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Transport properties of nonequilibrium systems under the application of light:
Photoinduced quantum Hall insulators without Landau levels

Takuya Kitagawa,1 Takashi Oka,1,2 Arne Brataas,1,3 Liang Fu,1 and Eugene Demler1

1Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA
2Department of Physics, Faculty of Science, University of Tokyo, Tokyo 113-0033, Japan

3Department of Physics, Norweigian University of Science and Technology, NO-7491 Trondheim, Norway
(Received 2 November 2011; published 1 December 2011)

In this paper, we study transport properties of nonequilibrium systems under the application of light in
many-terminal measurements, using the Floquet picture. We propose and demonstrate that the quantum transport
properties can be controlled in materials such as graphene and topological insulators, via the application of light.
Remarkably, under the application of off-resonant light, topological transport properties can be induced; these
systems exhibit quantum Hall effects in the absence of a magnetic field with a near quantization of the Hall
conductance, realizing so-called quantum Hall systems without Landau levels first proposed by Haldane.
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I. INTRODUCTION

Application of light is a powerful method to change
material properties. For example, light can induce currents
through mechanisms such as photovoltaic effect,1 photo-
thermoelectric effect,2 and photo-drag effects.3 Moreover,
light can change the response of materials and induce insulator-
to-metal transitions4 or change the characteristics of p-n
junctions.5

In recent years, there has been tremendous development
and interest in the induction of quantum phases through light
applications. For example, experiments have demonstrated
that superconductivity can be induced through infrared pulses
in high-temperature cuprate superconductors.6 Inductions of
quantum phases are inherently nonequilibrium phenomena,
and thus their understanding is quite challenging. Even some
basic questions such as the physical signatures of the induced
phases and how such phases can be stabilized in a steady state
do not have answers yet. Many of quantum phases manifest
themselves through transport and, therefore, understanding of
transport properties in nonequilibrium, open systems is crucial
for experimental verifications of such induction of quantum
phases under the application of light. In this paper, we develop
a general formalism for studying nonequilibrium transport
under the application of light and, using the formalism, address
the possibilities of the induction of topological properties
through light.

Motivated by recent rapid development of the understand-
ing in topological phases, the possibility of inducing topologi-
cal phases such as integer quantum Hall phase and topological
insulators through light has been theoretically explored by
many different groups.7–9 Generally speaking, the application
of light on electron systems has two important physical
effects: (1) photon-dressing of band structures through the
mixing of different bands and (2) redistribution of electron
occupation numbers through the absorptions/emissions of
photons leading to nonequilibrium distributions. Previous
works proposed optical induction of band structures with
topological properties7–9 and thus have mostly focused on the
analysis of the first effect. On the other hand, most of these
works do not address the question of the second effect, the

redistribution of electrons in the band structure, and thus its
physics is yet poorly understood. Topological properties only
appear when certain bands are fully filled, and it is not clear
how this band occupation can be achieved and topological
properties survive when the system is strongly driven out of
equilibrium by the application of light.

In order to answer these questions, we study the physical
consequence of the application of light through dc many-
terminal transport measurements as in Fig. 1. The coupling
of the driven systems with leads, which are in return coupled
with equilibrium reservoirs, plays the crucial role to determine
the occupations of electrons. Using the formalism for transport
properties in periodically driven systems developed by various
groups,10 here we study topological transport phenomena in
materials such as graphene and three-dimensional topological
insulators.

First of all, we show that nonequilibrium transport prop-
erties cannot generally be captured by the photon-dressed,
effective band structures. In particular, in addition to the usual
transport through such static effective band structures, there
are contributions from photon-assisted electron conductions.
Thus, the induction of topologically nontrivial band structures
does not immediately imply the topological properties of the
nonequilibrium systems.

On the other hand, the regime exists in which topological
band structures can manifest themselves; we explicitly demon-
strate that for off-resonant light where electrons cannot directly
absorb photons, the transport properties of the nonequilibrium
systems attached to the leads are well approximated by the
transport properties of the system described by the static
effective Hamiltonian that incorporates the virtual photon
absorption processes. In particular, the occupations of the
electrons under this situation are close to the filling of
the photon-dressed bands. As examples, we show that the
transport properties under the application of off-resonant light
is given by the photon-dressed Hamiltonian corresponding to
a quantum Hall insulator without Landau levels11 in the case
of graphene and to a gapped insulator with anomalous quan-
tum Hall effects and magnetoelectric response described by
axion electrodynamics12 at the surfaces of three-dimensional
topological insulators. In these systems, the measurements in
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FIG. 1. (Color online) The many-terminal measurements of dc
current for graphene under the application of light. Graphene is
attached to multiple leads labeled by {α}, and the leads are connected
to reservoirs at chemical potentials, {μα}. Off-resonant, circularly
polarized light is applied to the graphene. In the absence of impurities
and interactions, electrons coming from leads coherently propagate
under the application of light, asborb or emit photons, and leak
out into leads. Current measurements between each lead determine
longitudinal and Hall conductances.

six-terminal configurations in Fig. 1 lead to the near quantiza-
tion of Hall conductance. Thus, the application of off-resonant
circularly polarized light leads to intriguing “Hall” effects
without applying a static magnetic field.

This paper is organized as follows. In Sec. II, we describe
the summary of the results, focusing on the analysis of
graphene and three-dimensional topological insulators under
the application of off-resonant light. Here we provide the
physical and intuitive explanations of the phenomenon of
light-induced quantum Hall effects and refer to later sections
for many important details. In Sec. III, we develop the
formalism for studying the nonequilibrium transport properties
under periodical drives in many-terminal measurements. Our
formalism is based on the extension of the multiprobe Büttiker-
Landauer formula13 to periodically driven systems, a “Floquet
Landauer formula.” We provide two distinct ways to calculate
the transmission amplitudes in the driven systems. The first
method expresses the results in terms of the Floquet states
and it illuminates the physical origin of the photon-assisted
transport. The second method takes advantage of the “Floquet
Dyson’s equation” to give an elegant solution which is more
convenient for a numerical solution.14 By taking the off-
resonant limit of these solutions, the equivalence of transport
properties under the application of light and those with
effective photon-dressed Hamiltonian is established.

Most of the analysis in this paper assumes the absence
of interactions among electrons as well as electron-phonon
interactions. We argue in Sec. IV that, in the case of graphene
and topological insulators under the off-resonant light, the
results given in Sec. II are robust against these interaction
effects at low temperatures. While the measurements of
transport properties require the attachment of leads, the probe
of the effective gap induced by light is plausible even in an
isolated system. We propose in Sec. V such measurements
through the adiabatic preparation of nonequilibrium systems
combined with the transmission of probe laser with small
frequencies. The essential ingredients in the arguments of
Secs. IV and V are the extensions of adiabatic theorem

and Fermi golden rule to periodically driven systems and
Floquet states, dubbed the “Floquet adiabatic theorem” and
the “Floquet Fermi golden rule.” We give a detailed proof of
these important statements in the Appendix. In Sec. VI, we
conclude with possible extensions of this work.

II. SUMMARY OF RESULTS

A. Garphene effective Hamiltonian

Here we consider graphene as an example of a semimetal
and study the change in the transport properties under the
application of light. We model graphene using a hexagonal
tight-binding model with two π bands, where we first neglect
the electron-electron as well as electron-phonon interactions.
In Sec. IV, we discuss the effects of these interactions
and argue that they do not change the qualitative results
of the analysis. We consider the application of circularly
polarized light perpendicular to the plane of graphene. For
concreteness, here we represent the rotating electric field
due to light as a time-dependent vector potential A(t) =
A( ± sin(�t), cos(�t)) with E(t) = ∂A(t)/∂t , where � is the
frequency of light. The plus sign is for right circulation of
light and minus sign for left circulation. The light intensity
is characterized by the dimensionless number A = eAa/h̄,
where e is the electron charge and a ≈ 2.46 Å is the lattice
constant of graphene. For intensity of lasers and pulses
available in the frequency regime of our interests ∼1000 THz,
A is typically less than 1. In this gauge, electrons accumulate
phases as they hop in the lattice;

H (t) = −J
∑
〈ij〉,s

eiAij (t)c
†
i,scj,s , (1)

where Aij (t) = e/h̄(rj − ri) · A(t), with ri being the coordi-
nates of the lattice site i, J the the hopping amplitude of
electrons, and s = ↑ , ↓ the spins of electrons. For simplicity,
we only consider the orbital effect of electromagnetic fields on
electrons and disregard the small Zeeman effect. The inclusion
of the Zeeman effect is straightforward. In this limit, spins
trivially double the Hilbert space and thus we suppress the
spin indices in the following.

When the light frequency is off-resonant for any electron
transitions, light does not directly excite electrons and instead
effectively modifies the electron band structures through vir-
tual photon absorption processes. Such off-resonant condition
is satisfied for the frequency � � J in our model with π

bands. A more general case of on-resonant light can be
analyzed through the formalism developed in section Sec. III.
The influence of such off-resonant light is captured in the
static effective Hamiltonian Heff (Ref. 9) defined through the
evolution operator U of the system after one period T = 2π/�

as

Heff = i

T
log(U ), (2)

where U = T exp(−i
∫ T

0 H (t)dt) and T is the time-ordering
operator. Intuitively, Heff describes the dynamics of the system
on time scales much longer than T . In the limit of A2 	 1,
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Heff is particularly simple near the Dirac points:

Heff ≈ H0 + [H−1,H1]

�
+ O(A4)

≈ vG(σykx − σxkyτz) ± v2
GA2

�
σzτz + O(A4)

(for infinite system), (3)

where Hn is the discrete Fourier component of Hamiltonian,
that is, Hn = 1

T

∫ T

0 H (t)eit�ndt . In the second line, vG = 3J/2
is the velocity of Dirac electrons, kx and ky are momenta
measured from the Dirac points, and σi and τi are Pauli
matrices representing sublattice and valley degrees of freedom,
respectively.

The modification of the Hamiltonian with respect to the
static component H0 is the second term in Eq. (3). This term can
be easily understood as the sum of two second-order processes
as illustrated in Fig. 2(a): one where electron absorbs a photon
and then emits a photon H1

1
ω−(ω+�)H−1 and another where

electrons first emit a photon and then absorb a photon, which
leads to H−1

1
ω−(ω−�)H1, where ω is the energy of the electron

before the photon absorption/emission. By summing these two
contributions, we obtain the correction due to the second-order
process, given in the second term of Eq. (3). In the second line,
the plus sign is for right circulation of light polarization and the
minus sign is for left circulation. For more rigorous derivation
of this result, see Sec. III. We note that the expression of the
effective Hamiltonian in Eq. (3) is only valid in the gauge in
which light is represented as time-dependent vector potential,
and the effective Hamiltonian has different forms for other
gauge such as the one in which light represented as time-
dependent electric fields.

The effect of virtual photon absorptions at the degenerate

Dirac points is to open a gap with magnitude 	 = 2v2
s A2

�
. In

Fig. 3, we illustrate the opening of the gap near one of the Dirac
points upon the application of light for both infinite and finite
systems. This Hamiltonian Heff with two bands separated by
a band gap corresponds to a quantum Hall insulator, where
each band is characterized by a nonzero Chern number.11,15

In Fig. 3(b), we have plotted the spectrum of Heff where
the system is infinite in the x direction and 150 sites in the
y direction with armchair edges. Here we have chosen the

+

(a) (b)

FIG. 2. (Color online) (a) The modification of the Hamiltonian
due to the virtual photon process can be intuitively understood as
the sum of two second-order processes where electrons absorb and
then emit a photon and electrons first emit and absorb a photon.
(b) The illustration of the structure of Heff in real space for graphene
under the application of right circularly polarized light in Eq. (3).
The commutator [H1,H1] is the second-neighbor hopping with phase
ϕ = π/2. Thus, the tight-binding model under the application of light
realizes Haldane model proposed in Ref. 11.
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FIG. 3. (Color online) (a) The spectrum of graphene for a single
spin near one of the Dirac points for an infinite system. Here we plot
the energy spectrum of a static system corresponding to A = 0 (top
figure) and the spectrum of Heff for the system under the application
of light with light intensity A = 0.3 (bottom figure). A finite gap 	

opens at the Dirac point. (b) The spectrum of Heff for a single spin
near one of the Dirac points for infinite system in the x direction
and 150 sites in the y direction for A = 0.3. The frequency of light is
chosen to be off-resonant with � = 7.5J . Here we chose the armchair
edges, and in this case the Dirac points are at kx = 0. Heff shows the
existence of gapless chiral edge states for each spin originating from
nonzero Chern numbers of the bands, which are colored as blue and
green, corresponding to the edge states in the upper and lower edges,
respectively. The propagation of chiral edge states for a single spin is
illustrated in the top figure.

intensity and frequency of light to be A = 0.3 and � = 7.5J ,
respectively. As a result of nonzero Chern number of the bands,
Heff shows the existence of gapless chiral edge states, colored
as blue and green, corresponding to the edge state in the upper
and lower edge, respectively.

Further intuition can be obtained by writing the effective
Hamiltonian in Eq. (3) in real space. In the lowest order in
A, H1 and H−1 are the hopping between nearest neighbors
with phase accumulations that depend on the direction of the
hopping. Their commutators contain the second-neighbor hop-
ping with amplitudes

√
3

2
J 2A2

�
eiπ/2 as illustrated in Fig. 2(b).

Thus, the effective Hamiltonian is nothing but the Hamiltonian
proposed by Haldane11 with sublattice potential M = 0 and
second-neighbor hopping strength t2 =

√
3

2
J 2A2

�
with the flux

ϕ = π/2.
Our results above predict the induction of nonzero Chern

number for the tight-binding model without second-neighbor
hoppings and thus differ from the results obtained in Inoue and
Tanaka.16 In their work, the effect of circularly polarized light
on the Haldane model11 has been considered. They focused
on the zero-photon sector of the Hamiltonian and concluded
that the Chern number is zero whenever the second-neighbor
hopping t2 is zero or the staggered magnetic flux ϕ is zero,
as is presented in Eq. (7) of their paper. Their work showed
no transition from topologically trivial band insulators to
topological nontrivial bands with Chern numbers. Here we
considered a simple tight-binding model without second-
neighbor hopping or staggered-magnetic fields, corresponding
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to t2 = 0 and ϕ = 0 of the Haldane model, and demonstrated
that the Chern number can be induced in this system. In
contrast with the result of Ref. 16, we show above (also see
Sec. III B 2) that the virtual photon absorption and emission
process represented by the second term of Eq. (3) induces a
gap at the Dirac point and leads to a nonzero Chern number.
Such photon dressing, which was neglected in the study of
Ref. 16, has dramatic effects at the degenerate Dirac points
and should be taken into account.

There are a few different ways to probe the gap 	 in the
effective Hamiltonian. For example, the gap opening might be
confirmed through the observation of the transmission of low-
frequency probe lasers. In Sec. V, we propose the possibility
to probe this dynamically opened gap in an isolated system
through adiabatic preparation of Floquet states. The main
focus of this paper, however, is the study of the manifestations
of the gapped Hamiltonian Heff in many-terminal transport
measurements depicted in Fig. 1, which we now describe.

B. Floquet Landauer formalism and Hall current

One of the central results of this paper is the demonstration
that measurements of dc current of the nonequilibrium system
under the application of off-resonant light is determined by
the static, photon-dressed Hamiltonian Heff . To this end, we
consider the many-terminal measurements of dc current under
the application of light as in Fig. 1.13 The nonequilibrium trans-
port properties of mesoscopic, periodically driven systems in
this configuration have been studied previously, using Floquet
theory17 combined with the Keldysh formalism.10 We express
the general result obtained in these works as the extension
of the multiprobe Büttiker-Landauer formula13 to periodically
driven systems, a “Floquet Landauer formula”:

J dc
α = J pump

α + J res
α , (4)

J res
α =

∑
β

(∑
n

Tαβ(n)

)
(μβ − μα). (5)

Here J dc
α is the dc component of the current at lead α,

J dc
α = 1

T

∫ T

0 Jα(t)dt . Here we assumed that the reservoirs are
at zero temperature, and their chemical potentials {μα} are
near the Dirac points, that is, μα ≈ 0. The dc current of a
periodically driven system in Eq. (4) consists of two physically
distinct contributions; the pump current,18 J

pump
α , which can

be present even when all the reservoirs have the same chemical
potential μα , and the response current, J res

α , which arises from
the response of the driven system to the chemical potential
differences of the reservoirs. For the application of light we
consider in this paper, the pump current J

pump
α is zero for

inversion symmetric geometries, so we focus on the properties
of the response current J res

α in the following. The transmission
coefficients Tαβ(n) in Eq. (5) represent the transmission of
electrons with energy μβ ≈ 0 from lead β to lead α during
which electrons absorb (emit) n photons as illustrated in Fig. 4.

Thus, the response conduction in the presence of periodic
drive can be seen as an extension of the static conduction,
where the transmission can now happen with the absorp-
tions/emissions of photons. We note that the expression of
dc current in Eq. (5) is valid for arbitrary strength and

....

FIG. 4. (Color online) Illustration of the response conduction
current in the Floquet Landauer formula given in Eq. (5). The
transmission of the electrons can now happen with n photon
absorption/emissions. The total conductance is simply given by the
sum of these contributions for each n.

frequency of the drives. The transmission probabilities Tαβ(n)
can be efficiently computed by dressing the propagators with
photon absorptions/emissions14 and are described in Sec. III.
We emphasize that the response current is the sum of the
contributions from n photon absorption/emission processes
[see Eq. (5)] and thus its transport property generally cannot
be described by effective static Hamiltonians. The off-resonant
case described below is an exceptionally simple case in this
respect.

We employ this Floquet Landauer formalism to study
the off-resonant, large-frequency regime J 	 � with weak
intensity of light, that is, A2 	 1. In this regime, absorptions
or emissions of photons are suppressed by A2, and the
transmission coefficients Tαβ(n) with n �= 0 is small and of
the order of O(A2n). On the other hand, the zero-photon
absorption/emission transmission coefficient Tαβ(0) is mod-
ified due to virtual photon processes. Such modifications are
included in Heff and the transmission probability is given
by Tαβ(0) = T eff

αβ + O(A2), where T eff
αβ is the transmission

probability of the static system described by Heff . These results
are rigorously established in Sec. III.

This correspondence demonstrates, under our assumptions,
that graphene under the application of off-resonant light

behaves as an insulator with gap 	 = 2v2
s A2

�
with Hall

conductance quantized at 2e2/h with possible corrections
up to the order of O(A2). Here the factor of 2 comes from
spin degrees of freedom. While we established the results in
the perturbation theory on A, it is possible to analytically
confirm the insulating behavior for all orders in A for weak
contact couplings with leads (see Sec. III). We emphasize that
although the effective Hamiltonian is perturbative in A, the
Hall conductance at zero temperature is nonperturbative: An
infinitesimal gap 	 is sufficient to yield a topological band
with nonzero Chern number.

A distinct feature of this light-induced Hall effect above is
that the Hall conductance switches its sign under the change of
circulations of light polarization. This can be easily checked for
the geometry of the system which is symmetric under x → −x,
under which the circulation of light reverses. Such reversal of
Hall current can be used in the experiments to distinguish this
light-polarization-dependent current from light-polarization-
independent current, which could originate from mechanisms
we did not consider in this paper.

235108-4



TRANSPORT PROPERTIES OF NONEQUILIBRIUM . . . PHYSICAL REVIEW B 84, 235108 (2011)

We briefly describe the requirements to observe the pro-
posed phenomena with off-resonant light in graphene. The
bandwidth of graphene in the π orbital is given by 6J , where
J ≈ 2.4 eV, placing the required frequency of off-resonant
light to be soft x-ray regime with � = 3500 THz. For this
frequency of light, the gap of the system 	 can reach
	 ≈ 300 K for the strong light intensity I ≈ 3 × 1012 W/cm2

(Ref. 19), which gives A ≈ 0.09, where we expect the Hall
conductance to be quantized with possible correction of 1% of
2e2/h. In reality, even such high frequency of light is expected
to be absorbed in graphene. Such direct electron excitations
lead to reconfiguration of electron occupation numbers, which
modifies the Hall conductance from its quantized values.

C. Three-dimensional topological insulators

The analysis of graphene above can be directly extended to
three-dimensional topological insulators such as Bi2Se3. The
low-energy description of electrons on surfaces of Bi2Se3 is
given by two-dimensional Dirac fermions20 and is described
by the Hamiltonian H surf = vTI(kxσy − kyσx), where vTI is
the velocity of the Dirac fermion, and σi are Pauli matrices
corresponding to two bands near the Dirac point. As before,
we assume the application of weak, off-resonant, circularly
polarized light. The orbital effect of the light is taken into
account through the replacement k → k − A(t). At the Dirac
cone, the virtual photon process again opens a gap and the
effective Hamiltonian is [see Eq. (3)]

H surf
eff = vTI(kxσy − kyσx) ± A2v2

TI

�
σz, (6)

where + (−) corresponds to the gap due to right (left)
circularly polarized light. The consequences of the gap coming
from the third term in Eq. (6) are extensively investigated in
Refs. 12 and 21. Just as in the case of graphene, the induced
insulator is topologically nontrivial and expected to result in
an anomalous quantum Hall effect with Hall conductance ± e2

2h

with possible corrections up to the order of O(A2). Here
we propose to probe the unique magnetoelectric response
of the gapped topological insulator through pump-probe-type
measurements, where circularly polarized light is used to open
a gap at the Dirac point and linearly polarized light with small
frequency within the gap is used to probe the Faraday/Kerr
rotations,22 as illustrated in Fig. 5(a) (also see Sec. V). Unlike
other schemes proposed previously with ferromagnetic layers,
here the Faraday/Kerr rotations can only result from the
topological insulators and they give an unambiguous signature
of magnetoelectric effects. In a similar fashion, the existence
of magnetic monopoles can be probed by placing an electric
charge near the surface of the topological insulator in the
presence of circularly polarized light [see Fig. 5(b)].

D. Discussion

In the analysis of graphene and topological insulators
above, we assumed the off-resonance of light for entire bands,
but the gap in the effective Hamiltonian opens whenever the
light is off-resonant near the Dirac points, which requires
much less stringent condition on the light frequency. However,
when interband electronic transitions occur due to photon
absorptions, subsequent relaxation processes are expected to

electron charge

magnetic monopole

)(b)(a

FIG. 5. (Color online) (a) Measurements of Faraday/Kerr rota-
tions in three dimensional topological insulator. Circularly polarized
light with a large frequency is used to open a gap at the Dirac point
and linearly polarized light with small frequency within the gap is
used to measure the Faraday/Kerr rotations. The polarization angle of
the light is denoted by blue arrows in the figure. (b) The induction of
magnetic monopole inside a three dimensional topological insulator
through the application of light. Electron charge is placed near the
surface, and circularly polarized light is applied on the surface to
break the time-reversal symmetry and open the effective gap. The
magnetic monopole is induced as a mirror image of the electron
charge.

change the electron occupation numbers in the steady state and
modify Hall conductance away from quantized values. Thus, in
the case of on-resonant light, the system is expected to display
nonquantized Hall effects without magnetic fields. Moreover,
as we show in Sec. III, the application of on-resonant light
leads to the photoassisted conductance and the resulting
nonequilibrium transport property can no longer simply be
described by the static effective Hamiltonian. The transport
under the on-resonant light contains rich physics in itself, and
it will be studied in the future works. On the other hand, it is
possible to achieve the off-resonance with small frequency of
light in, for example, the gapped systems such as boron-nitride
by applying the subgap frequency of light. Many of these
possible extensions can be studied through the formalism
developed in the following sections. The understanding and
formalism obtained in this paper is likely to guide future
searches for the optimal systems to study photodriven quantum
Hall effects without magnetic field.

III. NONEQUILIBRIUM TRANSPORT: FORMALISM

A. Floquet Landauer formula

In this paper, we study the transport properties of systems
under the application of light in the Landauer-type configura-
tion, where the systems are attached to the leads as in Fig. 1.
Previous works10 obtained the dc current in periodically driven
systems in terms of the Floquet Green’s functions Ĝ(ω,n)
which represent the Fourier transform of retarded Green’s
function, and is a propagator with frequency ω which absorbs
(emits) n photons. Here we express the general results in
physically transparent form:

J dc
α = J pump

α + J res
α ,

J pump
α =

∑
n

∑
β

∫
dω

2π
Tα,β(n,ω)[fα(ω) − fα(ω + n�)],

J res
α =

∑
n

∑
β

∫
dω

2π
Tα,β(n,ω)[fβ(ω) − fα(ω)], (7)
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Tα,β (n,ω) = �β(ω)�α(ω + n�)|Gjαjβ
(n,ω)|2, (8)

where jα are the sites in graphene that are connected with
leads α, and �α(ω) represents the coupling strength with
leads �α(ω) = t2

αρα(ω), where tα is the hopping strength from
graphene to lead α and ρα(ω) is the density of states in
lead α at energy ω. Also, fα(ω) is the Fermi function at
lead α, fα(ω) = 1

eβα (ω−μα )+1 , where βα = 1/kBTα is the inverse
temperature, and μα is the chemical potential of the reservoir
connected to lead α. If we take the zero-temperature limit and
assume that differences of chemical potentials at each lead
are small, the expression in Eq. (7) is reduced to the simpler
Floquet Landauer formula given in Eq. (5).

The calculation of conductance given by J res
α reduces to

the calculation of the Floquet Green’s function Ĝ(ω,n). Here
Ĝl,l′ (ω,n) is nothing but a Fourier transform of the retarded
Green’s function GR

l,l′ (t,t
′). Starting from the usual definition

of the retarded Green’s function,

GR
l,l′ (t,t

′) = −iθ (t − t ′)(〈cl(t)c
†
l′(t

′)〉 + 〈c†l′ (t ′)cl(t)〉), (9)

we take the Fourier transform to obtain

GR
l,l′ (t,ω) =

∫ ∞

−∞
dt ′GR

l,l′ (t,t
′)ei(ω+i0+)(t−t ′). (10)

Because we are driving the system at the given frequency �,
this Green’s function, as a function of t , should contain only the
discrete Fourier components of �. Therefore, we can expand
above expression of the Green’s function as

GR
l,l′ (t,ω) =

∞∑
k=−∞

Gl,l′ (n,ω)e−in�t . (11)

The equation of motion followed by Ĝ(ω,n) can be obtained
by writing out the equation of motion for GR

l,l′ (t,t
′) and taking

its Fourier transform. The resulting equation can be written in
the most compact form in the matrix equation whose elements
correspond to different (discrete) frequency components, n�.
Explicitly, the equation is given by

(ω + � − H − i�/2)g = I, (12)

where

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

· · · Ĥ0 Ĥ1

Ĥ−1 Ĥ0 Ĥ1

Ĥ−1 Ĥ0 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

, � =

⎛
⎜⎜⎜⎜⎜⎜⎝

. . .
1�

0�

−1�

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

,

� =

⎛
⎜⎜⎜⎜⎜⎜⎝

. . .
�̂(ω + �)

�̂(ω)
�̂(ω − �)

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

, g =

⎛
⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

· · · G(0,ω) G(1,ω)
G(−1,ω) G(0,ω) G(1,ω)

G(−1,ω) G(0,ω) · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

. (13)

H is the matrix of the Hamiltonian, whose elements are
the Fourier components of the Hamiltonian given by Ĥn =
1
T

∫ T

0 Ĥ (t)eit�ndt . � is the diagonal matrix whose element is
just the discrete frequency of the component. � is a diagonal
matrix that represents coupling of the systems with leads. Its
element �̂(ω) has nonzero value only at site jα that couples
with leads, and with value �jα,jα

(ω) = �α(ω) = t2
αρα(ω).

Finally, g is the matrix composed of the Floquet Green’s
functions.

Equation (12) can be thought of as the extension of the
equation of motion for free electrons coupled with leads to
periodically driven systems. The rest of this section is devoted
to the solution of this equation and to the explanations of its
physical significance for the response current given by Eq. (7).

In the following, we give two different solutions of Eq. (12).
In Sec. III B, we solve the equation by expressing the Green’s
functions in terms of Floquet states, the “stationary states”
of periodically driven systems after one period of time. This
solution illustrates the physical origin of the transport given in
Eq. (7). In Sec. III B 2, we derive the equivalence of nonequi-

librium transport and the transport given by the effective
photon-dressed Hamiltonian Heff claimed in Sec. II by taking
the off-resonant and weak intensity limit. In Sec. III C, we give
another solution of Eq. (12), which is valid for a certain class of
periodic drive including the application of circularly polarized
light. This solution is derived by writing the Floquet Dyson’s
equation and has the advantage of being numerically efficient.
Again, by taking the off-resonant, weak intensity limit of this
solution, we arrive the result reported in Sec. II.

B. Floquet states and Floquet Green’s functions

1. General relation

The “stationary states” of the Schrödinger equation for
periodically driven systems are the states which return to
themselves after one period of time, T = 2π/�, with possible
phase accumulations. These so-called Floquet states are the
eigenstates of the evolution operator over one period and
thus also eigenstates of effective Hamiltonian Heff defined
in Eq. (2). Green’s functions Ĝ(ω,n) that describes the
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propagation of particles with possible absorptions/emissions
of photons have natural expressions in terms of these Floquet
states.

The time evolution of the Floquet states |ϕa(t)〉 can be
expanded in the discrete Fourier component of the driving
frequency � and can be expressed as

|ϕa(t)〉 = e−iEat
∑

n

e−i�nt
∣∣ϕn

a

〉
, (14)

where Ea is the quasienergy of the Floquet state |ϕa〉 for
Heff and |ϕn

a 〉 is nth Fourier component of the Floquet state.
The eigenstates of effective Hamiltonian Heff are given as
|ϕa〉 = ∑

n |ϕn
a 〉. As one can see from the expression above, the

quasienergy Ea is only well defined up to the driving frequency
�; that is, we can equally define Ea + m� as the quasienergy
of |ϕa(t)〉 by redefining |ϕn

a 〉 → |ϕn−m
a 〉. Physically, this means

the quasienergy is only conserved up to the driving frequency
� because the system can absorb or emit photon energies. Also,
this fact can be seen as a natural consequence of the breaking of
continuous time-translation invariance through external driv-
ings where the system only possesses discrete time-translation
invariance under t → t + T . In the following, we assume that
−�/2 � Ea � �/2 without loss of generality. We take the
normalization of Floquet states such that

∑
n〈ϕn

a |ϕn
b 〉 = δab.

The Schrödinger equation for the Fourier components of the
Floquet states is time independent,

(Ea + n�)
∣∣ϕn

a

〉 =
∑
m

Hn−m

∣∣ϕm
a

〉
, (15)

where Hn is the discrete Fourier component of Hamiltonian;
that is, Hn = 1

T

∫ T

0 H (t)eit�ndt . This equation encapsulates
the evolution of states that allows the absorptions/emissions
of photons; the application of Hamiltonian Hm leads to the
absorption of m photons and the state |ϕn〉 is the component
of the state with n photons. Here we considered the evolution
of the systems in the absence of coupling with leads, but in the
presence of the coupling with leads, zero frequency component
of the Hamiltonian H0 contains the imaginary “leaking” term
i�/2.

This Schrödinger equation takes, in the matrix form,

Ea|ϕa〉 = (−� + H)|ϕa〉, (16)

where

|ϕa〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

...∣∣ϕ1
a

〉∣∣ϕ0
a

〉∣∣ϕ−1
a

〉
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

The Hamiltonian matrix H and driving frequency matrix � are
given in Eq. (13).

Thus, Floquet state |ϕa〉 is nothing but the eigenstates of the
composite Hamiltonian (−� + H). Notice that “shifted” state

∣∣ϕshift
a (n)

〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

...∣∣ϕ−n+1
a

〉∣∣ϕ−n
a

〉∣∣ϕ−n−1
a

〉
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(18)

is also an eigenstate with eigenvalue Ea + n�.
Now we can relate the Floquet eigenstates given by Eq. (16)

and the Floquet Green’s function given by Eq. (12). The formal
solution of Eq. (12) is obtained in terms of the eigenstates |ϕa〉
of the matrix � − H − i�/2 as

g =
∑

a

|ϕa〉〈ϕ̃a|
ω − εa

. (19)

Here 〈ϕ̃a| is the state that is determined from 〈ϕ̃a|ϕb〉 = δab.
(Note that in the presence of i�/2, 〈ϕ̃a| is not just a complex
conjugate of |ϕa〉.) As is clear from Eq. (16), the eigenstates
of |ϕa〉 of the matrix � − H − i�/2 is nothing but the Floquet
states in the presence of the coupling with leads, represented by
−i�/2. Notice that the eigenstates |ϕa〉 in Eq. (19) include all
the shifted states |ϕshift

a (n)〉 in Eq. (18) for all integers n. With
this understanding, we obtain the expression of the Floquet
Green’s function Ĝ(n,ω) as

Ĝ(n,ω) =
∑

a

∑
m

∣∣ϕn−m
a

〉〈
ϕ̃−m

a

∣∣
ω − Ea − m�

. (20)

We can see that the Floquet Green’s function is an intuitive
extension of the Green’s function for free electrons that allows
absorptions and emissions of photons. As is expected, this
Green’s function transfers the state in −m photon sector 〈ϕ̃−m

a |
to n − m photon sector |ϕn−m

a 〉 by absorbing n photons.
In the presence of on-resonant light, Floquet states generally

contain nonzero amplitudes in |ϕn
a 〉 for more than one value of

n, and therefore, the contributions to the response current in
Eq. (5) from a few photon absorptions/emissions are nonzero.
Thus, effective static Hamiltonian or band structures, which
are only the description of average of n photon states

∑
n |ϕn

a 〉,
does not appropriately capture transport properties under the
on-resonant light. In this case, it is necessary to compute the
full Floquet Green’s function given by Eq. (20) and calculate
the response current in Eq. (7).

On the other hand, in the case of off-resonant, weak
intensity of light, transport properties of nonequilibrium
systems can be described by an effective photon-dressed
Hamiltonian. In the next section, we provide the proof in
the case of semimetals such as graphene and topological
insulators.

2. Effective Hamiltonian description

As summarized in Sec. II, a rich physics appears when
circularly polarized light is applied to graphene and topological
insulators. The description of the nonequilibrium transport
takes a particularly simple form for the off-resonant light
in the limit of small light intensity A 	 1. Here we apply

235108-7



KITAGAWA, OKA, BRATAAS, FU, AND DEMLER PHYSICAL REVIEW B 84, 235108 (2011)

the general formalism developed in the previous section to
these systems and study the transport property by obtaining
the Floquet Green’s function in Eq. (20).

From the explicit form of the Hamiltonian in Eq. (1), it is
clear that Hn ∼ O(A|n|). This simply means the absorptions
of photons are suppressed by the factor O(A|n|). Thus, the
n photon sectors of the Floquet states |ϕn

a 〉 are expected
to scale as |ϕn

a 〉 ∼ O(A|n|) with zeroth order solution being
the static part of the Hamiltonian H0 + i�/2. Here the term
i�/2 represents the coupling with leads and we assumed the
same strength of the coupling � = �α at each lead α and
further assumed that it is independent of frequency. This latter
assumption is not important in the off-resonant case because
current is essentially conducted only at chemical potential of
leads, as we confirm later.

Starting from Eq. (15), we apply a degenerate perturbation
theory in the lowest nontrivial order in A to obtain(

H0 + i�/2 + [H−1,H1]

�

) ∣∣ϕ0
a

〉 = Ea

∣∣ϕ0
a

〉
, (21)

∣∣ϕn
a

〉 = 1

n�
Hn

∣∣ϕ0
a

〉
for n �= 0. (22)

In the derivation, we assumed Eα 	 �, so the expression
above is only valid near the Dirac points. Note that since the
Hamiltonian H0 is degenerate at the Dirac points, the mixings
of the states due to the perturbations of A are not small. This
result indeed shows that |ϕn

a 〉 ∼ O(A|n|) and, therefore, the
Floquet states |ϕa〉 can be approximated by the zeroth level of
the Floquet states |ϕ0

a〉, which is given by the eigenstates of the
effective Hamiltonian Heff = H0 + [H−1,H1]

�
, plus the coupling

with leads i�/2.
Using the solution of Floquet states above, we can obtain the

response current in the lowest order in A. The scaling |ϕn
a 〉 ∼

O(An) in Eq. (22) directly implies that |Ĝ(n,ω)|2 ∼ O(A2n).
Moreover, the Green’s function with no photon absorptions or
emissions can be approximated as

Ĝ(0,ω) =
∑

a

∣∣ϕ0
a

〉〈
ϕ̃0

a

∣∣
ω − Ea

+ O(A2)

≡ Ĝeff(ω) + O(A2),

where |ϕ0
a〉 is the eigenstate of Heff + i�̂/2 and, therefore,

Ĝeff(ω) is the free electron Green’s function for the static
system with Hamiltonian Heff coupled with leads. Thus,
these arguments combined with the expressions of currents in
Eqs. (7) and (8) prove that the many-terminal measurements
of nonequilibrium systems under the off-resonant light give
the same result, as if the system is given by the static effective
Hamiltonian Heff . We emphasize that this result immediately
implies the following two facts: (1) The nonequilibrium system
displays insulating behaviors in the longitudinal conductance,
and (2) Hall conductance is nearly quantized with possible
correction of O(A2), as presented in Sec. II.

3. Insulating behavior for gapped effective Hamiltonian Heff

In the analysis of the previous section, we established
the insulating behaviors of graphene under the application of
off-resonant light through the perturbation theory in A. Such
analysis only shows that the longitudinal conductivity is small

L
ef

t l
ea

ds
 µ

=
V

/2

R
ig

ht
 le

ad
s 

µ=
-V

/2

J

FIG. 6. (Color online) Illustration of the configuration considered
in Sec. III B 3 to demonstrate the insulating behavior for gapped
effective Hamiltonian Heff . NL is the number of leads that are attached
to the infinite plane of graphene as “left” leads and NR is the number
of leads that are attached as “right” leads. The chemical potentials of
the reservoirs connected to left leads are assumed to be at V/2 and
those of the reservoirs connected to the right leads are at −V/2 with
|V | 	 J

and of the order of A2, but does not show, in a strict sense,
that the conductivity goes to zero at zero temperature. Using
the formalism developed in previous sections, it is possible
to show that the nonequilibrium system is an insulator for all
orders in A as long as the chemical potential of leads lies
below the effective gap of Heff . The argument does not rely
on the off-resonant condition and, in principle, is applicable
whenever Heff has a gap.

Here we consider an infinite plane of graphene, and we
attach NL number of leads as “left” leads and NR number of
leads as “right” leads, where these leads are separated by a
large distance (see Fig. 6). Here we assume that the leads are
coupled with the system with equal strength, given by �(ω).
For clarity, we consider the situation in which the chemical
potentials of the reservoirs connected to left leads are at V/2
and those of the reservoirs connected to the right leads are at
−V/2, with |V | 	 J .

In the limit of small coupling strength, the Green’s function
in Eq. (20) can be obtained through the perturbation theory on
�, and is given by

Ĝ(n,ω) ≈
∑

a

∑
m

∣∣ϕn−m
a

〉〈
ϕ−m

a

∣∣
ω − Ea − m� − iγa(ω)

, (23)

where γa(ω) = ∑
n〈ϕn

a |�̂(ω + n�)/2|ϕn
a 〉, and |ϕn

a 〉 and Ea

are the Floquet states and (quasi-) energy of the system in the
absence of the coupling with leads.

In the limit of small γa(ω), the square of the Green’s
function Ĝ(n,ω) can be approximated by a δ function, so
that the transmission probability also becomes a δ function
in frequency:

TL,R(n,ω) =
∑
Li,Ri

∑
a,m

�(ω)�(ω + n�)

×
∣∣〈jLi

∣∣ϕn−m
a

〉∣∣2∣∣〈ϕ−m
a

∣∣jRi

〉∣∣2

2γa(ω)
πδ(ω − Ea − m�),

where jLi (Ri ) are the sites of left (right) leads. Now note
that the (quasi-) energies Ea are the eigenvalues of Heff

in Eq. (2) in the main text. Therefore, if all the chemical
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potentials lie within the gap of Heff , that is, |V | � 	 the δ

function gives zero everywhere for −V/2 � ω � V/2. Note
that we have taken the quasienergies Ea to lie between
−�/2 � Ea � �/2 and thus, by assumption, 	 � �. The
m� term in the δ function of Eq. (24) accounts for the possible
transmission of electrons at high/low energies through photon
absorption/emission processes. As long as we are interested
in the transmission of electrons near the chemical potential
which lies within the effective gap, the m� term plays no role
in the conduction. Thus, from the expression of the dc current
in Eq. (7), it is clear that the current has to be zero when
|V | � 	.

The argument above is general and did not require the
condition of off-resonance. In the case of on-resonant light,
the effective band structures are given by mixing the static
eigenstates whose energies differ by �. This “folding” of
the band structures generically leads to a large number of
states appearing in the effective Hamiltonian near the chemical
potential, and subsequently the effective gap in Heff becomes
proportional to O(An) with n approximately determined by
the ratio of the static bandwidth and the driving frequency
�. While the insulating behavior should be observable in the
small window of the gap, the gap could be small in this case.

C. Floquet Dyson’s equation

In this section, we present yet another way to obtain the
Floquet Green’s function Ĝ(n,ω), which gives an efficient way
to numerically evaluate the Floquet Green’s function for a
certain class of periodical drives.

In this section, we consider the Hamiltonian that depends
only on the first harmonics of the driving frequency �; namely,
the Hamiltonian takes the form

H (t) = H0 + V1e
−i�t + V−1e

i�t . (24)

For example, for the application of the circularly polar-
ized light to two-dimensional lattice systems, V1 = ∑

j (xj +
iyj )c†j cj and V−1 = V

†
1 in the gauge in which the light is

represented as a circulating potential. However, in this gauge,
V±1 diverges as xj ,yj → ∞, and care must be taken to study
with this gauge. A conceptually useful gauge is the gauge in
which the effect of light is represented as a phase accumulation
as in Sec. II. For weak amplitude of light, we can approximate
the Hamiltonian in this gauge in the form of Eq. (24) with
V1 = H1 and V1 = H−1. As before, we are interested in the
terminal measurements of conductance, and thus we assume
that the static part of the Hamiltonian H0 contains the “leaking”
of particles into leads given by i�(ω)/2.

In order to evaluate Floquet Green’s functions, we first
rewrite Eq. (12) in the suggestive form of the Floquet Dyson’s
equation (see Fig. 7):

Ĝ(n,ω) = δn0Ĝ
0(n,�) + Ĝ0(n,�){V−1Ĝ(n + 1,ω)

+V1Ĝ(n − 1,ω)}. (25)

Here Ĝ0(n,�) = 1
ω+n�−H0

represents the bare propagator of
a particle with n photons. This equation has the intuitive
understanding of the full propagator Ĝ(n,ω) that represents
the n photon absorption process as being composed of the
full propagation of Ĝ(n ± 1,ω) followed by the absorption or

= +

+
FIG. 7. The Floquet Dyson equation. The propagator goes from

right to left. Double lines represent the full propagator Ĝ(n,ω) and
single lines are a bare propagator Ĝ(n,ω) = 1

ω+n�−H0
which does not

include the effect of photon absorptions.

emission of a photon, followed by the propagation of the bare
particle.

A particularly elegant solution for Ĝ(n,ω) is provided
by continued fraction method.14 The building block of the
solution is the dressed propagator

F̂+(n,ω) = 1

(G0)−1(n,ω) − V−1
1

(G0)−1(n+1,ω)−V−1
1
··· V1

V1

for n > 0,

F̂−(n,ω) = 1

(G0)−1(n,ω) − V1
1

(G0)−1(n−1,ω)−V1
1
··· V−1

V−1

for n < 0.

The propagator F̂+(n,ω) is dressed only from the higher-
photon-number states, and the propagator F̂−(n,ω) is dressed
by the lower-photon-number states. The full propagator is then
given as

Ĝ(0,ω) = (ω − H0 − Veff)
−1,

Veff = V1F̂−(−1,ω)V−1 + V−1F̂+(1,ω)V1, (26)

Ĝ(n,ω) = F̂+(n,ω)V1 · · · F̂+(1,ω)V1Ĝ(0,ω) for n > 0,

= F̂−(n,ω)V−1 · · · F̂−(−1,ω)V−1Ĝ(0,ω) for n < 0.

(27)

This solution is valid for any driving frequency. Remarkably,
we see that the zero-photon absorption propagator Ĝ(0,ω) is
simply given by the propagator in an effective Hamiltonian
Heff = H0 + Veff .

For the gauge in which light is represented as time-
dependent vector potential, and weak intensity of lightA 	 1,
we can approximate F̂+(1,ω) = F̂−(−1,ω) = 1

�
in the limit of

high frequency. Thus, we reproduce the result we obtained in
Sec. III B 2 of the effective Hamiltonian Heff = H0 + [H−1,H1]

�

in this limit.

IV. EFFECT OF ELECTRON-ELECTRON AND
ELECTRON-PHONON INTERACTIONS

The nonequilibrium transport properties described in Sec. II
are robust against interactions such as electron-electron in-
teractions, interactions between electrons and disorder, and
electron-phonon interactions. The electron-electron interac-
tions only renormalize the velocity of Dirac electrons, vG and
vIT, and do not change the Dirac nature of the electrons near the
Fermi surface.23 The quantum Hall insulators are insensitive
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to disorders due to the topological origin of the phase, as long
as the disorder strength is small compared to the gap size, 	.24

The robustness of the phenomena against phonon scatter-
ings originates from the conservation of energy in Heff up to the
light frequency �. When the chemical potentials of leads lie in
the gap of Heff , the nonequilibrium current in many-terminal
measurements is conducted through electrons in the lower
band of Heff . Such current can degrade due to electron-phonon
interactions if electrons in the lower band can be excited to
the higher band. However, such excitations in the bands of
effective Hamiltonians require a physical energy greater than
the gap 	 as is rigorously established in the Floquet Fermi
golden rule in the Appendix. It is, in principle, possible to
absorb energies from photons, but because the frequency of
photons � is assumed to be much larger than bandwidth, the
absorption of such large energy requires the excitations of
electrons together with many phonons and, therefore, such
a process is suppressed. Thus, the transition of an electron
from the lower band of the effective Hamiltonian to the
higher band is possible only through the absorption of phonon
energies. Therefore, at low temperatures, the property of an
“insulating” state of the effective Hamiltonian is protected
against electron-phonon interactions by the gap.

V. PROBE OF THE INDUCED EFFECTIVE GAP
IN AN ISOLATED SYSTEM

In this section, we propose a different way to probe the
effective gap induced by off-resonant light through the pump
and probe measurements in an isolated system. The essential
idea is simple. Given a system under the application of light
(called pump laser), suppose that the effective Hamiltonian
Heff defined by Eq. (2) has a gap 	. We prepare the state, in
isolation from thermal reservoirs, such that only the lower band
of Heff is occupied through a sort of “adiabatic preparation.”
Here we start from zero-temperature static system and increase
the intensity of light gradually to increase the size of the gap,
	. As we argue below and in the Appendix, the adiabatic
theorem in the Floquet picture guarantees that the final state
has the electron occupations such that the lower band of
photon-dressed Hamiltonian Heff is occupied. Now for this
occupation of electrons with a gap to a higher band, it is
intuitively clear that the system becomes transparent to the
probe light with frequency smaller than 	. In the case of
graphene and topological insulators under the application of
light, we expect that the transmitted probe light results in the
Faraday rotations.

The pump and probe measurements described above are
well understood if the modification of the system from
the original Hamiltonian to final Hamiltonian Heff is done
through a static field. In this case, the adiabatic preparation is
guaranteed by the adiabatic theorem, and the transmission of
probe light can be confirmed by looking at the Fermi golden
rule, which shows that the photons cannot be absorbed by
electrons due to the conservation of energy.

In the case of periodically varying fields, analogous state-
ments hold. The Floquet adiabatic theorem shows that, under
an adiabatic evolution of the periodically varying fields, each
Floquet state follows the instantaneous Floquet state given by
the instantaneous Hamiltonian. Similarly, the Floquet Fermi

golden rule gives the rate in which the transition from one
Floquet state to another happens under small perturbations.
This result shows that the quasienergies of Floquet states are
conserved up to integer multiples of driving frequency �.
Thus, as we have claimed above, the electrons in the lower
band of Heff cannot be excited to higher bands unless the
photon energy is larger than the band gap 	. We give the
detailed proof of these theorems in the Appendix.

VI. CONCLUSION

In this paper, we studied the transport properties of nonequi-
librium systems under the application of light in many-terminal
measurements. Starting from the Floquet Landauer formula,
we gave two different solutions of Floquet Green’s functions
that illustrate the physical origin of transport in this situation.
We found that for generic driving frequencies, the transport
involves photon-assisted conductance and cannot be described
by any static, effective Hamiltonians.

In the case of graphene and topological insulators under
the off-resonant light, the nonequilibrium transport does not
involve photon absorptions/emissions. Rather, the electron
band structures are modified through the virtual photon absorp-
tion/emission processes. We established, through the solution
of the Floquet Green’s function, that such modifications
are captured by the static photon-dressed Hamiltonian and
that the transport in this system becomes equivalent to that
described by the photon-dressed Hamiltonian. Remarkably,
the effective Hamiltonian obtained in this way takes the form of
a Haldane model11 with second-neighbor hopping with phase
accumulations for graphene under the application of circularly
polarized light.

One important aspect of our proposal is the opening
of the gap in the photon-dressed Hamiltonian when the
original static Hamiltonian is semimetal and gapless. We
gave two physical manifestations of such a gap. One is the
insulating behavior of the driven system attached to the leads
(Sec. III B 3). The attachment of leads is crucial to determine
the electron occupation numbers. Another is the transmission
of low-frequency light in an isolated system (Sec. V) after the
adiabatic preparations of states. We argued the possibility of
such pump-probe measurements by establishing two important
extensions of well-known theorems, the Floquet adiabatic
theorem and the Floquet Fermi golden rule (Appendix).

The formalism and intuitive understanding developed in
this paper can be used to study the transport properties of a
variety of systems under the application of light. It is of interest
to analyze, for example, the transport properties of light-
induced topological systems proposed in Ref. 8. In addition,
our analysis shows that transport under the application of light
contains richer physics than static transport. In particular,
photon-assisted conductance in which electrons absorb/emit
photons during the propagations is the unique feature of driven
systems, and it is interesting to analyze how such physical
process results in energy conductions. While we focused on
the response current Jres in this paper, yet another aspect of
driven systems is the presence of pump current Jpump appearing
in Eq. (4). It is of interest to find materials that can pump
currents by simply shining light on their surface.
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APPENDIX: FLOQUET FERMI GOLDEN RULE
AND FLOQUET ADIABATIC THEOREM

In this section we establish the following two statements
about Heff studied in the main text: (1) The result of many-
terminal measurements of the systems under the application
of light obtained in the main text is robust against electron-
phonon interactions, as long as the energy of phonons dictated
by the temperature of the systems is smaller than the induced
gap 	; (2) the photoinduced gap 	 can be probed, in a closed
system, by the transmission of a laser with frequency ω < 	.

We give arguments for the first statement by deriving an
analogous theorem as Fermi golden rule in the periodically
driven systems. When the chemical potentials of leads lie in
the gap of Heff , the nonequilibrium current in many-terminal
measurements is conducted through electrons in the lower
band of Heff . Such current can degrade due to electron-phonon
interactions if electrons in the lower band can be excited
to the higher band. By deriving the Floquet Fermi golden
rule, we demonstrate that such excitations in the bands of
effective Hamiltonians still require a physical energy greater
than the gap 	. It is in principle possible to absorb energies
from photons, but because the frequency of photons � is
assumed to be much larger than the bandwidth, the absorption
of such large energy requires the excitations of electrons and
many phonons, and therefore such a process is suppressed.
Thus, the transition of an electron from the lower band of
the effective Hamiltonian to the higher band is possible only
through the absorption of phonon energies. Therefore, at low
temperatures, the property of an “insulating” state of the
effective Hamiltonian is protected against electron-phonon
interactions by the gap.

The proof of the second statement requires two steps. If
we assume that the closed system with Heff can be prepared
in a state such that only the lower band of Heff is occupied,
then we can argue from the Floquet Fermi golden rule that
the low-frequency laser with ω < 	 cannot be absorbed
by the electrons. Therefore, such a system is transparent
to the light. In order to prepare such a “filled” state of
the effective Hamiltonian Heff , we consider an adiabatic
preparation. Starting from the half-filled state of original
systems whose chemical potential lies at the Dirac points,
we adiabatically increase the strength of light. We argue, by
deriving the Floquet adiabatic theorem,25 that such procedure
prepares the filled state of Heff except possibly exactly at the
Dirac points.

These two statements rely on two general theorems about
periodically driven systems, dubbed the Floquet Fermi golden
rule and the Floquet adiabatic theorem. In the following, we

derive these results, using the elegant approach from “two-
time” formalism.25 We emphasize that these results are general
and have wide applications outside of what we discussed in
this paper.

1. Two-time Schrödinger equation

In order to study the dynamics of periodically driven
systems, it is convenient to separate two time scales: a fast
time scale associated with the driving frequency � and a slow
time scale associated with other dynamics such as those of
phonons. We let t denote the former time scale and τ the latter
and obtain the Schrödinger equation of the slower dynamics in
terms of τ through the replacement i∂/∂t → i∂/∂t + i∂/∂τ .
Then the time evolution of states for slow time scale can be
written as

i
∂

∂τ
|ψ(τ )〉 = (H + V̂ (τ ))|ψ(τ )〉, (A1)

H = H (t) − i
∂

∂t
, (A2)

where H (t) corresponds to the Hamiltonian with periodic
drives with frequency � and V̂ (τ ) represents the perturbation
of the system with slow frequencies compared to �. In
the absence of the perturbation V (τ ), the eigenstates of the
Schrödinger equation above is given by Floquet states such
that

Eα|�α〉 = H|�α〉, (A3)

where |�α(t)〉 = eiEαt |ϕα(t)〉 = ∑
n e−i�nt |ϕn

α〉 is a state with
a periodic structure |�α(t)〉 = |�α(t + T )〉 and Eα is the
quasienergy of the Floquet state, that is, the eigenenergy of
Heff . Here |ϕα(t)〉 represents a Floquet state which satisfies the
equation H|ϕα(t)〉 = 0. Note that Eα is only defined up to �,
so that physically the same Floquet state |ϕα(t)〉 in Eq. (14)
can be associated with the eigenvalue Eα + m� and the state
|�m

α (t)〉 = ∑
n e−i�nt |ϕn+m

α 〉. Here we take the convention that
|�m

α (t)〉 with m = 0 is associated with the quasienergy Eα such
that −�/2 � Eα � �/2. The orthogonality of the eigenstates
|�α〉 can be recovered by defining the inner product of Floquet
states as the average of the usual inner product over one period
of time,

〈〈χα|χβ〉〉 ≡ 1

T

∫ T

0
〈χα(t)|χβ(t)〉dt. (A4)

Then we have 〈〈�α(t)|�β(t)〉〉 = δα,β .
These extensions of the inner products and eigenvalue

problem in periodically driven systems can be considered as
the extension of Hilbert space to include the fast time variable
t as another “spatial” variable. The inner product Eq. (A4) in
this Hilbert space integrates over t , and the time variable is now
represented by the slow time variable τ . We point out that the
inner product Eq. (A4) makes sense only when any dynamics
associated with τ occurs in a slower time scale than the period
of driving T . In principle, operators and states which depend
on τ change during the integration time T of fast time variable
t due to the dependence on τ . Since we are treating t and τ

as independent variables, the inner product Eq. (A4) ignores
such τ dependence. As long as such changes are small, the
inner product Eq. (A4) gives a good approximation.
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The crucial observation is that the slow time Schrödinger
equation in Eq. (A1) has the identical form as the usual
Schrödinger equation and, therefore, many results for static
systems can be directly extended to periodically driven systems
through the extension of the the inner product to Eq. (A4).

2. Floquet Fermi golden rule

The Floquet Fermi golden rule gives the intuition behind the
response of periodically driven systems under the influence of
perturbations. In particular, the result shows that quasienergy
of the effective Hamiltonian Heff is a conserved quantity
up to the driving frequency �. In the context of our paper,
this result implies that electrons in the lower band of Heff

cannot be excited to the upper band if the frequencies
of the perturbations, such as phonons or probe light, are
smaller than the gap 	. Thus, the transport property of a
nonequilibrium system described by Heff is robust against
phonon interactions as long as the chemical potentials of
leads lie in the gap and phonon energies are smaller than
the gap 	. Moreover, if one can prepare the system in the
state with filled lower band of Heff , then the gap of Heff can
be probed by observing the transmissions of low-frequency
lasers.

This Floquet Fermi golden rule can be easily obtained
through the two-time formalism described in the previous
section. In the following, we consider the perturbations
of the system such as phonons with frequency ω much
smaller than � such that ω 	 �. We take the perturbation
in the form V̂ (τ ) = V̂ e−iωτ . The usual derivation of Fermi
golden rule can be applied in a straightforward fashion, and
we obtain the Floquet Fermi golden rule, which gives the
rate γi→f of exciting the initial Floquet state |ϕi〉 to the
final Floquet state |ϕf〉 in the presence of the perturbation
V̂ (τ ):

γi→f =
∑
m

∣∣〈�m
f

∣∣V̂ ∣∣�0
i

〉∣∣2

× δ(Ei + ω − Ef − m�). (A5)

Here Ei and Ef are the quasienergies of the initial and final
Floquet states, respectively. In order to derive the result above,
we represented the Floquet state |ϕi〉 by the specific periodic
state |�0

i 〉. This choice is arbitrary and any other choice gives
the same result. Since the physical Floquet state |ϕf〉 can be
represented as the states |�m

f 〉 for any integers m, the total
transition rate is given by the sum of the rate from the state
|�0

i 〉 to states |�m
f 〉.

This rate has the same form as the conventional Fermi
golden rule, except for the summation over the Floquet energy
index m. The δ function in the equation above imposes
the conservation of quasienergy, which is the eigenenergy
of effective Hamiltonian Heff , which means the energy is
conserved up to the driving frequency �. This is a natural
consequence of the fact that the system can absorb or emit the
energy � from the periodic drives.

From this result, it is clear that such conservation of
quasienergy prevents the excitations of electrons from lower
band to upper band when phonon energy ω is smaller than
the gap of the system, and � is much larger than the total
bandwidth of electrons.

3. Floquet adiabatic theorem

In this section, we show, in analogy with the adiabatic
theorem of static systems, that a Floquet state follows an
adiabatic change of Hamiltonian and stays in the Floquet state
of the instantaneous Hamiltonian. This result indicates that
the adiabatic increase of the intensity of light can be used
to prepare the state with filled lower band of Heff , whose
properties can then be probed through low-frequency lasers,
as argued above.

Starting from the slow-time Schrödinger equation in
Eq. (A1), we can follow the derivation of adiabatic theorem and
prove the analogous theorem for periodically driven systems.
Here we briefly outline the derivation.

Suppose that the total Hamiltonian H(τ ) is slowly varying
as a function of τ . We are interested in how a Floquet state of
H (0) at time τ = 0 evolves under this time evolution. Let |g〉
be the initial Floquet state and |G(τ0)〉 be the result of evolving
|g〉 under H (τ ) for time τ0.

We denote the instantaneous eigenstates of H(τ ) as |α(τ )〉
such that H(τ )|α(τ )〉 = Eα(τ )|α(τ )〉. Then we express the
state |G(τ )〉 in terms of |α(τ )〉 as

|G(τ )〉 = exp

(
− i

∫ τ

0
Eg(τ ′)dt ′

)

×
(

cg(τ )|g(τ )〉 +
∑
α �=g

cα(τ )|α(τ )〉
)

. (A6)

In the absence of degenerate states, we can solve for the
coefficients cα(τ ) in the lowest order for the slow change of
Hamiltonian H(τ ) in the Schrödinger equation of Eq. (A1).
The result is given by

|G(τ )〉 = e−i
∫ τ

0 Eg(τ ′)dt ′ exp

(
−i

∫ τ

0
i

〈
〈g(τ ′)| ∂

∂τ ′ |g(τ ′)〉
〉
dτ ′

)

×
(

|g(τ )〉−i
∑
α �=g

|α(τ )〉
〈〈α(τ )| ∂

∂τ
|g(τ )〉〉

Eβ(τ ) − Eg(τ )

)
. (A7)

Thus, to the zeroth order for the slow change of Hamiltonian
H(τ ), |G(τ )〉 is the Floquet state of the instantaneous Hamil-
tonian H(τ ) with possible accumulations of dynamical and
Berry phases. The first-order correction is given by the second
term of Eq. (A7).

For static systems of Dirac Fermions studied in this paper,
we have shown that a gap proportional to A2 opens at the
Dirac point upon the application of light. If the chemical
potential lies at the Dirac point before the application of
light, the result above implies that the adiabatic increase of
the intensity of light A(τ ) can be used to prepare the system
close to the filled lower band state of Heff . At exactly the Dirac
points where the spectrum becomes degenerate, the adiabatic
theorem above does not apply, but these points represent only
a tiny portion of the total states, and thus can be ignored
for the calculations of physical quantities. When the initial
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system is at finite temperature, such adiabatic increase of
A(τ ) leads to nonthermal distributions of electrons in the
spectrum of Heff , but nonetheless the resulting density matrix
can be calculated through the result Eq. (A7) in the adiabatic
limit.

This Floquet adiabatic theorem can be used to obtain the
Kubo’s formula26 in the noninteracting, periodically driven
systems. In Ref. 7, such a result is applied to derive the
extension of TKNN formula24 to periodically driven systems
in infinite systems.
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