the Hamiltonian H(k) as describing a set of 1D systems,
parametrized by momentum components ky,kz: Hky ,kz

(kx).
Such a one-dimensional two-band Hamiltonian supports a
topological classification, if only two of three Pauli matrices
are present in it, which is the same as the condition to
generically support a line node. In this case, we can define a
winding number analogously to Eq. (30), but with the contour
C taken along the periodic direction kx in reciprocal space,
i.e., across the entire BZ. Thus, the same condition, which
generically gives stable nodal lines, also allows such a 1D
topological classification. When the 1D winding number n is
nonzero, then a bound state is expected at an interface between
the system and another system with a different value of n, e.g.
n = 0, corresponding to the vacuum. Indeed, recall the formula
for the canonically transformed Hamiltonian in Eq. (37), but
regarded as a 1D Hamiltonian, parametrized by ky,kz:

H′
−;ky ,kz

(kx) = m−(ky,kz)σ
z − vF σ ykx. (47)

The mass m−(k) changes sign from negative to positive when

b = bc(ky,kz) =
√

v2
F k2

y + 	2(kz). (48)

Although this Hamiltonian is written only for small kx , and
hence does not describe the full 1D topology, it does describe
transitions between different topologies, which occur when
the mass m− changes sign. The 1D TI-NI transition occurs
when the above condition is satisfied, so that when m− > 0,
one has a nontrivial 1D insulator and surface bound states,
while when m− < 0, the 1D insulator is trivial and no bound
states are guaranteed at the surface for such ky,kz.

To see this explicitly, let us assume that the sample occupies
the x < 0 half-plane with a surface at x = 0. To find the edge
states of the 1D TI inside the nodal line, we replace kx →
−i∂/∂x and look for solutions of the 2 × 2 Dirac equation

H′
−;ky ,kz

� = 0 (49)

in the following form:

�ky,kz
(x) = iσ yeFky ,kz (x)φ, (50)

where φ is a two-component spinor. By substituting this ansatz
into the Dirac equation, we obtain[

m−(ky,kz,x)σx − vF

dF

dx

]
φ = 0. (51)

Assuming b(x → ∞) = 0, the solution is given by

�ky,kz
(x) = e

1
vF

∫ x

0 dx ′m−(ky ,kz,x
′)|σx = −1〉. (52)

This is normalizable and localized at the surface for all
bc(ky,kz) < b. The set of these zero-energy edge states forms
a flat band in the surface BZ, which is dispersionless for all
ky,kz inside the area, enclosed by the projection of the nodal
line on the surface plane. If we now add the h0(k) perturbation
to the Hamiltonian (47), it is easy to show, using the standard
quantum mechanical perturbation theory, that to leading order
in h0, the surface state acquires a dispersion proportional to
h0(0,ky,kz). The full surface flat-band dispersion, calculated
numerically (in the absence of the h0 term), is shown
in Fig. 1.
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FIG. 1. The kz = 5π/6d section of the eigenstate spectrum for
a sample of finite size in the x direction with 	D/	S = 0.8, and
b/	S = 1. ky is in units of 	S/vF . The intensity of gray is a function
of the degree of surface localization of a given eigenstate, measured
by an inverse participation ratio of its wave function. The surface-state
dispersion is black, while bulk states are lighter gray.

In the presence of h0(k) terms, which will give the surface
state a dispersion, the remaining robust topological property
of the surface state will be its termination at the projection of
the nodal line to the surface BZ, as shown in Fig. 2.

As discussed above, h0(k) kills the bulk line node itself,
transforming the line-node semimetal to a more “conven-
tional” semimetal with a Fermi surface, containing electron
and hole pockets of equal volume (at charge neutrality), as
shown in Fig. 3. It is, however, distinguished from a truly
conventional semimetal by the presence of the topological
surface states, described above.

D. Effect of the orbital part of the field

We have so far ignored completely the effect of the orbital
part of the parallel field, which creates the line node in
our system. This is justified when the parallel field is an
exchange spin-splitting field, coming from the interaction with
ferromagnetically ordered magnetic impurities. If the field is
an externally applied magnetic field, however, a situation that
is perhaps more easily realizable experimentally, the orbital
effect of the field needs to be considered as in the case of the
Weyl semimetal discussed above.

FIG. 2. The kz = 5π/6d section of the eigenstate spectrum for
a sample of finite size in the x direction with 	D/	S = 0.8, and
b/	S = 1 in the presence of a particle-hole asymmetry in the TI
surface-state spectrum of the form (k2

x + k2
y)/2m∗, with 1/m∗ =

0.3v2
F /	S . ky is in units of 	S/vF . The surface state has acquired a

dispersion due to the particle-hole asymmetry.

FIG. 3. (Color online) The “Fermi line” transforms into a finite-
volume Fermi surface with equal-volume electron (top and bottom)
and hole (left and right) pockets due to the particle-hole asymmetry of
the TI surface states. Note that the line contact of the conduction and
valence bands survives, although it is not a constant energy curve.
This line contact threads through the middle of the chain of small
Fermi surfaces, and as a consequence the topological surface state
remains (see Fig. 2). The parameters here are taken to be the same as
in Fig. 2.

The Hamiltonian in the presence of a magnetic field of
magnitude B, directed along the x axis, is given by

H = vF τ z(ẑ × σ ) ·
(
−i∇ + e

c
A

)
+ gμB

2
Bσx + 	̂, (53)

where 	̂ is the tunneling operator in real space, given by
Eq. (20). We choose Landau gauge for the vector potential
A = −zBŷ, in which case A does not enter in the tunneling
term. We would like to point out here that the magnitude of the
g factor is large in typical TI materials, e.g., g ≈ 50 in Bi2Se3,
so the Zeeman term will produce a significant spin splitting
at reasonable values of the magnetic field. This remark is also
relevant for the Weyl semimetal in the magnetic field case,
discussed above.

The general case of TI multilayer in a parallel field can only
be studied numerically, as this is a Hofstadter-type problem.
However, two limits can be studied analytically.

1. Limit of almost decoupled TI layers: �D � �S

In this limit, the problem reduces to the one of a single TI
layer in parallel magnetic field, already considered by two of
us in Ref. 26. Neglecting the contribution of 	D , 	(kz) = 	S

becomes independent of momentum. The nodal line in this
case has the form of two straight lines, parallel to the z axis,
crossing the y axis at ky = ±k0, where

k0 =
√

ε2
B − 	2

S. (54)

εB = vF κB is the “magnetic energy,” with the “magnetic wave
vector” κB given by

κB = dTI

2
2
− g

4mvF 
2
, (55)
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where dTI is the thickness of a TI layer and 
 = √
c/eB is

the magnetic length. The first term in Eq. (55) comes from the
orbital part of the field, while the second term comes from the
Zeeman spin-splitting part. The topological surface state in this
case consists of a set of 1D edge states of each TI layer, which
are dispersionless in the y direction when −k0 � ky � k0. The
surface state also does not disperse in the z direction, but for the
trivial reason of the absence of tunneling between individual
TI layers.

2. Weak field limit

The weak field limit applies when

|	S − 	D| � 	S + 	D, (56)

which implies that we can assume

b � 	S + 	D, 
 � d, (57)

where we have used shorthand notation for the Zeeman spin-
splitting term

b = gμB

2
B. (58)

In this case, first setting the orbital part of the field to zero,
we can expand H(k) in Taylor series around kz = π/d, which
is the location of the nodal-line center in the absence of the
orbital component of the field. By expanding to leading order in
kz − π/d, and shifting the zero of the momentum to kz = π/d,
we obtain

	̂(kz) ≈ (	S − 	D) τ x + 	Dd τykz. (59)

Rotating by π/2 around the y axis and performing the
canonical transformation of Eq. (13), the problem reduces
to finding the Landau level spectrum of the following 2 × 2
Hamiltonian:

H = vF τ zπy + 	Dd τyπz + (	S − 	D) τ x, (60)

where π is the kinetic momentum

πy = −i
∂

∂y
− z


2
, πz = −i

∂

∂z
. (61)

The Landau-level spectrum is easily found in the standard way
by introducing ladder operators as

πy =
√

ṽF

2vF 
2
(a† + a),

(62)

πz = −i

√
vF

2ṽF 
2
(a† − a),

where ṽF = d
√

	S	D ≈ d	D has the meaning of the Fermi
velocity, associated with the z direction in momentum space.
The resulting Landau-level spectrum, taking 	S ≈ 	D , is
given by

εn± = ±
√

2ω2
Bn, (63)

where ωB = √
vF ṽF /
 and n = 0,1,2, . . . . The full Hamilto-

nian (53) can now be written as

Hn(kx) = [
b ±

√
2ω2

Bn
]
σ z − vF σ ykx. (64)

By exactly the same reasoning as in Sec. IV A, we can conclude
that topological zero-energy surface states appear when

b >

√
2ω2

Bn. (65)

The surface states in the case of an externally applied parallel
magnetic field will thus consist of Landau levels, which
become localized at the surface of the sample normal to the
applied field. In other words, the topological surface flat bands
at zero field transform into surface-bound Landau levels in an
applied magnetic field.

V. CONDUCTIVITY OF THE NODAL STATES

In this section, we discuss the dc and optical conductivity
of the nodal states described in the previous sections.

A. Weyl semimetal

Here, we focus on the diagonal transport characteristics
of the Weyl semimetal, namely, its optical conductivity. The
simplest possible calculation of the conductivity, neglecting
interactions, assuming charge neutrality, and taking into
account only random point impurities, was quoted in Ref. 9,
but the results were not derived in detail. Here, we give a
somewhat more general discussion, and in particular show
that, in fact, Coulomb interactions drastically change the
behavior of the conductivity at low temperature. In particular,
the result of Ref. 9 survives only at high temperature, and
if the basic interaction scale, defined by the effective fine-
structure constant α = e2/εdvF (where εd is the dielectric
constant) is small, α � 1. In general, we will show that
the frequency, doping, and temperature dependences of the
conductivity of the Weyl semimetal are very unusual and
can be used for experimental characterization of this phase
of matter. Moreover, with interactions and charged donors
taken into account, we argue that the conductivity obeys, up to
logarithmic corrections, a scaling form in its dependence upon
T , ω, and donor impurity density ni .

The failure of the noninteracting point impurity result
is in dramatic contrast to conventional metallic systems in
which elastic scattering from defects dominates over inelastic
electron-electron processes at low temperature, which are
frozen out due to phase-space restrictions. Even in the
apparently close analog of 2D graphene, disorder dominates
the low-energy transport rather than interactions, in striking
contrast to the 3D Weyl semimetal. This difference can
be explained without detailed calculations from a simple
renormalization-group (RG) argument. Consider the action of
the Dirac/Weyl fermion model in d dimensions with both point
disorder and interactions with a 1/r Coulomb potential:

S =
∫

dτ ddx [ψ(∂τ + iγμ∂μ)ψ + Vi(x)ψAiψ]

+
∫

dτddxddx ′(ψψ)x,τ

e2

2|x − x ′| (ψψ)x ′,τ , (66)

where here Vi(x) are random potentials, coupling to the
fermion fields via some matrices Ai (not specified), and e is
the electron charge. We take the quenched random potentials
to have zero mean and Gaussian variance Vi(x)Vj (x ′) =
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	ij δ
(d)(x − x ′), reflecting short-range correlations. To keep

the free Dirac/Weyl action scale invariant, we must under
an RG transformation rescale length and time as x → bx,
t → bt , and ψ → b−d/2ψ . Under this rescaling, we see
that the Coulomb interaction term, proportional to e2, is
marginal in any dimension. However, the random potential
Vi(x) → bVi(bx), which implies that the disorder strength
	ij → b2−d	ij . Thus, in the d = 2 case of graphene, disorder
and interactions are both marginal by power counting. In fact,
more careful analysis shows that interactions are marginally
irrelevant and disorder is marginally relevant at the free Dirac
fixed point. As a consequence of the marginally relevant
disorder, a density of states is generated and the system
is described at low energy by a diffusive fixed point. By
contrast, for the d = 3 Dirac/Weyl fermion, interactions
remain marginal (actually, marginally irrelevant, as a more
detailed analysis shows27), but disorder becomes strongly
irrelevant 	 → 	/b. Thus, in fact, the ballistic fixed point
is stable for weak disorder in three dimensions. Moreover,
since disorder is much more irrelevant than interactions at this
fixed point, elastic scattering is suppressed relative to inelastic
scattering, and this explains the dramatic difference from the
2D graphene case. In fact, the marginality of interactions
means that many physical properties almost scale like those,
expected of a fully interacting scale-invariant critical theory,
with only logarithmic corrections. This simple “quantum
critical” scaling is an attractive feature of the Weyl semimetal.

In the remainder of this section, we will go beyond these
scaling considerations and verify their conclusions in some
simple calculations. We will also extend the discussion to the
physically relevant situation in which donor impurities are
present, which extends in a simple way the quantum critical
scaling due to interactions to include finite residual resistivity
at T = 0.

1. Short-range impurities for noninteracting electrons

We first recapitulate the calculation of Ref. 9 since all
details were omitted in it. We assume a model with short-range
impurity scattering potential of the form

V (r) = u0

∑
a

δ(r − ra), (67)

where ra label the impurity positions, and also neglect
electron-electron interactions. Both of these assumptions
are generally quite unrealistic, both for an undoped Weyl
semimetal, in which Coulomb interactions are essentially
unscreened, and for a doped semimetal, where scattering from
charged donors with long-range potential can be expected to
dominate. However, this model will still give us useful results,
which can be expected to be applicable at the neutrality point
at high enough temperature such that the impurity scattering
rate exceeds the scattering rate due to electron-electron
interactions.

We will assume that the impurity potential is diagonal in
both the spin and the pseudospin indices and will consider a
single Weyl fermion in the 3D BZ with a Hamiltonian

H(k) = vF σ · k. (68)

Generalization to any number of distinct Weyl fermions is
trivial as they contribute additively to transport (we will assume
that the impurity potential does not mix Weyl fermions at
different points in the BZ).

In the first Born approximation, the impurity scattering rate
is given by

1

τ (ε)
= −γ Im

∫
d3k

(2π )3

∑
λ

GR
λ (ε,k) = 2πγg(ε), (69)

where

GR
λ = 1

ε − λvF k + iη
(70)

is the retarded Green’s function of the Weyl fermion, λ = ±
labels the helicity of the positive and negative energy Dirac
cones, γ = u2

0ni , where ni is the impurity concentration, and
the density of states g(ε) is given by

g(ε) = ε2

2π2v3
F

. (71)

Thus, 1/τ (ε) ∼ ε2 � ε, which means that the conductivity can
be calculated semiclassically using the Boltzmann equation.
By solving the linearized Boltzmann equation with the energy-
dependent momentum relaxation rate (69) in the standard way,
we obtain

Re σxx(ω) = −e2v2
F

3

∫ ∞

−∞
dε g(ε)

dnF (ε)

dε

1/τ (ε)

ω2 + 1/τ (ε)2
,

(72)

where nF is the Fermi distribution function at temperature T .
By introducing dimensionless integration variable x = ε/2T

(using kB = 1 units) and restoring explicit h̄, we obtain

Re σxx(ω) = e2v2
F

6γ h

∫ ∞

−∞
dx

x4 sech2(x)

x4 + (
h3v3

F ω/32π2γ T 2
)2 .

(73)

This gives a dc conductivity

σdc = e2v2
F

3γ h
, (74)

and a Drude-type peak in the optical conductivity, but with
a temperature-dependent width, scaling as T 2. This is a
very unusual property of the optical conductivity in a metal
and can be used to characterize the Weyl semimetal phase
experimentally.

The Drude peak also has a highly unusual shape, with a
divergent first derivative. This can be obtained explicitly from
Eq. (73), evaluating the integral in (73) in the limit ω → 0:

Re σxx(ω) ≈ e2v2
F

3γ h

(
1 − 1

8

√
ω v3

F h3

2 γ T 2

)
. (75)
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2. Donor impurities

Now, let us consider a doped Weyl semimetal and adopt a
more realistic model with Coulomb, rather than short-range,
impurities, which will represent the charged donors. As is well
known, the Boltzmann approach can still be used in this case,
with transport time replacing the momentum relaxation time
of Eq. (69):

1

τtr(ε)
= πnig(ε)

∫ π

0
dθ sin(θ )|V (q)|2

× [1 − cos(θ )]
1 + cos(θ )

2
, (76)

where

V (q) = 4πe2

εd

(
q2 + q2

TF

) (77)

is the screened Coulomb potential with the Thomas-Fermi
wave vector q2

TF = 4πe2g(ε), θ is the scattering angle, q =
2(ε/vF ) sin(θ/2), and ni is the impurity concentration. The
factor 1 − cos(θ ) is the standard factor, suppressing the
forward-scattering contribution to the transport collision rate,
while the [1 + cos(θ )]/2 factor arises from the matrix elements
of the impurity potential with respect to the eigenstates of the
Weyl Hamiltonian (68). Equation (76) is in fact very similar
to the corresponding expression for the transport collision rate
in graphene.28

Introducing an effective fine-structure constant α =
e2/εdvF , which expresses the ratio of the typical Coulomb
interaction energy scale e2kF /εd to the typical kinetic energy
scale vF kF in the Weyl semimetal, Eq. (76) may be written as

1

τtr(ε)
= πα2niv

3
F

4ε2

∫ π

0
dθ

sin3(θ )

[sin2(θ/2) + α/2π ]2
. (78)

Integrating over the scattering angle, we then obtain the
following expression for the transport collision rate:

1

τtr (ε)
= 4π3niv

3
F

3ε2
f (α), (79)

where

f (α) = 3α2

π2

[
(1 + α/π )atanh

(
1

1 + α/π

)
− 1

]
. (80)

The function f (α) approaches unity for α � 1, i.e., in the limit
of strong interactions and vanishes as

f (α) ≈ 3α2

2π3
ln(1/α) (81)

in the weak interaction α � 1 limit. If we assume that
the charged impurities are donors, i.e., that the impurity
concentration is proportional to the electron concentration
n ∼ (εF /vF )3, then, as obvious from Eq. (79),

f (α) ∼ 1

εF τtr(εF )
. (82)

The standard Boltzmann-equation expression for the zero-
temperature dc conductivity in terms of the transport collision
time is given by (h̄ is restored)

σdc ∼ e2v2
F

h
g(εF )τtr(εF ). (83)

Using Eq. (79) and ni ∼ (εF /vF )3, we finally obtain the
following result for the dc conductivity of the Weyl semimetal
with Coulomb impurities:

σdc ∼ e2n
1/3
i

hf (α)
. (84)

Scattering from charged impurities thus leads to the dc con-
ductivity vanishing as a function of the dopant concentration
as n

1/3
i . Note that this result can be rewritten in the physically

transparent form

σdc ∼ e2

h
kF × (kF 
), (85)

where the Fermi momentum kF ∼ n
1/3
i and 
 = vF τ is

the mean-free path. This agrees with a simple scaling of
conductivity linearly with energy. Moreover, the mean-free
path obeys

kF 
 ∼ 1/f (α), (86)

which implies that electrons are weakly scattered and justifies
the semiclassical approximation when f (α) � 1, i.e., when
α � 1, consistent with the perturbative treatment of scattering.

3. Coulomb scattering at neutrality

This behavior, however, can not be expected to hold
all the way to the neutrality point, and a crossover to a
doping-independent value of the conductivity should occur
once εF < T , as happens, e.g., in graphene.29 In the regime
εF < T , the conductivity can be expected to be determined by
scattering due to the (almost) unscreened Coulomb electron-
electron interactions (except at higher temperatures, where
the short-range scattering from neutral defects, discussed
above, will dominate). For the undoped Weyl semimetal at
low temperatures, one expects the electron self-energy due to
interactions to be proportional to the quasiparticle energy, up
to possible multiplicative logarithmic corrections27

1/τ ∼ Im�(ε) ∼ α2Max{ε,T }. (87)

This follows simply from the absence of any energy scales in
the undoped Weyl semimetal other than the ε itself, but can
also be obtained from an explicit calculation.27 By interpreting
Im�(ε) as the scattering rate 1/τ (ε) and plugging it into the
Boltzmann-equation expression for the dc conductivity, we
obtain

σ (ω = ni = 0) ∼ e2v2
F

h

∫
dε

(
−dnF (ε)

dε

)
g(ε)τ (ε)

∼ e2T

hα2vF

, (88)

i.e., a power-law insulating behavior with the dc conductivity
vanishing linearly with temperature.

Note that this form matches nicely the scaling obtained
above for the case of donor impurities. In particular, both forms
and the expected frequency dependence can be encompassed
by the general quantum critical scaling form

σ (ω,ni,T ) ∼ e2kF

hα2
S [vF kF /T ,ω/T ] , (89)
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where S[X,Y ] is an O(1) scaling function. We have taken
the forms appropriate for small α, where the perturbative
calculations are valid, and neglected logarithms (which are
interesting, but beyond the scope of this work). A more detailed
study of the conductivity in the absence of donor impurities
can be found in a recent preprint.30

B. dc conductivity of the line-node semimetal

Finally, let us discuss transport properties of the line-node
semimetal. As will be shown below, these are somewhat similar
to graphene,31–35 except for the fact that they occur in a 3D
material. We will also only consider the dc conductivity,
as the calculation of the frequency-dependent conductivity
is somewhat complicated and in general can only be done
numerically (except in the high-frequency limit ωτ � 1).
However, as in graphene, we expect the optical conductivity
of the line-node semimetal to be only weakly frequency
dependent.

For simplicity, we will adopt the model of pointlike
randomly distributed impurities, with the potential given
by Eq. (67). We assume that only the low-energy states,
described by the lower (−) block of the Hamiltonian (37),
contribute significantly to transport. The eigenstates of this
2 × 2 Hamiltonian are given by

| ± ,k〉 = 1√
2

(
√

1 ± m(k)/ε(k),

∓ i sign(kx)
√

1 ∓ m(k)/ε(k)), (90)

where m(k) ≡ m−(k) = b−√
v2

F k2
y + 	2(kz) and

ε(k) =√
v2

F k2
x + m2(k). The corresponding eigenvalues are

ε±(k) = ±ε(k). Let us first find the low-energy density of
states of the nodal line. In general, it can only be calculated
numerically. To obtain an analytical expression, we will
assume that the size of the nodal line along the z axis is small
compared to π/d. Then, we can expand 	(kz) to leading
order in kz near kz = π/d. We obtain

	(kz) ≈ 	2 + ṽ2
F k2

z , (91)

where 	 = |	S − 	D| and we have redefined kz → kz +
π/d. The density of states can be most conveniently found
by differentiating the function

N (ε) =
∫

d3k

(2π )3
�[ε − ε(k)], (92)

where �(x) is the Heaviside theta function. This is propor-
tional to the volume of a torus in momentum space, the surface
of which is described by the equation

ε2 = v2
F k2

x + [
b −

√
v2

F k2
y + ṽ2

F k2
z + 	2

]2
. (93)

The cross section of this torus is not circular and its volume
in general can not be calculated analytically. An analytical
expression can, however, be obtained in the limit b � 	.
In this limit, Eq. (93), after appropriate rescaling of the
coordinates, describes a canonical torus of major radius b and
minor radius ε. Then, we obtain

N (ε) = ε2b

4πv2
F ṽF

. (94)

The density of states is thus given by

g(ε) = dN(ε)

dε
= εb

2πv2
F ṽF

. (95)

The density of states of a 3D nodal line is thus the same (i.e.,
scales linearly with energy at low energies) as the density of
states of point nodes in 2D, as expected. This means that many
of the transport properties of the 3D line-node semimetal will
be similar to those of graphene. In particular, since the first
Born approximation scattering rate 1/τ (ε) ∼ g(ε) ∼ ε, i.e., is
of the same order as the quasiparticle energy, the first Born
approximation is in fact inapplicable and the self-consistent
Born approximation (SCBA) must be used instead. A general
SCBA expression for the disorder self-energy is given by

�λ(k,ε) =
∑
k′,λ′

〈Vλλ′ (k − k′)Vλ′λ(k′ − k)〉GR
λ′ (k′,ε), (96)

where

GR
λ (k,ε) = 1

ε − ελ(k) − �λ(k,ε)
(97)

is the retarded disorder-averaged Green’s function and

Vλλ′(k − k′) = 〈λ,k|λ′,k′〉V (k − k′) (98)

is the matrix element of the impurity potential. The angular
brackets in Eq. (96) denote impurity averaging. Near the nodal
line, we can approximately set m(k) ≈ 0, the matrix element
in Eq. (96) becomes independent of λ,λ′, and we obtain

�(ε) = γ

2V

∑
k,λ

GR
λ (k,ε), (99)

i.e., the self-energy is independent of k and λ. Since we are
interested in �(ε) at low energies, we can set ε → 0 in Eq. (99).
Then, we obtain

� = γ

∫ ∞

−∞
g(ε)

�

ε2 − �2
, (100)

where � ≡ �(0). Since g(ε) is an even function of the energy,
it follows from Eq. (68) that � is imaginary. By substituting
Eq. (95) in (100) and solving the resulting equation, we obtain

|�| ≡ 1

2τ
= εce

−2πv2
F ṽF /γ b, (101)

where εc is the upper cutoff energy, which is of the order of
the total bandwidth. Thus, we find that the impurity scattering
rate is finite in the zero-energy limit, unlike the naive first Born
approximation result. It can, however, be very small in a clean
multilayer.

Now, we can evaluate the conductivity. The standard Kubo
formula expression reads as

σαβ = e2

π

∫ ∞

−∞
dε

(
−dnF (ε)

dε

) ∫
d3k

(2π )3

×〈λk|vα|λ′k〉〈λ′k|vβ |λk〉Im GR
λ (k,ε)Im GR

λ′(k,ε),

(102)

where repeated λ,λ′ indices are summed over. Vertex correc-
tions to Eq. (102) vanish identically. This can be checked by
an explicit calculation, but is most easily seen.
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Using the 2 × 2 momentum-space Hamiltonian

H(k) = m(k)σ z − vF kxσ
y, (103)

the components of the velocity operator vα = ∂H/∂kα are
given by

vx = −vF σ y, vy = − v2
F ky

b − m(k)
σ z, vz = − ṽ2

F kz

b − m(k)
σ z,

(104)

where at low energies we can again use m(k) ≈ 0. Matrix
elements of the spin operators are given by

〈+,k|σy | + ,k〉 = −vF kx

ε(k)
, 〈−,k|σy | − ,k〉 = vF kx

ε(k)
,

〈+,k|σy | − ,k〉 = m(k)k̂x

ε(k)
, 〈+,k|σ z| + ,k〉 = m(k)

ε(k)
,

〈−,k|σ z| − ,k〉 = −m(k)

ε(k)
, 〈+,k|σ z| − ,k〉 = vF |kx |

ε(k)
.

(105)

It follows from Eqs. (104) and (105) that, at low energies, only
intraband terms in (102) contribute to σxx , while only interband
terms contribute to σyy and σzz. After a straightforward
calculation, we obtain

σxx = σyy = e2b

πṽF h
, σzz = e2ṽF b

πv2
F h

, (106)

where we have restored explicit h̄. We note here that the
vertex corrections to Eq. (102) vanish identically. This can
be checked by an explicit calculation, but is most easily
seen from the following symmetry of the Hamiltonian (103):
H(k) = H∗(−k). It has been shown in Ref. 36 that such a
symmetry of the Hamiltonian (combined in our case with the
reality of all the matrix elements of the velocity operator)
always leads to cancellation of the vertex corrections to
conductivity.

The conductivity of the nodal-line semimetal is thus
independent of disorder. This is similar to the well-known
universality property of the dc conductivity of graphene.31–35

Unlike in graphene, however, the conductivity of the line-node
semimetal does depend on nonuniversal properties of the
nodal line, like its perimeter, which is proportional to b,
and the Fermi velocity. Note that σxx = σyy only in the limit
b � 	, i.e., far away from the insulator-semimetal transition.
In general, conductivities in all three directions are different.
Note that, obviously, an externally applied field will add to
the internal exchange field b due to the ordered magnetic
impurity moments, leading to a linear dependence of the
conductivity on the field. This would be supplemented by an
orbital contribution, not discussed here.

The optical conductivity of the line-node semimetal can be
expected to behave as a function of frequency in the same
way as the optical conductivity of graphene, i.e., to be roughly
frequency independent at low frequencies.

As a final note, let us mention the expected behavior of
the doped line-node semimetal. As in the case of the Weyl
semimetal, discussed above, we will assume that the ionized
dopants of density ni (say donors) act as long-range Coulomb

impurity scatterers for the doped carriers. Following the same
line of reasoning as in the Weyl semimetal case, we then obtain

σ ∼ e2v2
F ni

h α2b2
, (107)

where we have ignored the Fermi velocity anisotropy for
simplicity. The conductivity thus scales linearly with the car-
rier density, the same result as in graphene.28 This similarity,
however, is accidental in this case, as in graphene the linear
scaling is obtained in a very different physical situtation: the
Coulomb scatterers are charged impurities in the substrate,
while the finite carrier density is provided electrically by
applying gate voltage.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have considered two classes of topological
nodal semimetals, both of which occur in a multilayer
heterostructure, made of thin TI films, separated by ordinary-
insulator spacers. Topologically stable nodes, in which con-
duction and valence bands touch, occur in this system when TR
symmetry is broken, by either magnetic impurities or external
magnetic field. Both point- and line-node semimetals are
characterized by protected surface states. These are especially
robust in the case of the point-node, or Weyl, semimetal. The
edge states in this case are chiral quantum Hall edge states,
their chiral character making them robust even to hybridization
of the bulk Dirac points.8

The surface states of the line-node semimetal are “flat
bands,” i.e., they are approximately dispersionless in a subset
of the surface BZ, bounded by a projection of the bulk
nodal line onto the surface plane. Since a flat band has a
divergent density of states, nontrivial correlation effects, e.g.,
superconductivity or magnetism, may be expected.37

We have discussed transport properties of both types of
nodal semimetals, as these can be expected to be important
in the experimental characterization of these phases. We
summarize those of the Weyl semimetal, including those not
derived here, for convenience. If time-reversal symmetry is
broken, it may exhibit an anomalous Hall conductivity. A
general expression for this is8

σμν = e2

h
εμνλKλ, (108)

where K is a wave vector, which can be expressed in terms of
the Weyl points according to

K = K0 +
∑

i

qiki . (109)

Here, qi = ±1 is the charge [in units of quantized U(1) Berry
flux] of the Weyl point located at k = ki , and K0 is a reciprocal
lattice vector (which could be zero). The former is a quantized
anomalous Hall contribution due to completely filled bands.
Note that although Eqs. (108) and (109) generally describe
a nonquantized anomalous Hall effect, it can be considered
to be “semiquantized” in the sense that if K is measured
experimentally, the universal quantized prefactor e2/h can
be extracted. In our multilayer case, the Hall conductivity is
nonzero and semiquantized in this way even in the absence of
an applied (orbital) field. In the proposed Weyl semimetal in the
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iridium pyrochlores,6 it vanishes in zero applied field by cubic
symmetry. However, an anomalously large Hall coefficient
may be induced according to Eqs. (108) and (109), as the
Weyl points shift in an applied magnetic field.

In this paper, we showed that the bulk diagonal conductivity
in the Weyl semimetal exhibits approximate quantum critical
scaling due to Coulomb interactions. This implies that the
zero-temperature dc conductivity is proportional to n

1/3
i , where

ni is the density of charged donor impurities, and that the
dependence of the conductivity on temperature and frequency
is approximately a universal function of vF n

1/3
i /T and ω/T .

We note that this conductivity scaling is a general property
of any Weyl semimetal, including not only the superlattice
structures described here, but also bulk realizations, such as
proposed for iridium pyrochlores.6 A recent preprint draws
similar conclusions in a model with ni = 0.30

Finally, the diagonal conductivity also gets surface and
interface contributions due to edge states. In fact, even in a
single crystal, Ising magnetic domains may form, and there
can be chiral surface states bound to such a domain wall. In
the superlattice model of Sec. III A, this is indeed the case
for any domain wall, which is not normal to the z axis. If a
sufficient density of such domain walls is present, they may
give an appreciable contribution to the diagonal conductivity.
In practice, such contributions should be extracted by a careful
study of hysteresis and by finding ways to align the magnetic
order into a single domain.

Assuming the line node to lie at the Fermi level (which
is undoubtedly an approximation as discussed in depth in
Sec. IV B 1), the resulting transport properties are somewhat
similar to graphene, except for the fact that these occur in a
3D material in our case. This is not unexpected, as a line node
in 3D is equivalent to a point node in 2D since a point node
can be thought of as a section of the line node by a plane
in momentum space. As a consequence, a 3D line node has
the same low-energy density of states as a 2D point node,
i.e., linear in energy. This, in turn, leads to similarities in
the transport properties. In particular, the dc conductivity of
the line-node semimetal is “universal” in the sense of being
independent of disorder. It is not, however, as universal as the
conductivity of graphene, as it does depend on other material
parameters, such as Fermi velocities, the magnitude of spin
splitting, and the tunneling matrix elements, characterizing
the TI and ordinary-insulator layers in the heterostructure.
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