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Investigation of particle-hole asymmetry in the cuprates via electronic Raman scattering
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In this paper we examine the effects of electron-hole asymmetry as a consequence of strong correlations on
the electronic Raman scattering in the normal state of copper oxide high-temperature superconductors. Using
determinant quantum Monte Carlo simulations of the single-band Hubbard model, we construct the electronic
Raman response from single-particle Green’s functions and explore the differences in the spectra for electron and
hole doping away from half filling. The theoretical results are compared to new and existing Raman scattering
experiments on hole-doped La2−xSrxCuO4 and electron-doped Nd2−xCexCuO4. These findings suggest that the
Hubbard model with fixed interaction strength qualitatively captures the doping and temperature dependence of
the Raman spectra for both electron and hole doped systems, indicating that the Hubbard parameter U does not
need to be doping dependent to capture the essence of this asymmetry.
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I. INTRODUCTION

The parent compounds of cuprate high-temperature su-
perconductors are antiferromagnetic Mott insulators at half
filling.1 By removing electrons from or adding electrons to the
CuO2 planes by chemical substitution the antiferromagnetism
is suppressed and superconductivity appears over a limited
doping range.2 At first glance one would expect that the doping
leads to effects more or less symmetric around half filling
similar to the recently discovered FeAs superconductors.3

However, in the cuprates the differences originating from
either electron or hole doping can be quite significant:4–10

the maximal superconducting transition temperature Tc hardly
exceeds 30 K for electron-doped cuprates while reaching
150 K for hole-doped materials; in the normal state, while
the approximately linear variation with T of the resistivity
over wide temperature ranges is a hallmark of the hole-doped
systems, there is much more doping dependence on the
electron-doped side where the resistivity crosses over to a
nearly T 2 behavior already slightly above optimal doping close
to x = 0.15; in the Raman spectra of hole-doped systems, the
B2g response is essentially universal over the entire doping
range of the superconducting dome whereas, concomitant
with the resistivity, the Raman spectra of electron-doped
systems change rapidly and, at low temperatures, exhibit
Fermi-liquid-like shapes for x � 0.16.

Nevertheless, this asymmetry is not entirely unexpected
for strongly correlated copper oxides.1,11,12 In the insulator
at half filling, the wave function is composed largely of a
superposition of a Cu d9 hole on each 3dx2−y2 orbital, with a
minority of d10L character, wherein the Cu orbitals are filled
and a hole occupies the oxygen 2p ligand L. When hole doped
away from half filling, a d9L state forms wherein the additional
hole gains delocalization energy as well as magnetic exchange
energy by occupying the oxygen ligand to form a so-called

Zhang-Rice singlet.13,14 In contrast, doped electrons tend to
reside solely on Cu d10 sites. This asymmetry can be revealed
by comparing photoemission with inverse photoemission, or
via angle-resolved photoemission spectroscopy (ARPES) in
hole- and electron-doped cuprates.10,15 More recently the issue
of particle-hole asymmetry has been well explored in scanning
tunneling microscopy (STM) studies.16–19

In this paper we explore how particle-hole asymmetry can
be viewed from Raman-scattering measurements. In particular,
we are motivated to explore the question of whether the
low-energy particle-hole excitations emerge from doping a
Mott insulator while preserving the strength of correlations
in the undoped parent in the form of Hubbard U , or if these
excitations are better described in terms of a strongly doping-
dependent Hubbard U leading naturally to a collapse of the
Mott gap not driven by simply adding particles, but by a strong
decrease in U with doping. Recent comparisons of spectral
weight transfer observed with ARPES, x-ray absorption, and
optical spectra have been interpreted in terms of a doping
dependent U .20 This differs from the conclusion reached from
many other studies of the Hubbard model.21–24

We construct the electronic Raman response using single-
particle propagators determined from determinant quantum
Monte Carlo simulations of the single-band Hubbard model.
The theoretical results that highlight differences in the spec-
tra for hole and electron doping are compared to results
of Raman scattering experiments on La2−xSrxCuO4 and
Nd2−xCexCuO4. This qualitative comparison suggests that
a constant Hubbard interaction U captures the essence of
the doping and temperature dependence of the particle-hole
asymmetry.

In Sec. II we present a brief description of the theoretical
calculation and the main results. Section III provides details on
the sample preparation, the experimental methods, and results
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for comparison to theoretical calculations. A discussion of
qualitative similarities and differences between experiment
and theory appears in Sec. IV including comparisons between
the extracted scattering rates (Raman resistivity) and the
evolution of the Raman spectral weight with doping and
temperature. Finally, we present conclusions in Sec. V.

II. THEORY

A. Model

The single-band Hubbard Hamiltonian represents an effec-
tive low-energy model for the cuprates.13,25 Its applicability
derives from down-folding models explicitly incorporating
planar copper and oxygen degrees of freedom. Written in a
second-quantized real-space representation, the Hamiltonian
takes the form

H = −
∑
ij,σ

tij c
†
i,σ cj,σ − μ

∑
i,σ

ni,σ

+U
∑

i

(
ni,↑ − 1

2

) (
ni,↓ − 1

2

)
. (1)

The operators c
†
i,σ and ci,σ create or annihilate an electron with

spin σ at site i, respectively, and ni,σ = c
†
i,σ ci,σ in each spin

channel. The nonzero tight-binding coefficients {tij }, restricted
to nearest-neighbor t and next-nearest-neighbor t ′ hopping,
together with the chemical potential μ, which controls the
electron filling, define the noninteracting band structure and
the Hubbard repulsion U controls the strength of electron-
electron correlations.

While this Hamiltonian appears rather simple, it resists
an analytical solution in two dimensions, applicable to the
cuprates, and is challenging to solve numerically, especially for
the intermediate range of interaction strengths U believed to
be most appropriate to the cuprate problem. We choose to work
with U = 8t , equal to the noninteracting bandwidth W , which
represents a canonical value for the interaction strength in the
cuprates related to the charge-transfer energy between copper
and oxygen orbitals in these systems; it also sets the largest
energy scale for the problem that can be observed directly in
the high-energy Raman response. Throughout the theoretical
analysis, the nearest-neighbor hopping t serves as the energy
unit of the problem and we substitute a reasonable estimate
for this down-folded hopping integral only for the purpose of
comparison to experimental results.

We numerically investigate the Hamiltonian of Eq. (1)
using determinant quantum Monte Carlo (DQMC),26,27 an
auxiliary-field technique. In principle, this method is nu-
merically exact and allows one to determine both single-
and multiparticle response functions at finite temperature.
However, computational costs limit investigations to finite-
size, small clusters (in either real or momentum space) and
the fermion sign problem28,29 limits the lowest accessible
temperatures where one can still obtain reasonably accurate
results. The finite-size clusters used in this study are larger
than those that can be accessed using exact diagonalization
and provide a sufficient sampling for reconstructing details
of the single-particle self-energy assumed to vary slowly as a
function of momentum for the chosen parameters.

The DQMC method supplies the finite temperature, imag-
inary time propagator Gij (τ ) on a finite-size cluster with
periodic boundary conditions. Individual Markov chains of
the Monte Carlo process provide input for the maximum
entropy method (MEM),30,31 used to Wick rotate the imaginary
time data to real frequencies using Bayesian inference from
separate estimates of the propagator assumed to have a
Gaussian statistical distribution over different chains. The
data are characterized to ensure that they reasonably satisfy
this assumption; and they are preprocessed and/or more data
are gathered to satisfy these conditions. From the real-space
statistical ensemble {Gij (τ )}, a discrete Fourier transform
yields {GK (τ )} from which MEM returns the single-particle
spectral function A(K,ω) on the corresponding discrete mo-
mentum grid. Once obtained in this fashion, the single-particle
self-energy �(K,ω) can be extracted using Dyson’s equation
and the bare band structure corresponding to the tight-binding
model parameters. Assuming a weak momentum dependence
to the self-energy, an interpolation routine provides the value
of �(k,ω) at an arbitrary point k in the Brillouin zone (BZ)
and Dyson’s equation can be employed to compute A(k,ω) at
that point.

Two-particle response functions such as the charge and
spin susceptibility [the dynamic structure factors S(q,�) or
optical conductivity σ (�)] can be evaluated in imaginary time
and analytically continued to real frequency using a similar
prescription to that followed for the single-particle Green’s
function.30 These quantities satisfy well-defined sum rules that
make redefining the spectral functions in terms of probability
distributions and subsequently normalizing the imaginary time
data relatively straightforward. While in principle bounded,
the Raman response does not satisfy any similar sum rule;
and considering the significant fermion sign problem that
already complicates the analytic continuation by adding an
additional source of noise and covariance in the data, rather
than evaluate the Raman response for different symmetries
directly in imaginary time (or Matsubara frequency), we
evaluate the single-particle Green’s function in imaginary
time, Wick rotate using MEM, and then estimate the Raman
response as8

χ
′′
μ(�) = 2

V π

∑
k

γ 2
μ(k)

∫ ∞

−∞
G

′′
(k,ω)G

′′
(k,ω + �)

× [f (ω) − f (ω + �)] dω. (2)

In practice the integral over real frequencies is evaluated
numerically using Riemannian integration and the upper and
lower limits of the integral are cut off at frequencies �5t

beyond the “step edges” set by the difference in Fermi
functions appearing in the integrand, providing sufficient
accuracy over the studied temperature interval. The vertices
γμ(k) are chosen to correspond to B1g (γB1g

(k) = 1
2 [cos(kx) −

cos(ky)]) and B2g [γB2g
(k) = sin(kx) sin(ky)] symmetries that

highlight the antinodal and nodal portions of the Fermi surface,
respectively. While this method neglects vertex corrections in
the Raman response, it captures features that correlate with
different intra- and interband charge excitations within the
model that qualitatively compare to results from experiments
on the cuprates. The relatively high temperatures, lack of
vertex corrections, and the simplified Hamiltonian mean that
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other low-energy features that can be seen in the experiment
like multimagnon excitations and phonon degrees of freedom
are missing from this analysis. While the appearance of
multimagnon excitations in the Raman response is usually
attributed to the effects of higher-order resonant diagrams
off resonance,32,33 even two-particle vertex renormalization
should contribute to the appearance of these features in the
response.34

We use 64-site square clusters with periodic boundary
conditions corresponding to a momentum space grid {K} with
spacing π/4 in each direction. The imaginary time interval
has been partitioned into L = 48 “slices” of size 
τ = β/L

running from 0 to β. As noted t serves as the energy unit
of the problem. For this study, β varies between 1/t and 3/t

giving a value of 
τ that varies between 1/48t and 1/16t ,
controlling the Trotter error while maintaining a reasonable
computational time to completion, with the majority of results
shown for β = 3/t .

B. Results

Before exploring the Raman response for different regions
of parameter space for the Hamiltonian of Eq. (1), let us
first look at the single-particle spectral function for the half
filled model to understand the nature of interband charge
excitations that can appear in the response function. Figure 1
displays the calculated band structure of the half filled
single-band Hubbard model with parameters t ′ = −0.30t ,
μ = 0.00t , β = 3.0/t along high-symmetry directions in the
BZ. Immediately noticeable are the incoherent lower and upper
Hubbard bands (LHB and UHB) centered near the � point
and (π,π ), respectively. Above the Fermi level, the UHB has
a dispersing branch along the (π,0)-(π,π ) and (0,0)-(π,π )
directions. Along the (0,0)-(π,0) direction, this feature is
nearly dispersionless. In particular, there is significant spectral
weight in the region near (π,0) at binding energies near 2t .
Below the Fermi level, while the bulk of the LHB spectral
weight is concentrated near the � point, there is a dispersing
branch along the (0,0)-(π,0) and (0,0)-(π,π ) directions that

FIG. 1. (Color online) Theoretical band dispersion along high-
symmetry directions for the single-band Hubbard model at half filling
with parameters t ′ = −0.3t , μ = 0.0t , U = 8.0t , and β = 3.0/t

obtained using determinant quantum Monte Carlo as described in
the main text. The red (solid) arrows highlight possible q = (0,0)
transitions in the B1g Raman-scattering channel while the purple
(dashed) arrows highlight possible transitions in the B2g channel
along these high-symmetry cuts. Adapted from Ref. 35.

appears to be most pronounced at binding energies near −2t .
These features are qualitatively similar to those observed
in experiment36 where a dispersive feature near (π/2,π/2)
crosses over to the higher energy valence band, assumed to
have significant oxygen character. These dispersing features
in the LHB and UHB are precursors to a quasiparticle-like
band crossing the Fermi level that appears upon either hole or
electron doping.

The vertical double-headed arrows [red (solid) in the B1g

channel and purple (dashed) in the B2g channel] that appear in
Fig. 1 mark the energy scale of possible interband charge ex-
citations that can be observed in the various Raman-scattering
channels. Note that the Raman B1g and B2g vertices highlight
the antinodal and nodal regions of the BZ, respectively, and, by
symmetry, are identically zero along certain high-symmetry
directions as revealed in the form of each vertex entering
Eq. (2). The lowest energy scale for each symmetry is
associated with the insulating Mott gap with an onset energy
∼2t and a weak tail at lower energies due to the relatively
high temperature. The main peak associated with the interband
transition across the Mott gap should occur in both channels
at an energy ∼4t with a further prominent transition between
the LHB and dispersing tail of the UHB (or precursor to the
quasiparticle-like band) at energies between ∼6t and ∼10t ,
although this could be fairly broad.

Upon either hole or electron doping, the gap at the
Fermi level closes and the chemical potential moves into
the dispersive portions of either the LHB or UHB forming
a quasiparticle-like band (QPB) at low binding energies near
the Fermi level. This would be reflected in the Raman response
by an onset directly at zero energy and significant low-energy
(quasiparticle) spectral weight.

Figure 2 shows the calculated band structure for the
hole-doped single-band Hubbard model near optimal doping
(∼15%) with parameters t ′ = −0.3t , μ = −2.5t , and β =
3.0/t , again along high-symmetry directions in the BZ. The
QPB here is obviously well separated from the LHB given the
significant coexistence of both features along the (0,0)-(π,π )
and, even more so, the (0,0)-(π,0) directions. The QPB

FIG. 2. (Color online) Theoretical band dispersion along high-
symmetry directions for the single-band Hubbard model near optimal
(∼15%) hole doping (t ′ = −0.3t , μ = −2.5t , U = 8.0t , and β =
3.0/t) with red (solid) and purple (dashed) arrows highlighting the
prominent transitions in the Raman response in B1g and B2g channels,
respectively.
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crosses the Fermi level near (π/2,π/2) and at ∼(π/4,π/4)
the spectral intensity drops, demarcating a crossover between
the QPB and the LHB. On the whole, the evolution of the QPB
qualitatively agrees with the results of ARPES experiments
on hole-doped compounds,37–41 including the evolution of
spectral intensity and changes in momentum space position
and robustness of this “waterfall” -like appearance as a
function of momentum as found in previous work on the
single-particle band structure.22,35,42–46

Figure 3 shows the spectral function for an electron-doped
system with model parameters t ′ = −0.3t , μ = 2.0t , and
β = 3.0/t near optimal electron doping (∼15%). The LHB,
centered at ∼−6t , has been reduced in intensity from spectral
weight transfer into the QPB, which now disperses down
across the Fermi level from the precursor in the UHB. The QPB
reaches approximately twice as far below the Fermi level than
the QPB under hole doping. This dichotomy or asymmetry in
the band dispersion between hole and electron-doped systems
can be traced back to differences in the shift of the chemical
potential either into the LHB or the UHB with doping and
the character of the state that then disperses across the Fermi
level.35,46

In the hole-doped system the lowest energy scale detected
in the Raman response should reflect intraband transitions
within the QPB close to the Fermi level at an energy near
1t . This energy scale also partially reflects the fairly high
temperature of this study and would likely decrease with
reduction in the model temperature. An interband transition
between the LHB and QPB occurs between ∼2t and 3t with
yet a higher energy transition possible between the LHB and
UHB at energies between ∼6t and 9t . The features in the
Raman response should all be fairly broad, not only because
of the high simulation temperature, but also because of the
intrinsically broad incoherent LHB and UHB, which have
a diminished spectral weight due to transfers into the QPB.
The transitions that should be prominent in the response are
indicated by red (solid) and purple (dashed) arrows in Fig. 2
for the B1g and B2g scattering channels, respectively.

FIG. 3. (Color online) Theoretical band dispersion along high-
symmetry directions for the single-band Hubbard model near optimal
(∼15%) electron doping (t ′ = −0.3t , μ = 2.0t , U = 8.0t , and β =
3.0/t) with red (solid) and purple (dashed) arrows highlighting
the prominent transitions in the B1g and B2g Raman response,
respectively.

In the electron-doped system the general reduction in the
LHB spectral weight and the lack of significant dispersive
portion of the UHB at higher energies above the Fermi level
reduce the number of prominent transitions. The double-
headed arrows in Fig. 3 indicate two prominent transitions:
one from intraband transitions at low energies under 1t and
an additional one from interband transitions between the weak
incoherent LHB and dispersive QPB near 7t . A weak tail
exists in the UHB at higher energies; therefore interband
transitions from the QPB or LHB to the UHB also would be
weak.

Figure 4 shows the response calculated using Eq. (2) in
both the B1g and B2g scattering channels for the half filled
single-band Hubbard model. Both channels show an onset
at ∼2t corresponding to the Mott gap present in the half
filled model with a weak tail at lower energy, due to finite
temperature effects, that should shrink at lower temperatures.
Between 4t and 5t there is a prominent peak in the B2g

response and a shoulder in the B1g response corresponding
to transitions between the dispersing portions of the LHB and
UHB. This gives way to the strong peak in B1g symmetry
and broad shoulder in B2g symmetry at approximately 8t ,
associated with additional interband scattering pathways as
indicated previously.

Figure 5 shows the B1g and B2g Raman response for various
values of electron [panels (a) and (c)] and hole [panels (b) and
(d)] doping. Both B1g and B2g symmetries show progressive
transfer of spectral weight to lower energies with doping away
from half filling as the intraband transition dominates and the
single-particle spectral weight is transferred to the QPB. At
low hole doping (n = 0.95) the intraband transition appears
as a small shoulder or knee at low energy and the B1g and
B2g responses are dominated by the high-energy transitions
from the LHB to the UHB. Near optimal doping (n = 0.85)
the Raman response behaves as indicated previously with the
low-energy response in the B2g channel dominated by the
LHB to QPB transition that also gives a very broad peak
in B1g symmetry. With additional overdoping (n = 0.75) the
response is dominated by the intraband transition with the
LHB to QPB transition giving an asymmetric shoulder in
B1g and large broad peak in B2g symmetry. Upon electron
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FIG. 4. (Color online) Theoretical Raman response in B1g (red,
solid curve) and B2g (purple, dashed curve) symmetries for the half
filled single-band Hubbard model (parameters as in Fig. 1).
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FIG. 5. (Color online) Theoretical Raman response in the [(a) and
(b)] B1g and [(c) and (d)] B2g channels for various doping levels on
the [(a) and (c)] electron and [(b) and (d)] hole sides of the phase
diagram for the single-band Hubbard model.

doping, the Raman response in each channel is dominated
by the intraband transition at low energy and the LHB to QPB
transition at higher energies. While the strength of each feature
varies with doping, the energy position remains relatively fixed
with increasing electron count.

Figure 6 shows the Raman response in both channels at
low energy associated primarily with the intraband transition.
The energy scale has been expressed in cm−1 assuming a
value of t = 400 meV. For hole doping, the low-energy peak
grows and appears to shift in energy from ∼2000 cm−1 at low
doping (n = 0.95) to ∼4000–5000 cm−1 on the overdoped
side of the hole-doping phase diagram (n = 0.75). However,
this apparent shift of energy scale is presumably due to the
overlap of several peaks that possibly could be distinguished
upon lowering the temperature. With electron doping, the peak
intensity grows and the energy shifts to slightly smaller values
at the largest electron count (n = 1.20) near ∼2000 cm−1. In
both cases, upon reducing the temperature from that used in
the simulation one expects that the peak will narrow and shift
to even lower energies.

III. EXPERIMENT

A. Samples and experimental details

Experiments were performed on single crystals of
La2−xSrxCuO4 (LSCO) and Nd2−xCexCuO4 (NCCO) on
the hole- and electron-doped sides of the phase diagram,
respectively (see Table I). The doping level x is indicated
in each figure. Both compounds belong to the 214 family and
crystallize in the T and T ′ structure with and without oxygen
atoms in the apex position, respectively. The crystals were pre-
pared via the traveling solvent floating zone (TSFZ) technique.
The Nd2−xCexCuO4 samples had to be postannealed in pure
Ar to remove the excess oxygen at the apex position and make
the samples superconducting.47,48 The annealing protocols for
La2−xSrxCuO4 are described elsewhere.48

The Raman experiments were performed with a standard
light-scattering setup. For excitation an Ar+ laser was used
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FIG. 6. (Color online) Theoretical low-energy Raman response
in [(a) and (b)] B1g and [(c) and (d)] B2g symmetry from Fig. 5.
These results have been converted to cm−1 assuming a reasonable
value of t = 400 meV that provides a qualitatively good description
of the single-particle spectral function in these systems.

and operated at 458 nm for La2−xSrxCuO4 and 514 nm for
Nd2−xCexCuO4. The angle of incidence of the exciting light
was 66◦. To achieve proper polarization states inside the
sample, the polarization of the light outside was controlled
with a Soleil-Babinet compensator. The samples were mounted
on the cold finger of a He-flow cryostat with temperatures
in the range 4–330 K and a vacuum of better than 10−6 mbar.
The scattered light was collected with an objective lens.
Photons with selected polarization states were analyzed using
a Jarrell-Ash 25-100 scanning spectrometer equipped with a
charge-coupled device camera. The resolution at 458 nm was
9.5 cm−1 unless otherwise stated. All spectra are divided by
the thermal Bose factor {1 + n(�,T )} = (1 − e−�/T )−1 and
corrected for the sensitivity of the entire setup including the
energy dependence of the spectral resolution.

By properly selecting the polarizations of the incident and
scattered photons, excitations of specific symmetries can be
projected out. For particle-hole excitations in the cuprates,
the B1g spectra project mainly the principal axes while the
B2g spectra contain information about the diagonals of the
tetragonal Brillouin zone.50 The respective light polarizations
and Raman vertices are indicated as insets in Fig. 7.

B. Results

Figure 7 shows the experimental B1g and B2g Raman
spectra of Nd2−xCexCuO4 and La2−xSrxCuO4 for energies up
to 5600 cm−1 at 200 K. For undoped NCCO (x = 0.00), the
most prominent peak in B1g symmetry [Fig. 7(a)] is observed
at 2900 cm−1 and originates from nearest-neighbor spin-flip
excitations,32,49,51–53 which are not part of the theoretical
description in Sec. II. At 1200 cm−1 there is a weak band that
originates from two-phonon scattering.54 Since the resolution
is 28 cm−1 close to the laser line at 514 nm most of the phonon
excitations are hardly visible. With doping the two-magnon
excitation is suppressed rapidly but traces thereof may still be
present at x = 0.12 (see also Ref. 55). Below 2000 cm−1 there
is little change of the continuum with doping. At high energies
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TABLE I. Complete list of samples studied, partially adapted from Ref. 49. The results on La2−xSrxCuO4 (LSCO) have been published in
Ref. 49. Those on Nd2−xCexCuO4 (NCCO) were taken on freshly prepared single crystals (Ref. 48). In the case results similar to ours were
published before, we give the references in the text and in the figure captions. Samples labeled with a have been prepared by M. Lambacher
and A. Erb (WMI Garching) (Ref. 48), b by Seiki Komiya and Yoichi Ando (CRIEPI, Tokyo and Osaka University), and c by N. Kikugawa
and T. Fujita (Hiroshima and Tokyo). The transition temperatures were measured either resistively or via magnetometry or via the nonlinear
ac response. The Tc of the 5% sample is the onset point of the transition. TN was not measured for La2−xSrxCuO4 at x = 0.02 and 0.05. In the
latter case TN = 0.

Sample Sample ID Doping Tc/TN (K) 
Tc (K) Comment

La2CuO4 LCO-00 0.00 0/325 Ar annealed a

La1.98Sr0.02CuO4 LSCO-02 0.02 0/− as-grown c

La1.95Sr0.05CuO4 LSCO-05 0.05 5/0 3 O2 annealed a

La1.92Sr0.08CuO4 LSCO-08 0.08 18 4 O2 annealed c

La1.85Sr0.15CuO4 LSCO-15 0.15 38 3 O2 annealed a

La1.83Sr0.17CuO4 LSCO-17 0.17 39 1 O2 annealed b

La1.80Sr0.20CuO4 LSCO-20 0.20 24 3 as-grown a

0 La1.75Sr0.26CuO4 LSCO-26 0.26 12 3 O2 annealed c

Nd2CuO4 NCCO-00 0.00 0 Ar annealed a

Nd1.88Ce0.12CuO4 NCCO-12 0.12 0 Ar annealed a

Nd1.87Ce0.13CuO4 NCCO-13 0.13 9.9 7.5 Ar annealed a

Nd1.85Ce0.15CuO4 NCCO-15 0.15 23.6 1.3 Ar annealed a

Nd1.84Ce0.16CuO4 NCCO-16 0.16 16.3 2.5 Ar annealed a

Nd1.83Ce0.17CuO4 NCCO-17 0.17 5.0 3.5 Ar annealed a

the intensities of the spectra do not depend in a systematic way
on doping in contrast to what is observed for YBa2Cu3O6+x

(Y-123),56 and also in LSCO as shown below. We assume a
strong contribution from luminescence, which can be seen by
comparing annealed and as grown samples (for a discussion
see, e.g., Ref. 49), due to charge traps in the rather imperfect
Nd-Ce-O layers, which mask the intrinsic effects of the carrier
dynamics in the CuO2 planes.

In B2g symmetry [Fig. 7(b)] the response below approx-
imately 2000 cm−1 is weak for the undoped compound
presumably due to the small carrier concentration. The peak
at 2900 cm−1 does not originate from polarization leakage
otherwise the two-phonon excitation at 1200 cm−1 present in
B1g symmetry would be strong enough to be visible as well.
The energy of the B2g feature with respect to that in B1g

symmetry is smaller than in LSCO. Since the next-nearest-
neighbor coupling J ′ determines by and large the peak energy
in B2g symmetry,52 we conclude it is weaker in NCCO than
in hole-doped systems. The two-magnon scattering in B2g

symmetry disappears faster with doping than in B1g symmetry.
With increasing doping level the spectra gain intensity in the
low as well as in the high-energy range without significantly
changing the spectral shape.

In contrast, a strong doping dependence of the spectral
shape is found for LSCO as shown in Figs. 7(c) and 7(d).
The pronounced B1g peak at 3300 cm−1 observed at x = 0
corresponds to two-magnon scattering and is progressively
suppressed upon doping. The peak at 4200 cm−1, which
appears in B1g and B2g symmetry with the same intensity
indicating its A2g nature, comes from higher-order spin exci-
tations including cyclic exchange of spins.57 The low-energy
response is weak but picks up intensity with doping. Here, it
appears as if spectral weight would be transferred from high
to low energies. In the high-energy part the intensity increases
between x = 0 and 0.02 then decreases monotonically with

doping. This results in a fairly flat spectrum at high energy
for the highest doping levels. Above x = 0.2 there appears a
peak at low energy, which is related to long-lived particle-hole
excitations. This transfer of intensity is qualitatively predicted
already in the Falicov-Kimball and Hubbard models.58–61 A
discussion in terms of a Fermi-liquid approach is presented
elsewhere.62

In B2g symmetry, there are pronounced phonon bands
below 1000 cm−1 in the undoped compound [Fig. 7(d)],
which disappear quickly with doping. In contrast to the B1g

channel there is no redistribution of spectral weight from high
to low energies upon doping. The overall variation of the
intensity is also nonmonotonic. For the highest doping levels
the continuum hardly depends on energy.

It is particularly instructive to compare the temperature
dependence at low energies of electron- and hole-doped
materials. The B2g Raman response of overdoped NCCO
and LSCO are plotted in Figs. 8(a) and 8(b). In either case
the initial slope increases upon cooling corresponding to
metallic behavior, however, with a significant difference. In
NCCO (x = 0.17) an isolated peak appears at low energy and
temperature accompanied by a suppression of spectral weight
in the range 200–800 cm−1 as already observed earlier by
Koitzsch et al.63 In overdoped LSCO (x = 0.26) there is only
an overall reduction of intensity in the entire range without
any pileup at low energies (see also Ref. 49). At temperatures
above 200 K the spectral shapes become similar on both sides
of half filling.

IV. DISCUSSION

A. Overall features

It is clear from the theoretical results presented in Sec. II
and the experimental results presented in Sec. III that theory
and experiment cannot be compared quantitatively. However,
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FIG. 7. (Color online) High-energy Raman response of (a),(b)
NCCO and (c),(d) LSCO for electron and hole doping, respectively.
The spectra are shown in [(a),(c)] B1g and [(b),(d)] B2g symmetry at
various doping levels at temperatures of roughly 200 K. The peaks at
low doping in (a) and (c) are due to two magnon scattering. In general
with increasing doping level the spectra on the hole-doped side lose
intensity while the intensity of the spectra on the electron-doped side
increases. Part of the results are similar to those of other authors
(Refs. 51–53 and 55) or were already published in Ref. 49.

a number of qualitative comparisons can be made pertaining
to both high- and low-energy behavior. The transfer of spectral
weight from high to low energies is clearly predicted for the
hole-doped systems [n < 1, Figs. 5(b) and 5(d) compared with
Figs. 7(c) and 7(d)]. We note that this does not pertain to

FIG. 8. (Color online) Temperature dependence of the low-
energy Raman response of overdoped (a) NCCO and (b) LSCO in
B2g symmetry. Only for the electron-doped compound does there
develop a quasiparticle peak at low temperatures. Results for NCCO
with x = 0.15 displaying similar properties were published in Ref. 63.
The data for LSCO are adapted from Ref. 49.

the two-magnon peak, which is not included in the theory,
but rather to the systematic overall increase with hole doping
over energies up to at least 1 eV for p > 0.05 (n < 0.95).
On the electron-doped side for NCCO, the redistribution is
considerably weaker in the theoretical prediction [Figs. 5(a)
and 5(c)]. In the experiment [Figs. 7(a) and 7(b)] there is little
change at low energy similar to the theoretical prediction, but
in opposition to theory an increase at higher energies, which
is most likely originating from luminescence as outlined in
Sec. III B. A significant enhancement of spectral weight is
observed at low energies in B2g symmetry as predicted in the
theoretical results.

The derivation of the exact energy dependence of the
electron-hole continuum is experimentally challenging since
various processes may contribute. Among the intrinsic con-
tributions are luminescence, resonance enhancement, and
spin excitations. There are various studies at relatively low
Raman shifts on the dependence of excitations on laser photon
energy64–66 whereas there is less material on the high-energy
continua. Studies of Kang et al.67 and Blumberg et al.68

show that the influence of resonances on the low-energy
electronic part are mild for blue-green excitation. These are
the wavelengths used in the experimental portion of this
study. In addition, resonances do not affect the form factors
directly since they are dictated by symmetry, but rather affect
the relative intensities of the channels and their possible
dependence on the excitation energy. However, a calculation
of the full vertices is certainly beyond the scope of the present
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paper and we confine our argumentation to the symmetry part
of the vertices.

At low energy, as one can see in Fig. 6, the Hubbard model
predicts relatively flat spectra on the hole-doped side [panels
(b) and (d)] and well-defined peaks for electron doping [panels
(a) and (c)]. Since the temperature in the simulations is high,
the peaks are wide; however, for the electron-doped systems
these peaks do originate from quasiparticle-like, intraband
particle-hole excitations in an almost normal metallic band
(see Fig. 3). Somewhat differently in the experiment, the peak
at low energy appears only at relatively low temperatures.
At the moment we do not know what kind of interactions
lead to a reduction of the carrier lifetime already around
room temperature. Empirically, the possibility exists that
the relatively large coefficient A in front of the T 2 term
of the resistivity (found at least for LSCO69) leads to a
rapid suppression of the coherence peak with increasing
temperature.

Why do we believe that this low-energy peak and the spec-
tral weight suppression originate from particle-hole excitations
and not from fluctuations and a pseudogap such as in Y-12356

and LSCO?70,71 Simulations62 show that the low-energy peak
and the dip can in fact result from a reduced quasiparticle
damping in a Fermi-liquid phenomenology. In addition, the
initial slope of the spectra [Eq. (3)] follows the resistivity,
at least qualitatively, as shown in Fig. 9(a) while the case is
opposite for LSCO [see the B1g response in Fig. 9(b)] and
Y-123.

As previously noted, the spectra of materials close to half
filling corresponding to n ∼ 1 or x ∼ 0 have prominent peaks
from magnetic excitations, which are not reproduced by the
current theory as only the lowest-order approximation, i.e., the
bare bubble, has been used for the calculation of the Raman
response.32,33 Systematic studies in Y-123, Bi2Sr2CaCu2O8+δ

(Bi-2212), Tl2Ba2CuO6+δ (Tl-2201), and LSCO show49 that
this approximation is too simple, in particular at lower doping.
As demonstrated in Bi-2212 the collapse of the approximation
appears to set in rather abruptly at n ∼ 0.79 (p ∼ 0.21) and
has no direct correspondence in the single-particle spectral
function.60

How might one expect the overall features to differ under a
scenario in which the Hubbard U were allowed to decrease
significantly with doping away from half filling on either
the hole- or electron-doped sides of the phase diagram? One
expects a more pronounced transfer of spectral weight from
high to low energies than that observed in Fig. 5 together with
a pronounced shift of residual high-energy spectral weight
to lower energies corresponding to the reduction in Hubbard
U . A doping-dependent U also would lead to the appearance
of sharper, more metallic quasiparticle peaks at low energies
especially on the hole-doped side of the phase diagram at
greater variance with experimental observations compared to
the current theoretical analysis. While one can argue that vertex
corrections may tend to reduce or flatten the Raman response at
low energies and introduce features corresponding to magnetic
excitations lacking in the lowest-order approximation used
in this study, the effect of these corrections with a doping-
dependent U would tend to decrease significantly with doping
and potentially suppress magnetic excitations in the response
more rapidly than indicated by experimental observations.

FIG. 9. (Color online) Temperature dependence of the (a) and
(b) experimental and (c) and (d) theoretical Raman resistivities in
B1g (red) and B2g (purple) symmetry obtained from the electron-
(Nd2−xCexCuO4) and hole-doped (La2−xSrxCuO4) samples around
optimal doping, respectively. The smooth black lines in (a) and (b)
represent resistivity measured by transport in Ref. 47.

B. Relaxation rates

The low-energy Raman response, particularly as � → 0,
can be used to obtain an estimate for the effective quasipar-
ticle scattering rate in each channel and highlight important
differences between hole- and electron-doped systems. This
Raman resistivity can be determined theoretically from8

�μ(T ) =
[
∂χ

′′
μ(�,T )

∂�

]−1

�=0

≈ lim
�→0

[
χ

′′
μ(�,T )

�

]−1

. (3)

The method for extracting Raman relaxation rates from
the experimental spectra has been described elsewhere.72

The calculated Raman relaxation rates from the experimental
spectra are shown in Figs. 9(a) and 9(b). Figures 9(c) and 9(d)
show the Raman resistivity in the B1g and B2g channels for
both hole- and electron-doped systems near optimal doping
extracted from the theoretical data presented in Fig. 6. As
one may expect, the effective scattering rate decreases with
decreasing temperature as well as increasing doping away from
half-filling (not shown) on either the hole- or electron-doped
sides of the phase diagram indicating that the doped system
becomes progressively more metallic. In Fig. 9 one can see that
the slope of the Raman response is larger for the electron-doped
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systems compared to their counterparts with similar hole
doping. For both experimental samples the Raman relaxation
rates are higher in the B1g than in the B2g channel. The
relaxation rates in B2g have a similar temperature dependence
for the electron- as well as for the hole-doped side showing a
concave curve following approximately T α with 1 < α < 2.

On the hole-doped side, the relaxation rates in B1g have a
convex form (α < 1). This is different from the electron-doped
side. Here the form changes from convex to concave for a small
variation in doping from x = 0.16 to 0.17. This is actually the
range of doping where a crossover between a small and a large
Fermi surface is observed with quantum oscillations.73 The
inverse initial slopes of the theoretical spectra are different
in that the relaxation rates in B2g are bigger than in B1g

for all temperatures on both sides of the phase diagram.
Additionally, the temperature dependence is concave for the
electron- as well as for the hole-doped side. However, what
can be qualitatively resolved, in agreement with experiments,
is the fact that the relaxation rates for both symmetries are
smaller on the electron- than on the hole-doped side of the
phase diagram.

The huge difference in the experimental relaxation rates
between the B1g and B2g response in LSCO is not yet
fully understood. As mentioned above it appears in a doping
range in which the dichotomy between nodal and antinodal
quasiparticles is still small15 while the Raman spectra exhibit
an abrupt onset of strong relaxation close to (π,0).60 The
discrepancy appears to indicate that Raman vertices should be
renormalized at least at low doping. The observed theoretical
behavior for hole doping is in better qualitative agreement
with the experimental results on overdoped La2−xSrxCuO4

(not shown) where experimentally one observes more Fermi-
liquid-like behavior with metallic quasiparticles in the normal
state as opposed to the strange metal and pseudogap phases
at doping levels closer to half filling. At the accessible
temperatures in the theoretical analysis, there is no indication
of a pseudogap in the single-particle spectra; however, from
other small cluster studies one anticipates the formation of a
pseudogap at considerably lower temperatures.74 The pseudo-
gap manifests itself as a reduction in single-particle spectral
weight near the (π,0) points and one anticipates a concomitant
reduction in the B1g Raman response and significant increase
in the corresponding relaxation rate potentially bringing the
theoretical and experimental results into better agreement.
Lower temperatures also tend to sharpen quasiparticle features
potentially reducing relaxation rates, especially in the B2g

channel extracted from quasiparticles near ∼(π/2,π/2) that
are particularly wide in the current simulations.

C. Evolution of the spectral weight with doping

Finally, we analyze the ratio of the Raman intensities in
the B1g and B2g channel IB1g/IB2g. For deriving IB1g/IB2g

we integrate the experimental intensity in B1g and B2g

channels over the range 800–1000 cm−1, labeled IB1g and
IB2g, respectively. Over this range the experimental spectra are
fairly temperature independent.72 For a simple tight-binding
band structure, one expects this ratio to be given by (t/2t ′)2;
however, discrepancies between the experimental response and
this simple expectation, at least on the hole-doped side of the

phase diagram, were pointed out in earlier studies.75,76 While a
similar analysis of the integrated intensity from the theoretical
results is complicated by the lack of vertex corrections and the
relatively high simulation temperature leading to significant
low-energy peaks in the response rather than flat, featureless
spectra in the indicated energy range (see Fig. 6), we perform
a corresponding analysis of the integrated spectral weight as a
function of doping and temperature over the same energy range
(see Fig. 6), which at least removes a degree of arbitrariness
from the comparison between experiment and theory.

Figure 10 shows the ratio IB1g/IB2g both calculated from
the theoretical response and extracted from the experimental
spectra. On the electron-doped side the experimental ratio is
slightly temperature and doping dependent for those samples
analyzed near optimal doping. While the ratio increases
slightly with decreasing doping, the temperature dependence
of the ratio remains relatively unchanged, increasing mod-
erately with increasing temperature. From the theoretical
results, we analyze the ratio both for optimal doping as
well as for underdoped and overdoped systems. Close to
half filling, we find that the ratio increases significantly with
decreasing temperature although it remains within a factor
∼2 of the value extracted near optimal doping. While this
temperature dependence differs significantly from that found
experimentally near optimal doping, it is not completely
unexpected given the experimental and theoretical evolution
of the Fermi surface and band structure with doping.10 At
low doping levels small, electronlike Fermi pockets first
appear near (±π,0) and (0, ± π ) at low temperatures, due
to antiferromagnetic folding, which in the simple response
calculated here would lead to a significantly larger low-energy

FIG. 10. Ratio of the intensities in IB1g/IB2g as extracted from
the theoretical (upper) and experimental (lower) Raman spectra for
electron- and hole-doping levels indicated in each panel.
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response in the B1g channel compared to the B2g channel. With
increasing temperature, one expects increasing response in the
B2g channel and a reduced ratio due to an increase in spectral
weight in the nodal region. With increased electron doping
the spectral weight in the nodal region increases leading to a
reduction in the intensity ratio near optimal doping. The the-
oretical ratio increases slightly with decreasing temperature,
at odds with the experimental result; although it appears to
saturate at the lowest simulated temperatures and has a value
that compares quite well with that extracted from experiments.
Upon additional electron doping a well-defined hole-like
Fermi surface forms, in agreement with experiment; however,
the antinodal BZ crossing is pulled progressively away from
the (π,0) points leading to a reduction in the integrated Raman
response in the B1g channel with a subsequent reduction in
the intensity ratio. While the temperature dependence of the
ratio extracted from the theoretical Raman response is not
in quantitative agreement with the experimentally determined
intensity ratio, the general reduction in the ratio with increased
doping is captured by the theoretical analysis and one also
should keep in mind the limitations of the theoretical analysis
(lack of vertex corrections) and significant difference in
temperature scales.

On the hole-doped side we can compare data over a
much wider doping range. For low doping, at the onset of
superconductivity (x = 0.05), the experimental ratio increases
slightly with increasing temperature, but has a value that
remains less than 1 over the studied temperature range. Upon
hole doping away from half filling, one observes Fermi arcs
experimentally in the single-particle spectral function centered
on the nodal points with the appearance of a pseudogap in the
antinodal region.15 The effect of these features would tend
to suppress the integrated B1g Raman response and hence
the intensity ratio within the simple picture used to describe
the response theoretically, in apparent agreement with the
experimental findings. With additional hole doping, the Fermi
arcs connect as the pseudogap closes in the single-particle
spectral function near optimal doping. Experimentally, the
integrated intensity ratio increases by a factor of ∼2–3 over its
value at underdoping and the ratio increases with decreasing
temperature. Upon overdoping, the antinodal BZ crossings
move toward the (π,0) points as the van Hove singularity
approaches the Fermi level in the same region of the BZ.
This would significantly increase the integrated B1g response
in the simple band picture used in the theoretical analysis.
Experimentally the intensity ratio for the overdoped system
increases substantially with decreasing temperature and has a
value ∼3 times larger than that found near optimal doping.
The ratio extracted from the theoretical response agrees
qualitatively with the experimental results both in the general
trends with hole doping away from half filling and changes in
the ratio with increasing or decreasing temperature. The lack
of quantitative agreement may be attributed to the relatively
high simulation temperatures that preclude the appearance of
a pseudogap in the single-particle spectral function at low
doping and that significantly broaden quasiparticle features
irrespective of the doping level and to the lack of vertex
corrections that would renormalize the Raman response in
each channel, particularly at low doping.

V. CONCLUSIONS

While it is quite clear that the theoretical and experimental
results presented here cannot be compared quantitatively,
qualitative comparisons exist that pertain to both the high-
and low-energy Raman response in hole- and electron-doped
systems. Speaking generally, the theoretical response shows
a significant transfer of spectral weight from high to low
energies with increased hole doping away from half filling in
agreement with experiment. With electron doping, this transfer
is less pronounced, except in the underdoped regime, also
in agreement with experiment. At lower energies, the model
calculations predict relatively flat spectra on the hole-doped
side of the phase diagram and well-defined peaks associated
with quasiparticle-like excitations for electron-doped systems.
The lack of vertex corrections in the theoretical response
means that this general agreement does not apply to the two-
magnon peak associated with magnetic excitations that appears
prominently in the experiment, but rather to the overall,
systematic trends in the data that appear with either electron
or hole doping and already reveal an electron-/hole-doping
asymmetry. While similar overall trends would be expected
from a theoretical analysis including significant reductions
in electron correlations with doping away from half filling
(doping-dependent Hubbard U ), the effect would be more
pronounced and at greater variance with the experimental
observations. In particular, one expects more metallic behavior
at even lower electron or hole doping and would anticipate
significantly reduced influence from vertex corrections with
doping that would be necessary to bring the theoretical
and experimental observations into better qualitative and
quantitative agreement with one another.

Additional electron-/hole-doping asymmetry has been ob-
served experimentally in both the Raman relaxation rates in
the B1g and B2g channels as well as in the ratio between the
integrated Raman intensities in these two channels. The Raman
relaxation rates or resistivities extracted from the theoretical
model near optimal doping reveal a similar asymmetry at least
in the B1g channel. As argued, the inclusion of pseudogap
behavior in the antinodal region and sharper quasiparticle-like
features in the near nodal region with reduced temperatures
may bring the theoretical and experimental results into better
qualitative agreement, especially concerning the behavior of
the Raman resistivity in the B2g channel where there is a less
pronounced asymmetry between electron and hole doping.

The experimentally observed ratio between the integrated
intensities in the B1g and B2g channel has been shown system-
atically over a wide range of hole doping and temperature and
near optimal doping over a wide range of temperatures on the
electron-doped side of the phase diagram. On the hole-doped
side of the phase diagram, the ratio extracted from the
theoretical model agrees qualitatively with the experimental
results both as a function of doping and temperature, although
the effective temperatures differ significantly. The relatively
high simulation temperatures preclude the appearance of a
pseudogap in the single-particle spectral function at low
doping and broaden quasiparticle features, especially at high
doping. Vertex corrections, missing from the theoretical
analysis, would significantly renormalize the Raman response
in each channel, particularly at low doping. Incorporating both

235114-10



INVESTIGATION OF PARTICLE-HOLE ASYMMETRY IN . . . PHYSICAL REVIEW B 84, 235114 (2011)

of these corrections would improve the quantitative agreement
between the theoretical and experimental ratios in hole-doped
systems.

On the electron-doped side of the phase diagram near
optimal doping the experimental intensity ratio is only slightly
temperature and doping dependent. From the theoretical
model we have analyzed the integrated intensity ratio over
a wider range of electron doping and predict a significant
difference between the electron and hole doping evolution.
Close to half filling, the theoretical ratio increases significantly
with decreasing temperature, showing similar behavior to the
theoretical and experimental ratio observed for hole overdop-
ing. With additional electron doping the ratio progressively
decreases. The doping evolution of the theoretical ratio can
be partially understood by considering the evolution of the
single-particle spectral function and the Fermi surface.10,15

While the Fermi surface consists of small Fermi arcs with
a significant pseudogap on the hole-underdoped side of the
phase diagram leading to a small integrated intensity ratio,
the Fermi surface consists of small electron pockets on the
electron-underdoped side of the phase diagram leading to a
rather large integrated intensity ratio. The evolution of the
Fermi surface and band structure with additional doping on
either side of the phase diagram appears to correlate quite well
with the doping evolution and the electron/hole asymmetry
observed in the intensity ratio.

While the general trends observed in the theoretical and
experimental results agree qualitatively and reveal significant
electron-/hole-doping asymmetries in several quantities, one
should keep in mind the limitations of the theoretical approach:

(1) the simulation temperatures are quite high when compared
to the experiments meaning that effects from features like
the pseudogap that manifest at much lower energies are
neglected; (2) the theoretical analysis based on the lowest-
order approximation to the Raman response neglects important
vertex corrections that renormalize the response, especially
at low energy, and therefore precludes the appearance of
magnetic excitations that are prominent in the experiment.
Although in general the results are encouraging, further
improvements including materials specificity missing from
the current theoretical analysis and the inclusion of vertex
corrections by a direct determination of the Raman response,
typical for the charge and spin response functions (charge and
spin dynamical structure factors), would certainly improve
agreement. Hence, apart from some qualifications explicitly
stated, the Hubbard model is found also here to capture the
essential physics of the cuprates around half filling.
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