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Mott transition in multiorbital models for iron pnictides
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The bad-metal behavior of the iron pnictides has motivated a theoretical description in terms of a proximity to
Mott localization. Since the parent compounds of the iron pnictides contain an even number of 3d electrons per
Fe, it is important to determine whether a Mott transition robustly exists and clarify the nature of the possible
Mott insulating phases. We address these issues in a minimal two-orbital model and a more realistic four-orbital
model for the parent iron pnictides using a slave-spin approach. In the two-orbital model with two electrons per
Fe, we identify a single transition from a metal to a Mott insulator, showing that this transition must exist as a
result of orbital degeneracy. Depending on the ratio between the inter- and intraorbital Coulomb repulsions, the
insulating state can be either a high-spin Mott insulator or a low-spin orbital-Mott insulator. In the four-orbital
model with four electrons per Fe, we find a rich phase diagram for the metal-to-insulator transition. At strong
Hund’s couplings, a localization transition to a high-spin Mott insulator always occurs. At zero and weak Hund’s
couplings, on the other hand, we find a transition to an intermediate-spin insulating state. This transition can
be viewed as an orbitally selective metal-to-insulator transition: the transition to a Mott insulator in the xz and
yz orbitals takes place at the same critical coupling as the transition to either a band insulator at zero Hund’s
coupling or an orbitally polarized insulator at weak but finite Hund’s coupling in the xy and x2 − y2 orbitals.
The implications of our model studies for the physics of iron pnictides and iron chalcogenides are discussed.
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I. INTRODUCTION

The microscopic physics of the iron pnictides and related
high-Tc superconductors1,2 is a subject of extensive studies.
The parent systems are antiferromagnetically ordered,3 imply-
ing that Coulomb interactions must play some role. The metal-
lic nature of these systems gives rise to a tendency to treat the
interactions perturbatively. However, various considerations
have led to the notion that the parent iron pnictides and iron
chalcogenides are on the verge of a Mott localization transition.
These considerations have been based on the observed bad-
metal properties,4,5 first-principles calculations,6,7 and related
analyses.8–12 The bad-metal properties are characteristic of
metallic systems in proximity to a Mott localization. The
electrical resistivity at room temperature corresponds to a
short mean free path, on the order of the average interelectron
spacing. The Drude weight seen in the room temperature
optical conductivity is considerably suppressed compared to
its noninteracting value.13–15 Finally, relatively small changes
of temperature induce transfers of the optical spectral weight
extending to the eV range.14,16,17 The lack of observation18 of
any pronounced incoherent peaks in the high-energy electron
spectrum has raised some questions about the incipient Mott
picture, but recent microscopic calculations19 have suggested
that this arises from a large damping whose effect is enhanced
by the multiorbital nature of the system.

There is some evidence for the incipient Mott picture from
the magnetic sector as well. High-energy spin-wave-like exci-
tations have been seen at the zone boundaries.20 In addition,
the total spin spectral weight is sizable; for instance, it is
more than 1μB/Fe in CaFe2As2.20 These properties cannot
be accounted for by the electrons close to the Fermi energy
alone; in particular, since the Fermi surfaces comprise small
electron and hole pockets, the spin spectral weight coming
from the electronic states near the Fermi surfaces will be
much smaller than that observed experimentally. Instead, the

observed spin excitation spectrum is more naturally associated
with the electronic states far away from the Fermi energy, as
would be the case in a metal close to a Mott localization.

The incipient Mott picture arises when U/t is not too far
away from the critical value for a Mott transition. (Here t

refers to the characteristic bandwidth of the Fe 3d electrons,
and U refers to a combination of their Coulomb repulsions
and Hund’s couplings.) In order to further substantiate this
picture, it is important to tune the system into a Mott
insulating state. Recently, this has been demonstrated21 in the
iron oxychalcogenides, which contain an Fe square lattice
that is expanded compared to the iron pnictides and iron
chalcogenides. The lattice expansion gives rise to a narrowing
of the 3d bands and a concomitant enhancement of U/t , which
pushes the system through the Mott transition and into the
Mott-insulating regime.

Based on the above considerations, it is very important to
show theoretically that a transition from a metal to a Mott
insulator generally exists in multiorbital models appropriate
for the parent compounds of the iron pnictides. This is
especially so given that the number of 3d electrons per Fe
is even in these systems. The Mott transition, which has long
been a subject of fundamental interest,22 is studied in both the
one-orbital Hubbard model with one electron per site23,24 and
multiorbital systems at commensurate fillings.22 In the one-
orbital model and paramagnetic phases, the Mott transition
can be understood within the Brinkman-Rice picture,25 with an
interaction-induced suppression of the coherent one-electron
spectral weight near the Fermi energy and the concomitant
development of incoherent spectral weight away from the
Fermi energy.24 Focusing on the paramagnetic phases is
advantageous for considering the Mott transition, since an odd
number of electrons per unit cell means that any insulating
state must be the result of interactions. The picture applies in
the part of the phase diagram above the temperature of ordering
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transitions (typically into antiferromagnetic phases); this part
of the phase diagram widens with the increase of magnetic
frustration.26

In our case, since the parent iron pnictides contain an even
number of (six) 3d electrons per Fe, an insulating state could in
principle simply be a band insulator. The issue is particularly
pertinent given that the Fermi surfaces of the iron pnictides and
related systems are small pockets. Indeed, the noninteracting
band structure consists of nondegenerate bands (two bands
are called degenerate only when their energies are the same
at every point in the momentum space) and is close to that
of a semiconductor with a small overlap in energy between
the bottom of the conduction bands and the top of the valence
bands; each band is far away from half filling. It is a priori
possible that, if an increasing U suppresses a metallic state,
the system goes into a correlated band insulator first, thereby
invalidating the picture of a bad metal on the verge of a Mott
transition. In other words, it is a nontrivial question in the case
of the iron pnictides as to whether the metallic state can be
in proximity to a Mott transition and, if so, whether the Mott
insulator resembles that for the canonical one-orbital Hubbard
model with one electron per unit cell. Moreover, given that
the bandwidths are very different from band to band, another
nontrivial question is whether a Mott transition, when it exists,
is a one-step transition or can be an orbital selective Mott
transition (OSMT).27

To address these issues, we study how a metal-insulator
transition (MIT) in the paramagnetic phase may happen in
multiorbital models of iron pnictides containing an even
number of electrons filled. Our work builds on earlier studies
of multiorbital models for transition metal oxides and related
systems. Physics in these multiorbital models is very rich.
For instance, many factors, such as inequivalent bandwidths,
crystal-field splitting, and Hund’s coupling, may affect the
nature of the transition.28–33 We note that there is a tendency in
the literature to work in the band representation and ignore
the orbital characters.34,35 In our study, we show that the
orbital characters serve as another important factor for the
Mott transition.

We first study the MIT in a two-orbital Hubbard model
with two electrons per site, with a kinetic-energy part given by
the minimal band dispersion for the pnictides.36 We analyze
the model within a slave-spin (SS) formulation,37,38 which
has the advantage of readily capturing both the coherent and
incoherent part of the electronic spectrum and, in addition, the
effect of Hund’s coupling. We show that the orbital degeneracy
guarantees the existence of a one-step metal-to-Mott-insulator
transition in this model. Neither a band insulator nor an OSMT
may take place. The critical coupling Uc, which is larger
in multiorbital systems than in the single-orbital case,39,40

is greatly reduced by a nonzero Hund’s coupling; this is
consistent with earlier studies in other multiorbital contexts.41

We find that the nature of the Mott insulator depends on the
ratio of the interorbital and intraorbital Coulomb repulsions.
It can be either a high-spin Mott state which is driven by the
intraorbital coupling or a low-spin orbital-Mott state driven by
the interorbital coupling.

We then consider a more realistic four-orbital model
including xz, yz, xy, and x2 − y2 orbitals. In this model,
the nature of the MIT depends on the strength of the Hund’s

coupling. A strong Hund’s coupling stabilizes a high-spin Mott
state on the insulator side. But when the Hund’s coupling is
either zero or weak compared to the crystal-field splitting, we
find a novel orbital selective MIT. The xz and yz orbitals
experience a transition to a Mott insulator; at the same,
critical coupling, a transition to either a band insulator (at
zero Hund’s coupling) or an orbitally polarized insulator (at
nonzero albeit weak Hund’s coupling), takes place in the xy

and x2 − y2 orbitals. In this case, the insulating state always
has an intermediate-spin value, even at zero Hund’s coupling.
We establish this to be a direct consequence of the double
degeneracy of the xz and yz orbitals.

The remainder of the paper is organized as follows. In
Sec. II we summarize the slave-spin formulation and introduce
the two-orbital model. Section III is devoted to the MIT in the
two-orbital model at half filling. In particular, we propose
the concept of low-spin orbital-Mott state. The investigation
of MIT in the four-orbital model is presented in Sec. IV,
where a rich phase diagram is given. Section V contains some
concluding remarks.

II. MULTIORBITAL HUBBARD MODEL AND SLAVE-SPIN
REPRESENTATION

The Hamiltonian for the multiorbital Hubbard model is
H = H0 + Hint. Here, H0 is a noninteracting tight-binding
Hamiltonian with the general form

H0 =
∑
αβν

tναβ

∑
i,σ

d†
iασ di+νβσ +

∑
i,ασ

(εα − μ)d†
iασ diασ (1)

in real space, where d
†
iασ creates an electron on site i, in orbital

α, and with spin σ . εα is the onsite potential of orbital α

that incorporates the crystal-field splitting. μ is the chemical
potential determined by the electron filling. The interaction
reads

Hint = U
∑

iα

niα↑niα↓ + (U ′ − J/2)
∑

i,α<β

niαniβ

− J
∑

i,α<β

[2Siα · Siβ − (d†
iα↑d

†
iα↓diβ↓diβ↑ + h.c.)],

(2)

in which U (U ′) denotes the intraorbital (interorbital) Coulomb
repulsion and J the Hund’s coupling. These three parameters
satisfy U ′ = U − 2J based on the consideration of rotational
symmetry. It is strictly satisfied for an isolated atom in
free space where all the d orbitals are degenerate and the
Coulomb potential has the full rotational symmetry, and it is
assumed to be also valid in solids.42 We will adopt this widely
used relation unless otherwise specified (see discussion in
Sec. III B). The spin operators are Siα = 1

2

∑
σσ ′ d

†
imσ �τσσ ′dimσ ′ ,

where �τ = (τ x,τ y,τ z) are the Pauli matrices.
It is now generally accepted that the degenerate dxz and

dyz orbitals contribute most to the low-energy physics of
the parent iron pnictides. Hence, in this paper, we will
first consider a two-orbital model introduced in Ref. 36.
The simplicity of the model makes it easier to bring out
some essential insights, which will also be instructive for
the understanding of more realistic models with a larger
number of orbitals. Defining ψ

†
kσ = (d†

kxσ ,d
†
kyσ ), we have
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H0 = ∑
kσ ψ

†
kσ [(ε+ − μ)1 + ε−τ z + εxyτ

x]ψkσ , where ε+,
ε−, and εxy are the intra- and interorbital hopping matrices
in the momentum space. In the notation of Eq. (1), the orbital
degeneracy requires an α-independent εα which can be set to
zero. We also notice that the tight-binding Hamiltonian in this
model is symmetric under the orbital interchange xz ↔ yz.
The parent compound has a half filling, i.e., two electrons per
site.

We study the MIT in this two-orbital model using the SS
formulation.37,38 This formulation involves a much smaller
number of slave fields, compared to the atomic-configuration-
based slave-boson representation of Ref. 43, and more readily
treats the full Hund’s coupling compared to the slave-rotor
representation of Refs. 35 and 44. Here, a slave quantum
S = 1/2 spin is introduced on each site for each orbital
and spin degree of freedom: diασ → 2Sx

iασ fiασ . The Hilbert
space spanned by the SS and auxiliary fermions is limited
to the physical part by imposing the constraint Sz

iασ + 1/2 =
niασ on each site. The SS formulation handles the electron
interactions by rewriting Hint in terms of SS operators. The
density-density interactions in Eq. (2) (including the Ising-type
Hund’s coupling) are easily handled by the z component of
the SS operator. The spin-flip part of the Hund’s coupling
and the pair-hopping term are approximately treated by
substituting the fermion operators by SS operators that have the
same effect on the SS quantum numbers of the Hilbert space,
−J

∑
i[S

+
i1↑S−

i1↓S+
i2↓S−

i2↑ − S+
i1↑S+

i1↓S−
i2↓S−

i2↑ + H.c.]. This ap-
proximation should capture the qualitative physics because the
SU(2) spin-rotational symmetry of the Hund’s coupling is still
preserved in the Hilbert space spanned by the slave spins.45

The SS formulation is treated at the mean-field (MF) level
by fully decoupling the SS and auxiliary fermion operators
via a saddle-point approximation. This leads to two decoupled
MF Hamiltonians for the SS and the auxiliary fermions:

HS = 4
∑
αβσ

∑
iν

Sx
i,ασ Sx

i+ν,βσ

〈
tναβf †

i,ασ fi+ν,βσ

〉
+

∑
i,ασ

hασ

(
Sz

i,ασ + 1/2
) + HS

int, (3)

Hf = 4
∑
αβσ

∑
iν

〈
Sx

i,ασ Sx
i+ν,βσ

〉
tναβf †

i,ασ fi+ν,βσ

+
∑
iασ

(εα − hασ − μ)f †
i,ασ fi,ασ , (4)

where

HS
int =

∑
i

{
U ′

2

(∑
ασ

Sz
iασ

)2

+ U − U ′

2

∑
α

(∑
σ

Sz
iασ

)2

− J

2

∑
σ

(∑
α

Sz
iασ

)2

− J [S+
i1↑S−

i1↓S+
i2↓S−

i2↑

− S+
i1↑S+

i1↓S−
i2↓S−

i2↑ + H.c.]

}
, (5)

and hασ is a Lagrangian multiplier taking account of the
constraint. To solve these two Hamiltonians, we further
apply the mean-field decomposition to the term Sx

i,ασ Sx
i+ν,βσ

in HS , i.e., Sx
i,ασ Sx

i+ν,βσ ≈ 〈Sx
i,ασ 〉Sx

i+ν,βσ + Sx
i,ασ 〈Sx

i+ν,βσ 〉 −

〈Sx
i,ασ Sx

i+ν,βσ 〉, and assume 〈Sx
i,ασ 〉 to be site independent. The

Hamiltonian for the SS operators is then reduced to (up to a
constant)

HS
MF =

∑
i,ασ

[
KασSx

i,ασ + hασ

(
Sz

i,ασ + 1/2
)] + HS

int, (6)

where Kασ = 8
∑

β〈Sx
βσ 〉∑

iν〈tναβf
†
i,ασ fi+ν,βσ 〉. The quasipar-

ticles near the Fermi level are described by the auxiliary
fermion Hamiltonian Hf . Introducing the quasiparticle spec-
tral weight Zα = 4〈Sx

ασ 〉2, Hf is written as

H
f

MF =
∑
αβσ

∑
iν

√
ZαZβtναβf †

i,ασ fi+ν,βσ

+
∑
iασ

(εα − hασ − μ)f †
i,ασ fi,ασ , (7)

which has a similar form as H0, with the hopping tναβ

renormalized to
√

ZαZβtναβ . In practice, Eqs. (6) and (7)
are self-consistently solved by iteratively determining the
parameters hασ and Kασ (hence Zα). The metallic behavior
corresponds to the Bose condensation of the slave spins, which
is marked by a nonzero Zα . The Mott insulating behavior of
orbital α is then identified by Zα = 0.

III. RESULTS FOR THE TWO-ORBITAL MODEL

A. Mott transition in the two-orbital model

In the two-orbital model for iron pnictides, the noninteract-
ing tight-binding Hamiltonian contains an interorbital hopping
εxy and cannot be diagonalized by a uniform (k-independent)
orbital rotation. This leads to two nondegenerate bands which
have asymmetric local density of states (LDOS) with respect
to the chemical potential. The Fermi surface consists of small
electron and hole pockets, indicating that both bands are far
away from half filling. It is then important to ask whether,
when the interactions are turned on, the system undergoes a
transition to a Mott insulator, or the band degeneracy can be
fully lifted so that a correlated band insulator may be stabilized.
If a Mott transition does take place, it is also interesting to ask
whether the transition to the Mott insulator is through a single
MIT or via an OSMT.

Most of the previous studies on the MIT in multiorbital
systems work in the band presentation, assuming a diag-
onalized band structure with zero interband hopping. This
oversimplified treatment neglects the orbital character of the
model. Within this representation, the only way to generate two
bands with asymmetric LDOS is to introduce a finite crystal-
field splitting which breaks the orbital degeneracy in the model.
In this study we choose to work in the orbital representation,
which takes into account the full orbital characters of the
model. In this orbital representation, the symmetry of H0 and
Hint under interchanging of the xz and yz orbitals guarantees
that both orbitals contribute equally to the band structure.

The above considerations lead to two important conse-
quences. First, nxz,σ = nyz,σ = 1/2 for any value of U ; i.e.,
each orbital is exactly at half filling. So a Mott transition
is possible at finite U . Second, Zxz = Zyz = Z, and an
OSMT cannot take place even though the widths of the two
bands are very different. At finite U , the hopping parameter
tνlm is uniformly renormalized to

√
ZlZmtνlm = Ztνlm since
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the crystal-field splitting is zero in this model. Hence the
dispersion εk (the Fourier transformation of tνlm) is also
normalized to Zεk. We thus see that the topology of the
band structure is unchanged by the interactions. At T = 0,
the chemical potential is determined by

∫

(μ − Zεk) = 2Ns ,

where 
(x) is the Heaviside step function and Ns is the
number of sites. Taking Z = 1 and μ = μ0 at U = 0, we see
that

∫

(μ − Zεk) = ∫


[Z(μ0 − εk)], implying that μ =
Zμ0. The Fermi surface is determined by Z(μ0 − εk) = 0.
Therefore, the Fermi surface of the interacting system is
identical to the one in the noninteracting system. Furthermore,
the filling factor of each quasiparticle band does not depend
on the interaction and must be identical to the value in the
noninteracting case. Therefore, in the presence of nonzero
interaction, the quasiparticle bands are still partially occupied,
and a band insulator never emerges. The system stays in the
metallic state until the quasiparticle spectral weight Z = 0,
where both bands go through a transition to a Mott insulator.
Our argument generally applies to any system with degenerate
orbitals.

The above analysis is supported by the full solution to the
slave-spin mean-field (SSMF) equations. Figure 1 shows the
evolution of spectral weight Z with increasing U . For both
J = 0 and nonzero J , Z drops to zero at finite U , indicating
a Mott transition. At J = 0, this takes place at Uc/D = 2.66,
where D = 12 is the full bandwidth of the two-orbital model
(in the unit of t1, the nearest-neighbor intra-xz-orbital hopping
along the x direction). The critical coupling is reduced to
Uc/D = 1.49 at J/U = 0.2. As a complementary method,
we have also applied the slave-rotor formulation35 to the two-
orbital model with J = 0 and the same values for the other
model parameters. The results (not shown) are qualitatively
the same as the SSMF results at J = 0: a Mott transition takes
place at Uc/D ≈ 2.0.

The Mott transition is best seen in the variation of
the spectral function with increasing U . We calculate the
spectral function by convoluting the SS and auxiliary fermion

FIG. 1. Evolution of the spectral weight Z in the two-orbital
model with (a) J = 0, U ′ = U and (b) J/U = 0.2, U ′/U =
0.6. D = 12 is the full bandwidth of the noninteracting band
structure.

Green’s functions: Grd
αβ(k,ω) = i

∫
dω′[G>S

αβ (ω′)Grf

αβ(k,ω −
ω′) + GrS

αβ(ω′)G<f

αβ (k,ω − ω′)], where Gr is the retarded

Green’s function, G>S
αβ (t) ≡ −i〈Sx

α (t)Sx
β (0)〉, and G

<f

αβ (t) ≡
i〈f †

β (0)fα(t)〉 and α,β denote orbital indices. Note that in the
above expression the SS Green’s function is independent of k.
This is a consequence of the MF approximation. Expressing
the SS Green’s function using the Lehmann representation
and taking into account that the Hamiltonian of f fermions
describes free fermions, the spectral function is written as

A(k,ω) = 2π

Z
∑
αλσ

∑
n,m

∣∣〈n|Sx
ασ |m〉∣∣2∣∣�αλ

k

∣∣2
δ(ω − Enm − ελk)

× [
e−βEm

(
1 − n

f

λk

) + e−βEnn
f

λk

]
, (8)

where En and |n〉 are eigenenergy and eigenvector of the
SS Hamiltonian, Z = ∑

n e−βEn , Enm = En − Em, and n
f

λ =
1/(eβελ + 1). The matrix �k diagonalizes the f -fermion
Hamiltonian H

f

MF with eigenenergy ελk.
Taking m = n = 0 (|0〉 denotes the ground state of HS

MF)
in Eq. (8), one sees that the coherent part of the spectral
function is normalized by a factor of Z since Z = |〈0|Sx

ασ |0〉|2.
As mentioned above, an advantage of the SSMF is that
the incoherent part is also accessible. At low temperatures
this comes from terms with n = 0,m = 0. The LDOS is
calculated from Eq. (8). As shown in Fig. 2, when U is
increased from zero, one sees clearly that the coherent part
is renormalized by Z. There is a significant spectral weight
transfer to the incoherent part in the metallic phase. Our results
provide a natural explanation of both the renormalization
of the coherent bands and the appearance of the incoherent
spectral weights13,46 within a unified framework. At U > Uc,
the coherent peak vanishes, signaling the Mott insulator state;
the incoherent parts, at the same time, develop into the lower
and upper Hubbard bands.

As discussed in previous studies,41 a finite Hund’s coupling
may strongly affect the Mott transition. We show this effect in
the two-orbital model by presenting the J -U phase diagram

FIG. 2. (Color online) DOS in the two-orbital model at various
U values with the same model parameters as in Fig. 1.

235115-4



MOTT TRANSITION IN MULTIORBITAL MODELS FOR . . . PHYSICAL REVIEW B 84, 235115 (2011)

FIG. 3. (Color online) Phase diagram in the J -U plane of the
two-orbital model at half filling. Here we have taken U ′ = U − 2J .
The blue circles (red diamonds) give the phase boundary of the metal-
to-Mott-insulator transition for the case of full (Ising-type) Hund’s
coupling.

in Fig. 3. It is seen in Fig. 3 that Uc is rapidly reduced
with increasing J/U ; this is also illustrated in Fig. 1. The
reduction of Uc can be understood by solving the mean-field
Hamiltonian in Eq. (6) at an infinitesimal K (K ≡ Kασ ).
We first diagonalize Hint and the term including Sz

i,ασ in
Eq. (6) and label the eigenstates as |nν〉, where n is the
electron occupation number and ν denotes the degenerate
multiplets. We then treat the term KH ′ = K

∑
ασ Sx

ασ per-
turbatively. To the first order in K , Uc can be obtained
by solving 1/ε̄ = 2E . Here ε̄ = 1/Nsite

∑
αβ ε

αβ

k 〈f †
kασ fkασ 〉

is the average kinetic energy for the noninteracting system,
and E is the lowest eigenvalue diagonalizing the matrix M,
where Mμν = ∑

n=2,λ〈2μ|H ′|nλ〉〈nλ|H ′|2ν〉/(E2 − En) and
En is the eigenenergy of state |nν〉. Mμν is nonzero only
when n = 1 or n = 3. For either n value, E2 − En = −�2/2
where �2 = U + J is the Mott gap of the two-orbital model
at half filling. Hence Uc is determined by �2 ∝ |ε̄|, i.e.,
Uc ∝ |ε̄|/(1 + J/U ). This clearly indicates that Uc decreases
with an increasing J/U ratio. Similar behavior has also been
discussed in a three-orbital model.32

Interestingly, we find that Uc is reduced more significantly
for the Ising-type Hund’s coupling [i.e., in the absence of
the spin-flip and pair-hopping terms in Eq. (5)] at a large
J/U ratio, as shown in Fig. 3. This is quite consistent with
the results in previous studies,41 and can also be understood
from the above perturbation theory. When J is small, for
either Ising-type or full Hund’s coupling, all six configurations
associated with two electrons occupying the two orbitals,
denoted by |2μ〉 with μ ranging from 1 through 6, are nearly
degenerate and are strongly mixed in the (perturbed) ground
state. But when the full Hund’s coupling J is large, only
the triplet configurations in |2μ〉, shown in Fig. 4, contribute
most to the ground state. For the Ising-type Hund’s coupling,
the ground state only strongly mixes the doublet: |↑〉xz|↑〉yz

and |↓〉xz|↓〉yz. More configurations mixed in the ground
state correspond to more scattering processes between the

FIG. 4. (Color online) Illustration of the high-spin Mott and low-
spin orbital-Mott states in the two-orbital model at the atomic limit.
In this model, the high-spin Mott state has S = 1 and the ground-state
energy has U ′ − J ; the low-spin orbital-Mott state has S = 0 and the
ground-state energy has U − J .

nearly degenerate |2μ〉 and |2ν〉 states, which promote a larger
kinetic-energy gain in the metallic phase, thereby favoring
the metal over the Mott insulator. Following the perturba-
tion theory, Uc = 12|ε̄|/(1 + J/U ) ≈ 2.7D/(1 + J/U ) for
infinitesimal J/U ; here, a nearly degenerate perturbation is
used involving all six low-energy multiplets. At sufficiently
large J , Uc = 8|ε̄|/(1 + J/U ) for full Hund’s coupling and
Uc = 4|ε̄|/(1 + J/U ) for Ising-type Hund’s coupling; here,
the degenerate perturbation respectively involves the three and
two lowest multiplets for the two cases. These expressions
are qualitatively47 consistent with the numerical results in
Fig. 3: At J/U < 0.01, Uc ≈ 2.66D/(1 + J/U ) for both full
and Ising-type Hund’s couplings, while for J/U � 0.03 the
largest reduction of Uc is found in the Ising-type Hund’s
coupling. It is interesting to note that the effect of Hund’s
coupling on the value of Uc is quite similar to the effect
of having more orbitals in degenerate multiorbital Hubbard
models.48 Indeed, the underlying physics is related: in both
cases, Uc is higher when the ground state mixes more nearly
degenerate configurations; as already mentioned, involving
more configurations helps stabilize a metallic state by lowering
the kinetic energy.

Another difference from the J = 0 case is that the MIT
becomes discontinuous at nonzero J . It is especially significant
for the Ising-type Hund’s interaction. For the full Hund’s
coupling, the discontinuity of Z is only significant at small
J values. For J/U � 0.2, the discontinuity is rather small
(see Fig. 1), and it is hard to distinguish the transition from a
continuous one. These results from our SSMF calculation are
consistent with the DMFT results on the effect of finite Hund’s
couplings in multiband Hubbard models with degenerate
bands.41

B. High-spin Mott versus low-spin orbital-Mott state

As seen in Fig. 2, the Mott transition at half filling
in the two-orbital model is quite similar to the Brinkman-
Rice picture of the one-orbital case. It is then interesting to
see whether the Mott insulating state is similar to that of
the one-orbital case. For J > 0, the Mott insulator of the
two-orbital model is an S = 1 interorbital triplet state. This
state is characterized by a vanishing onsite double occupancy
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〈ni↑ni↓〉 in each orbital and is the two-orbital analog of the
Mott insulator in the one-orbital model. We denote the triplet
state as the high-spin Mott state in the two-orbital model.

The Mott insulating state at J = 0 in the two-orbital model
is somewhat different. It mixes the high-spin (triplet) states
with low-spin (singlet) configurations, which are degenerate
when J = 0. Therefore, the insulating state has a finite double
occupancy (see Fig. 4). This implies that a spin-singlet state
might be stabilized in some parameter regime. Note that
the relation U ′ = U − 2J puts a strong constraint on the
parameters, which may limit the ground-state configurations
to a relatively smaller subset. To fully study all the possible
ground-state configurations, in this section, we relax the above
constraint so that U ′ becomes a free parameter independent
of U and J .49,50 Indeed, by studying the Hamiltonian in the
atomic limit, one sees that for any J > 0 the interorbital
triplet state is only stabilized at U ′ < U . When U ′ > U ,
the ground state is an orbital antisymmetric spin-singlet state
1/

√
2(|↑↓; 0〉 − |0; ↑↓〉), as shown in Fig. 4.51 Though this

state shares some characters as a band insulator, such as
finite double occupancy and spin singlet, it is still a Mott
insulator because the orbital degeneracy is preserved by the
Hamiltonian. This can be immediately seen by noticing that
each orbital is at half filling and the spectral weight is zero in
this state. Note that U ′ > U is not enough to drive the system
to a band insulator because the existence of the Mott insulator
is guaranteed by the orbital degeneracy. To distinguish this
Mott state at U ′ > U from the high-spin (triplet) Mott state,
we will denote it as a low-spin orbital-Mott state.

To see the difference between the high-spin Mott and
low-spin orbital-Mott insulators, we study the MIT in the
two-orbital model at several different U ′/U ratios and show
the results in Fig. 5. We find the MIT is discontinuous for
general U , U ′, and J values except for J = 0 and U = U ′,
where a continuous transition is observed. Moreover, the
behaviors in the metallic state at different U ′/U ratios are
quite similar. This is not surprising since the electron hopping
mixes all configurations. Besides the double occupancy, the
difference between the high-spin Mott and low-spin orbital-
Mott states can also be seen by both the average value of the
total spin operator S2 = (

∑
α Sα)2 and the orbital correlation

function C1,2
o = 〈(n1 − 1)(n2 − 1)〉. (We have defined the

orbital indices 1 = xz, 2 = yz.) In the high-spin Mott state,
〈S2〉 = 2 and C1,2

o = 0. By contrast, in the low-spin orbital-
Mott state, 〈S2〉 = 0 and C1,2

o = −1. All these are consistent
with the numerical results shown in Fig. 5. At U ′ = U , the
ground state is a mixture of the two Mott states, hence both
C1,2

o and 〈S2〉 take intermediate values.
For a fixed J/U ratio, we find the critical coupling Uc for

the MIT is the largest for U = U ′. It is slightly reduced for
U ′ < U but greatly decreased when U ′ > U . We show that this
nonmonotonic behavior of Uc is related to the different nature
of the Mott states. Note that the two Mott states at U ′ < U and
U ′ > U have different Mott gaps. In the high-spin Mott state,
�2 = U + J , is independent of U ′. On the other hand, the Mott
gap in the low-spin orbital-Mott state is �2 = 2U ′ − U + J ,
which increases with U ′. Therefore, Uc decreases drastically
when U ′/U increases from 1 but is almost insensitive to U ′/U

for U ′ < U . These considerations allow us to understand the
numerical results given in Fig. 5.52 The fact that Uc at U ′ < U

FIG. 5. (Color online) (a) The evolution of Z at half filling
with J/U = 0.2 and different U ′/U ratios showing the transition
to different Mott states. (b)–(d): The evolution of 〈n↑n↓〉, C1,2

o , and
S2 (see text for the definitions of these quantities) for the same set of
parameters.

is smaller than Uc at U ′ = U can be further understood by
the different ground-state degeneracy in the two states. From
Sec. III A we know that a higher ground-state degeneracy
increases the effective kinetic-energy gain, thereby enhancing
the stability of the metallic state. The ground state is threefold
degenerate when U ′ < U but is fourfold degenerate when
U ′ = U (it is sixfold if further J = 0). Thus, Uc is the largest
for U = U ′ and is slightly reduced when U ′ < U .

The orbital-Mott state exists only in systems with degen-
erate orbitals and U ′ > U . When the orbital degeneracy is
broken by a crystal-field splitting, it is unstable toward either
a band insulator or more generally, as will be discussed in the
next section, an orbitally polarized insulator.

IV. RESULTS FOR THE FOUR-ORBITAL MODEL

We have so far shown how the Mott transition takes place
in the minimal two-orbital model for parent iron pnictides. It
has been recognized that, to more realistically reproduce the
electron structure of the iron pnictides, all five Fe orbitals need
to be included in the tight-binding dispersion.53,54 This raises
the question as to whether our main results for the two-orbital
model are applicable to the more realistic models with a larger
number of orbitals. In the five-orbital model of Ref. 53, the
electron filling is about 0.8 per site per spin in the 3z2 − r2

orbital but very close to 0.5 per site per spin in all other four
orbitals. The 3z2 − r2 orbital hardly contributes to the band
structure near the Fermi level. These suggest that one may
study a model including only xz, yz, xy, and x2 − y2 orbitals
by assuming that the 3z2 − r2 orbital lies far below the Fermi
level and is fully occupied. Taking model parameters of Ref. 53
but keeping only those four orbitals gives rise to Fermi surfaces

235115-6



MOTT TRANSITION IN MULTIORBITAL MODELS FOR . . . PHYSICAL REVIEW B 84, 235115 (2011)

FIG. 6. (Color online) Three candidate ground states in the atomic
limit in the four-orbital model. The S = 2 state is an analog of the
high-spin Mott state in the two-orbital model.

that are almost identical to the ones for the five-orbital cases.
Hence the four-orbital model represents a good approximation
to the five-orbital one. For simplicity, here we study the MIT
in this four-orbital model.

We argue that the main results for the two-orbital model still
hold in the four-orbital model. Though the orbital degeneracy
of other orbitals are lifted, the xz and yz orbitals are still
degenerate. In the atomic limit, with four electrons occupied,
the ground state may be either a high-spin S = 2 state, an
intermediate-spin S = 1 state, or a low-spin S = 0 state, as
shown in Fig. 6. In either case the xz and yz orbitals are
half filled just as in the two-orbital model. Therefore, a Mott
transition similar to the two-orbital case is expected.

In Figs. 7–11 we show the results from SSMF calculation,
in which the full Hund’s coupling and the constraint U ′ =
U − 2J are taken into account. For both J = 0 and J > 0,
an MIT is observed. For J = 0, Uc = 12.5 eV. A nonzero J

may significantly reduce Uc. At J/U = 1/4, Uc is reduced
to 3.82 eV. Interestingly, we find that the nature of the
insulating state, and hence the MIT, is significantly affected
by the competition between the Hund’s coupling J and the
crystal-field splitting � between the xy and x2 − y2 orbitals.
For J/U � 0.009 the insulating state is a high-spin state with
S = 2, as illustrated in Fig. 6. This state is analogous to
the high-spin Mott state discussed in the two-orbital model.
One may directly check from Figs. 9(d) and 10(c) that the
interorbital correlations are very small in the metallic state

FIG. 7. (Color online) SSMF results for the four-orbital model at
J = 0, showing evolution of (a) Z, (b) average electron filling per
site per spin, (c) average of total spin, and (d) interorbital correlation
between xz and yz orbitals.

FIG. 8. (Color online) SSMF results for the four-orbital model at
J/U = 0.007.

and vanish in the insulating state, with a behavior similar to
the two-orbital case at finite J .

The transitions at small and zero J/U ratios are of special
interest. As shown in Fig. 7(c), the insulating state at J = 0
has an intermediate spin between S = 0 and S = 1. We call
this an IS1 state, which is shown in the phase diagram, Fig. 11.
This transition to the IS1 state can be understood as follows: at
J = 0, the xy orbital is empty and the x2 − y2 orbital is fully
occupied in the insulating state due to the crystal-field splitting.
Hence at U = Uc these two orbitals undergo a transition to
a band insulator. On the other hand, the degenerate xz and
yz orbitals are at half filling, and a Mott transition takes
place at the same Uc value. Since at J = 0 all the six n = 2
configurations in xz and yz orbitals are degenerate, the Mott
insulator is a mixture of S = 0 and 1 states. This gives the
IS1 state an intermediate spin value. The transitions to the
band insulator and Mott insulator are reflected in the behavior
of the interorbital correlation functions C

1,2
O and C

3,4
O , where

C
α,β

O = 〈(nα − 1)(nβ − 1)〉 for α,and β = 1,2,3,4. Here 1,
2, 3, 4 denote xz, yz, x2 − y2, and xy, respectively. At
J = 0, C

3,4
O jumps to −1 at Uc, indicating a transition to a

FIG. 9. (Color online) SSMF results for the four-orbital model at
J/U = 1/4.
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FIG. 10. (Color online) The evolution of interorbital correlation
between the xy and x2 − y2 orbitals, C

3,4
O , in the four-orbital model

at J = 0, J/U = 0.007, and J/U = 1/4, respectively.

band insulator. But C
1,2
O > −1 even in the insulating phase,

signaling that the insulating state is a mixture of S = 1 and
0 Mott states, just as in the two-orbital model at U = U ′. In

FIG. 11. (Color online) Phase diagram in the J -U plane of the
four-orbital model. The thick solid (black) line shows the phase
boundary between the metallic and insulating states. The blue dashed
line at J = 0 refers to the intermediate-spin insulating state IS1, and
the thin solid (red) line refers to the low-spin to high-spin transition
between the IS2 state and the high-spin Mott state. The dotted line
at U ≈ 10 eV separates the metallic phase into two regimes. To
the left of this line, the Fermi surface topology is identical to the
noninteracting case, while, in the regime between this dotted line and
the thick solid line, the topology of the Fermi surface changes (see
text). The inset shows a closer view of the lower-right corner of the
phase diagram.

general, the Mott transition in the xz and yz orbitals may take
place at a U value different than Uc. But in this four-orbital
model, Uc for the transition to the band insulator in the xy and
x2 − y2 orbitals is larger than the critical value for the Mott
transition in two degenerate orbitals. Hence when the other two
orbitals become band insulators at Uc and thus are decoupled
from the xz and yz orbitals, the xz and yz orbitals enter the
Mott insulating state immediately via a first-order transition.
We call this special transition at Uc an orbitally selective MIT.
This transition is different from the OSMT in that it takes
place at a single Uc, with different orbitals entering different
insulating states.

We find that the orbitally selective MIT extends to nonzero
J values up to J/U ≈ 0.009. For nonzero J in this range,
the state on the insulator side has an intermediate-spin value
S = 1. We denote this state as the IS2 state. Shown in Fig. 8
is the transition to the IS2 state in the case of J/U = 0.007,
for which the IS2 state is found to be stabilized for 12 �
U � 15.2 eV. Similar to the IS1 state at J = 0, the IS2 state
is stabilized because different orbitals undergo transitions to
different insulating states: an S = 1 Mott insulator for the xz

and yz orbitals and an S = 0 orbitally polarized insulator for
the xy and x2 − y2 orbitals. The orbitally polarized insulator
can be understood by studying the atomic limit of an effective
two-orbital model including xy and x2 − y2 orbitals.55 In
this effective model, the pair-hopping term couples the two
states |↑↓〉xy |0〉x2−y2 and |0〉xy |↑↓〉x2−y2 . When � > 2

√
2J ,

the ground state is a spin singlet cos θ |0〉xy |↑↓〉x2−y2 − sin θ

|↑↓〉xy |0〉x2−y2 , where tan θ =
√

(�/J )2 + 1 − �/J . One
may check that nxy = sin2 θ , and nx2−y2 = cos2 θ . In general,
each orbital is only partially occupied, and nxy = nx2−y2 ,
which is clearly shown in Fig. 8(b) within 12 < U < 15.2 eV.
Hence this state is different from either a band insulator or
a Mott insulator and is denoted as an orbitally polarized
insulating state. From Fig. 10, we see that the interorbital
correlation in the orbitally polarized state behaves the same as
in the band insulator. To understand this, note that there are two
special limits in the orbitally polarized insulator. First, when
J = 0 and � > 0, sin θ = 0 and this state describes the band
insulator with the fully occupied x2 − y2 orbital and empty xy

orbital. The other limit appears when � = 0 but J > 0. This
leads to sin θ = cos θ = 1/

√
2, and the state is identical to the

low-spin orbital-Mott state discussed in Sec. III B. Thus the
band insulator and the low-spin orbital-Mott insulator are adi-
abatically connected by the orbitally polarized insulating state.

Further increasing J in the effective two-orbital model for
xy and x2 − y2 orbitals eventually leads to a low-spin-to-high-
spin transition.55 The ground-state manifold changes from the
S = 0 orbitally polarized state to the S = 1 Mott state. In the
four-orbital model, this corresponds to a first-order transition
in the insulating states from the IS2 state to the high-spin Mott
insulator, which takes place at � = 2

√
6J . Since in this study

we assume J is proportional to U , the low-spin-to-high-spin
transition is accessible by increasing U . In Fig. 8 we identify
that it takes place at U ≈ 15.2 eV for J/U = 0.007: the total
spin jumps from S = 1 to 2, and the filling factors of xy and
x2 − y2 orbitals rapidly converge to half filling.

In Fig. 11 we show the J -U phase diagram for the
four-orbital model. For J/U � 0.009 the MIT takes place
between a paramagnetic metal and S = 2 high-spin Mott
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insulator. In this regime, the phase diagram is similar to the one
in the two-orbital model shown in Fig. 3. The main difference
from the phase diagram in Fig. 3 lies at U � � and J � �. In
this regime we find two intermediate-spin states: the IS1 state
at J = 0 and the IS2 state at finite J . The boundary between
the IS2 and the S = 2 Mott insulator, J/U = �/2

√
6U , is

determined by solving the Hamiltonian of the four-orbital
model in the atomic limit. Given that � = 0.52 eV in this
model, and assuming that Uc for the MIT at J/U � 1 stays
the same value as J = 0, we may estimate the tricritical point
where the transition between the IS2 and the high-spin Mott
state and the MIT meet. It is located at J/U ≈ 0.0085, which
is consistent with the numerical result J/U ≈ 0.009.

It is very important to check how the Fermi surface in
the metallic state evolves in the presence of interactions. In
the noninteracting case, the Fermi surface of the four-orbital
model consists of two hole pockets centered at the (0,0) point in
the one-iron Brillouin zone and two electron pockets centered
at the (π,0) and (0,π ) points, respectively. We have checked
that, for a large portion of the metallic regime in the phase
diagram, i.e., to the left of the dotted line at U ≈ 10 eV in
Fig. 11, the Fermi surface of the interacting system has the
same topology as that for the noninteracting system. In this
regime, even near the high-spin Mott insulator, there are only
very tiny changes in the size and shape of the hole and electron
pockets. This is similar to the result of the two-orbital model,
in which the Fermi surface is always identical to the one in
the noninteracting system. But in the four-orbital model, we
find that the topology of the Fermi surface may change when
the system is close enough to the intermediate-spin states (in
the regime between the dotted line and the thicker solid line
in Fig. 11). In this regime, as U is increased, two additional
small electron pockets centered at the (π,0) and (0,π ) points
and one additional hole pocket centered at the (π,π ) point
may appear. Such a change in the Fermi surface topology
primarily reflects the difference in the electron occupancies of
the different orbitals compared to the noninteracting case [cf.
Figs. 7(b), 8(b), and 9(b)], which is a precursor to the orbitally
selective MIT occurring in the small J/U regime.

MIT has also been discussed in spin-density wave (SDW)
calculations in a number of multiorbital models for iron
pnictides.56–58 An intermediate-spin insulating state was re-
cently found in a five-orbital model within the SDW MF
theory.58 Though a full study of the MIT in the magnetically
ordered state using SSMF theory is beyond the scope of this
paper, we find it quite interesting to compare the intermediate-
spin states found in our study with those in Ref. 58 in the
atomic limit. In both works, the intermediate-spins states are
found when U/t is large but J/U is small, indicating that
these states all originate from the interplay of the crystal-field
splitting and Hund’s coupling. But there are some differences.
First, in Ref. 58, a S = 0 state violating the Hund’s rule is
stabilized at J = 0. This state originates from the lifting of
orbital degeneracy between the xz and yz orbitals by magnetic
ordering. But in our case, the orbital degeneracy between the xz

and yz orbitals stabilizes the IS1 state with a nonzero spin value
at J = 0. A second difference lies in the method of treating
the electron-electron interaction term Hint: we consider the
full interaction in our SSMF calculation, while in Ref. 58
the spin-flip and the pair-hopping terms are neglected from the

MF approximation. This results in different insulating states:
the IS2 state in our paper consists of an orbitally polarized
insulator in the xy and x2 − y2 orbitals, but the bands with xy

and x2 − y2 orbital characters in the Sz = 1 state in Ref. 58
are simple band insulators.

An interesting question is whether an OSMT may take
place when more than two orbitals are included. Recently,
a mechanism of the OSMT based on the lifting of orbital
degeneracy is proposed.59 According to this mechanism, in a
system with more than two orbitals, if the orbital degeneracy is
partially lifted by a crystal-field splitting, an OSMT may take
place even when the bandwidths are equal. It is suggested
that an OSMT triggered by this mechanism may exist in
iron pnictides.60 From Fig. 9 we find that, for J > 0, the
bandwidth of the xy orbital gets stronger renormalization than
the others. This effect becomes more pronounced for larger
J . However, no OSMT is observed up to J/U = 1/2. This is
not too surprising. On the one hand, the above mechanism
is proposed by assuming zero interorbital hopping. The
four-orbital model discussed in this section contains nonzero
interorbital hoppings, which enhance the orbital correlations
and favor a one-stage Mott transition. On the other hand,
according to the mechanism, an OSMT is easier to be realized
if the orbital whose degeneracy is lifted is at half filling but
the degenerate orbitals are away from half filling, so that the
lifted orbital is localized while the degenerate ones are still
metallic. In the four-orbital model we consider, the degenerate
xz and yz orbitals are exactly at half filling, making the Mott
insulator more stable.

V. CONCLUSION

In conclusion, we have studied the metal-insulator transi-
tions in several multiorbital Hubbard models for the parent
iron pnictides using a slave-spin formulation.

In the two-orbital model, a transition to a Mott insulator
generally exists at half filling. The Hund’s coupling reduces
the critical coupling significantly. We find that the nature of
the Mott insulator depends on the ratio U ′/U . For U ′ < U , the
insulator is a high-spin Mott state with zero double occupancy
but a spin triplet. For U ′ > U , by contrast, the insulator
is an orbital-Mott state with spin singlet and finite double
occupancy. The low-spin orbital-Mott state is unstable to a
band insulator if the orbital degeneracy is lifted, and can be
viewed as a special case of an orbitally polarized insulator.

The phase diagram for the metal-to-insulator transition
in the more realistic four-orbital model contains additional
features. We find a transition to a high-spin S = 2 Mott
insulator when the Hund’s coupling is strong enough (J/U �
0.009). This high-spin Mott insulator is an analogy to the S = 1
Mott insulator in the two-orbital model. At weak including
zero Hund’s couplings (J/U � 0.009) we find a transition
to intermediate-spin insulating states. Such a transition is an
orbitally selective metal-insulator transition; namely, different
orbitals undergo transitions to different insulating states at
a single critical value Uc. At J = 0 the transition leads to
a band insulator for two (xy and x2 − y2) orbitals and a
Mott insulator for the other two (xz and yz) orbitals. For
nonzero J in this regime, the transition in the xz and yz

orbitals is to the Mott insulator, but an orbitally polarized
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insulator is stabilized in the xy and x2 − y2 orbitals on the
insulating side due to the pair-hopping term. As J is increased
further, the intermediate-spin orbitally polarized insulator un-
dergoes a low-spin-to-high-spin transition to a high-spin Mott
insulator.

The existence of a Mott transition in the multiorbital
models with an even number of electrons per Fe provides
the theoretical basis for the recent finding of a Mott insulator
in the iron oxychalcogenides with an expanded Fe lattice.21 In
addition, it strengthens the notion that the iron pnictides are
located in proximity to a Mott localization transition.

Finally, we note that, after this paper was first submitted for
publication and posted on the arXiv preprint listing, several

studies also discussed the relation between the band and orbital
pictures in related contexts,61,62 and a number of works used
the slave-spin or a related slave-roter method to investigate the
metal-insulator transitions in related multiorbital models and
systems.63–65

ACKNOWLEDGMENTS

We would like to thank L. Baksmaty and P. Goswami for
useful discussions. This work was supported by the National
Science Foundation Grant No. DMR-1006985, the Robert A.
Welch Foundation Grant No. C-1411, and the W. M. Keck
Foundation.

1Y. Kamihara, T. Watanabe, H. Hirano, and H. Hosono, J. Am. Chem.
Soc. 130, 3296 (2008).

2Z. A. Ren et al., Chin. Phys. Lett. 25, 2215 (2008).
3C. de la Cruz et al., Nature (London) 453, 899 (2008).
4Q. Si and E. Abrahams, Phys. Rev. Lett. 101, 076401
(2008).

5Q. Si, E. Abrahams, J. Dai, and J.-X. Zhu, New J. Phys. 11, 045001
(2009).

6K. Haule, J. H. Shim, and G. Kotliar, Phys. Rev. Lett. 100, 226402
(2008).

7M. S. Laad, L. Craco, S. Leoni, and H. Rosner, Phys. Rev. B 79,
024515 (2009).

8M. Daghofer, A. Moreo, J. A. Riera, E. Arrigoni, D. J. Scalapino,
and E. Dagotto, Phys. Rev. Lett. 101, 237004 (2008).

9C. Fang, H. Yao, W.-F. Tsai, J.-P. Hu, and S. A. Kivelson, Phys.
Rev. B 77, 224509 (2008).

10C. Xu, M. Muller, and S. Sachdev, Phys. Rev. B 78, 020501(R)
(2008).

11H. Ishida and A. Liebsch, Phys. Rev. B 81, 054513 (2010).
12H. Lee, Y.-Z. Zhang, H. O. Jeschke, and R. Valentı́, Phys. Rev. B

81, 220506(R) (2010).
13M. M. Qazilbash, J. J. Hamlin, R. E. Baumbach, L. Zhang, D. J.

Singh, M. B. Maple, and D. N. Basov, Nat. Phys. 5, 647 (2009).
14W. Z. Hu, J. Dong, G. Li, Z. Li, P. Zheng, G. F. Chen, J. L. Luo,

and N. L. Wang, Phys. Rev. Lett. 101, 257005 (2008).
15Q. Si, Nat. Phys. 5, 629 (2009).
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