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This paper describes the operation and the interaction of cloaking devices when they are periodically arranged.
The main focus is on analyzing the dispersion relation of structures, which should mimic that of the vacuum in
the ideal scenario. We distinguish between two cloaking mechanisms: cloaks designed within the framework of
transformation optics and cloaks designed on the basis of the scattering cancellation technique. The difference
between the two approaches is that the first operates independently of the frequency by assuming nondispersive
materials, whereas the latter is designed to operate for a single frequency. Our numerical simulations demonstrate
that arrays made of such invisible dielectric obstacles act like a homogeneous medium with permittivity and
permeability equal to those of the surrounding medium, except for a countable set of eigenfrequencies associated
with Mie resonances for the former type of (transformation-based) cloak. For the latter type of (plasmonic) cloak,
the marginal scattering response indicates the effectiveness of cloaking arrays of individual particles. Our spectral
(Floquet-Bloch) approach to cloaking might be useful to implement realistic applications such as biomedical
sensing, noninvasive probing, sensing networks, or multiobjective camouflaging.
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I. INTRODUCTION

In recent years, conformal mapping and transformation
optics paved the way to the implementation of numerous exotic
applications, such as the ability to render arbitrary objects
undetectable by exterior observers,1,2 simulation of black
holes,3,4 gradient index lenses,5 and hyperlenses.6 Among all
these effects, invisibility has attracted most of the attention of
researchers since it is potentially the most counterintuitive and
fascinating effect. Shortly after the publication of the seminal
papers by Pendry et al.1,7 and Leonhardt and Philbin,2,8 where
the concepts were introduced and the basic theoretical frame-
work provided, an experimental study showed the possibility
of hiding a 10-cm-long metallic cylinder from microwaves
at the frequency of 8.5 GHz.9 Generally, this mechanism
requires simultaneously inhomogeneous and anisotropic ma-
terial properties (tensors of permittivity ε and permeability
μ), which are challenging to implement even with the most
complex metamaterial at hand. Li and Pendry proposed to
relax these constraints by introducing a new type of cloaking
called carpet cloaking.10 The carpet cloak makes any object
placed above a ground plate appear as if it were a flat mirror
by hiding it under a suitably designed metamaterial layer. It
has the advantage that the required permittivity is isotropic
and no longer singular. Shortly afterward, this concept was
demonstrated to be powerful in designing invisibility devices;
subsequent experiments were performed at both microwave11

and infrared frequencies12,13 and even recently in the optical
domain.14,15

Parallel to these efforts, an alternative strategy was dis-
closed by Alù and Engheta in 2005.16 It consists in the use of
plasmonic materials (with near-zero or negative permittivity)
to render dielectric or conducting objects nearly invisible.
The proposed mechanism relies on a scattering cancellation

technique, based on the negative local polarizability of a cover
made of low-permittivity materials.16–18 Further approaches to
implement cloaking devices rely on an anomalous resonance
of a cylindrical perfect lens to cloak a countable set of line
sources,19,20 homogenization of a quasiphotonic crystal of
ellipsoids to mimic anisotropy,21,22 or use of the waveguide
approach.23

Most of these previous studies considered invisibility from
the real space point of view, i.e., by analyzing the response
of an isolated cloak to an external illumination (plane wave
or Gaussian beam at fixed frequency). An alternative way to
understand the functionality of the cloak, which we wish to
elaborate on here, is to formulate it in terms of an eigenvalue
problem as was done by Guenneau et al., who analyzed
cloaking of a periodic array of acoustic inclusions.24 Light
propagation in any medium is governed by the wave equation.
Hence, light propagation from an initial plane located in front
of the cloak toward a plane behind the cloak has to be in-
distinguishable from the propagation through the background
material, i.e., the amplitude distribution and the phase advance
have to be identical. Whereas the amplitude distribution has
to be preserved between the planes, the absolute phase is
allowed to vary, i.e., it will be the Bloch phase. What happens
in between these planes is of minor importance and actually
defines the modus operandi of the cloak. The primary question
for defining a cloak therefore can be recast as a search for
a desired material distribution between these two planes, in
addition to a given obstacle, such that the eigenmodes and
the eigenvalues will be exactly those of the homogeneous
surroundings. The formulation of this eigenvalue problem is
well established in certain fields of photonics, i.e., for photonic
crystals, but also for metamaterials.25 Consequently, one aim
of this paper is to apply the methods from such fields to the
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FIG. 1. (Color online) (a) Schematic of an array of cloaked
dielectric cylinders in the two-dimensional (2D) geometry (for
illustration we consider the example of plasmonic cloaks); this crystal
is infinitely extended in all three directions. (b) First Brillouin zone
�XM where � = (0,0), X = (π/a,0), and M = (π/a,π/a), with a

being the period of the array; dispersion diagrams will be computed
along these directions. (c) Polarized plane wave incident on the
structure composed of the cloaked cylinders.

present problem, which furthermore requires the cloaks to be
periodically arranged in space. In fact, in some applications
(such as sensing networks or multiobject camouflaging), one
needs to cloak a periodic arrangement of particles, and thus
the dispersion relations should be computed in order to
verify the invisibility efficiency for the different Bloch modes
(characterized by their frequencies and wave numbers).

Therefore, here we analyze cloaking devices and their
spectral properties by relying on an analysis of the dispersion
relation for periodically arranged cloaks. For this purpose,
we address the problem of cloaking an array of dielectric
or conducting obstacles, as depicted schematically in Fig. 1,
by covering each of them with an invisibility shell (whose
parameters are deduced from either the transformation optics
approach or the plasmonic cancellation technique).

II. DISPERSION OF TRANSFORMATION-OPTICS-BASED
CLOAKING DEVICES

A. Arrays of ideal cloaks and dispersionless modes

Recent mathematical results26–29 show that, in the case of
a single cylindrical cloak, there is a perfect correspondence
between the waves in the (empty) virtual space and the waves
in the physical space. For this to be proven mathematically,
the axis of the cylinder should have zero capacity (in the sense
of potential theory), which is obvious in the case of a single
cloak. This also should be true for a 2D array of lines in a three-
dimensional space or a 2D array of points in a two-dimensional
space, and again a perfect correspondence between the waves
in virtual and physical space, resulting in perfect cloaking,
is expected to be observed. This is exactly what we wanted
to test in this introductory section. The analysis of such
a case using the dispersion relation serves moreover the
purpose of verifying the accuracy of our numerical procedure.
Light propagation through an array of ideal cloaks whose
parameters are deduced from transformation optics1 should
not deviate from that of free space. With the confidence
obtained concerning the predictive power of our methodology,
the approach will be applied further below to the more

relevant scenarios of imperfect cloaks, where the coherent
interaction between adjacent entities sensitively affects the
overall cloaking capabilities.

To calculate the dispersion relation, let us consider the case
of TE-polarized electromagnetic waves E = E3e3 satisfying
(without loss of generality)

∇ × [μ−1(x1,x2)∇ × E(x1,x2)] − ε(x1,x2)k2
0E(x1,x2) = 0,

(1)

with ε(x1,x2) and μ(x1,x2) the relative permittivity and
permeability of the medium and k0 = ω/c the free-space wave
number. E(x1,x2) is a function of spatial variables and is
of finite energy in Y = [0; a]2 (square integrable and with
a square integrable gradient) and such that

E(x1 + a,x2 + a) = E(x1,x2)ei(k1+k2)a, (2)

where the Bloch vector k = (k1,k2) ∈ Y ∗ = [0,π/a]2, and Y ∗
is the so-called first Brillouin zone (see Fig. 1). This square
cell Y ∗ in reciprocal space can be further reduced to a square
triangle �XM with vertices � = (0,0), X = (π/a,0), and
M = (π/a,π/a), as depicted in Fig. 1, if the inclusion within
the cell Y in physical space exhibits a fourfold symmetry.

To enforce Floquet-Bloch conditions in Eq. (1), it suffices
to link values of E on opposite sides of the basic cell Y .31 The
finite element formulation was implemented in the commercial
package COMSOL multiphysics.32

The resolvent of the operator associated with the weak
form of Eq. (1) is compact; hence for a given Bloch vector
k the spectrum is a countable set of isolated eigenvalues
tending to infinity. This spectrum can be ordered by increasing
number kn(k) (with the integer n taking into account the
multiplicity of a given eigenvalue kn = ωn/c). More precisely,
these eigenvalues can be numerically found using the Rayleigh
quotient of (1) and invoking the Courant-Fischer min-max
principle,33 which says that, for all n � 1, one has

k2
n(k) = min

Un−1∈Hn−1

max
0�=φ∈U⊥

n−1

∫
Y

μ−1|∇ × E|2 dx1dx2∫
Y

ε|E|2 dx1dx2
, (3)

where Hn is the set of subspaces of dimension n of the
infinite-dimensional Hilbert space H�(k,Y ) = {(E,∇ × E) ∈
L2(Y ) × [L2(Y )]2, E satisfies (2)}. The larger n, the finer is
the approximation of H�(k,Y ) by Hn (density result). The
numerical counterpart is nothing but the iterative Lanczos
algorithm, which is well suited for large sparse matrices
appearing in finite element methods.31

Figure 2 reveals the spectral behavior of the cloak whose
parameters are given in Ref. 1 according to the Floquet-Bloch
theory. Dispersion relations of ideal cloaks should be identical
to those of free space; and there is a perfect correspondence
between the waves in virtual and physical space, resulting
in perfect cloaking as outlined above; we can see that this
statement is verified for most of the spectral domain, whereas
we can observe a marginal mismatch for some modes. This
may be likely attributed to the requirements of an infinite
permittivity and permeability1 which are naturally not reached
numerically or experimentally. The insets (a) and (b) of Fig. 2
show the snapshot of the electric field corresponding to the first
two eigenmodes at X = (π/a,0) and the streamlines of the
field, which demonstrate clearly the behavior predicted by the
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FIG. 2. (Color online) Dispersion diagram for a doubly periodic
array (pitch a) of cloaked electromagnetic obstacles (in dashed line)
with a shell of inner and outer radii of 0.2a and 0.4a, respectively,
in the first Brillouin zone �XM where � = (0,0), X = (π/a,0), and
M = (π/a,π/a) (schematic representing the unit cell of the array
is drawn in the inset (a) of the figure). The triangles represent the
dispersion in vacuum and are given for comparison as well as to test
the efficiency of the cloak. In the insets (a) and (b), the first two
eigenmodes of the structure are depicted. We show here a snapshot
of the electric field in the unit cell at point X, where X = (π/a,0),
and the streamlines that seem to be curved when passing through the
cloaking device as predicted by the geometrical transformations. The
inset (c) gives the fourth mode at point M , M = (π/a,π/a), which is
a localized one corresponding to the resonance of a cavity of radius R1

[a Mie resonance called an almost-trapped eigenstate in the context of
quantum cloaks by Greenleaf et al. (Ref. 30)]. It is important to note
that we found a discrete set of such dispersionless modes at higher
frequencies, all of which were associated with Mie resonances of the
cavity (monopole, dipole, quadrupole, and so forth).

coordinate transform paradigm, i.e., the field lines seem to be
curved when passing through the cloak region and propagate
as if there were no obstacle in their way. We mention that
the only large deviation concerns the appearance of a fourth-

order mode which does not have a counterpart in the vacuum
dispersion curve. It is a localized mode of the inner cavity of
radius R1 reminiscent of the quasitrapped modes discovered
by Greenleaf et al.30 The inset (c) of Fig. 2 shows that the
energy of the field is entirely concentrated inside this cavity.
We note that this mode is dispersionless as it does not interact
with its surroundings, i.e., it is entirely confined within the
inner region of the cloak.

Thus it is obvious that, except for the dispersionless mode
which cannot interact with the exterior, our numerical proce-
dure shows an excellent agreement between the dispersion of
the array of cloaks and dispersion in vacuum. This allows us
to move to the core of our work, which consists in analyzing
realistic cloaks based on either transformation optics or the
plasmonic cancellation technique.

B. Spectral properties of multilayered cloaks

We now turn to the analysis of a practical structure, based
on transformation optics; the structure consists of concentric
multilayers behaving as an anisotropic medium in the homog-
enization limit, as proposed first in Ref. 34. Electromagnetic
layered systems with two alternating isotropic materials (A
and B) can produce a transversely isotropic system whose
effective permeability μ is a tensor, as can be seen from
Fig. 3(a). Reduced forms of permittivity are necessary in order
to manufacture realistic cloaking devices.9 This mechanism is
imperfect by definition, since we loosen the requirements on ε

and μ by combining these two requirements into one through
the refractive index. Then our proposed structure consists of
alternating concentric layers A and B with the same thickness
d. Layers of kind A have their permeability slowly varying
whereas layers of kind B have rapidly varying permeability.
This means that the arithmetic average μφ is almost constant,
and the geometric average μr has the radial dependence given
by Eq. (4). The size of these layers is much smaller than
the incident wavelength λ, and in this limit has the following
effective permittivity and permeability tensors:

μr = 2μAμB

μA + μB

, μφ = μA + μB

2
, ε3 = εA + εB

2
. (4)
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FIG. 3. (Color online) (a) Radial dependence of reduced electromagnetic parameters μr and μφ obtained from the geometric transform
in blue (light gray) and red (dotted line) and corresponding staircase approximation μr (i), i = 1, . . . ,20, for the layered cloak consisting
of ten cells of alternating isotropic homogeneous layers (black solid line). The relative permittivity ε3 is constant and equal to 0.5.
(b) The same as Fig. 2 but for a cloak made of the multilayered system described by Eq. (4). The dispersion of ideal cloak (dashed
line), vacuum (dots) are compared to those of the cloak of Fig. 3(b). (dotted-dashed line).
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(a) (b) (c)

FIG. 4. (Color online) Scattered electric energy from the obstacle
in vacuum (a) and when the cloak is turned on (b). The upper panels
of (a) and (b) show the the electric field component E3, while the
lower ones represent the total energy. (c) Radar cross sections of the
bare (solid line) and the cloaked cylinder (dashed line).

Using ten layers from each material, we can build a broad-
band cloak for electromagnetic waves. In Fig. 3(a) we show
the theoretical permeability and its staircase approximation
when we use N = 10 layers from each material A and B.
Figure 3(b) shows the calculated dispersion diagram for such
a cloak and compares it to the one for free space. From this
figure, we can see that the agreement between the two scenarios
is excellent, especially for the first two Bloch modes, where the
homogenization limit is respected (λ � d). One should also
mention that an increase in the number of layers will improve
the performance of the cloak.

III. DISPERSION OF PLASMONIC CLOAKS

A. Introduction to scattering cancellation technique

Another area of active research activity in cloaking is that
of plasmonic shells. In a way similar to the question addressed
in the previous section, it seems legitimate to wonder whether
cloaking by plasmonic resonances among a system of particles
is a cooperation or competition, as first noted by McPhedran
et al.,35 and thus what happens for an array of such cloaks.
Here again, we shall see that the answer is not trivial.

By analyzing the form of the scattered field from a spherical
(dielectric or metallic) object, Alù and Engheta showed that, in
the quasistatic limit, addition of a plasmonic coat with near- or
less than zero effective permittivity permits a drastic reduction
in the scattering cross section.16,17 To understand this, let us
consider the illumination of the structure by a plane wave
propagating in the x direction, with an electric field polarized
along the e3 axis. In the cylindrical case, the scattered field can
be expanded in terms of Hankel functions as

Esca
3 (r) =

m=+∞∑

m=0

(2 − δm,0)imcmH (1)
m (k0r) cos(mφ), (5)

where δm,0 is the Kronecker symbol, i is the pure imaginary
number, φ is the azimuthal angle, cm is the scattering
coefficient, and k0 is the wave number. The corresponding
normalized total scattering cross section is given by36

Csca = 4

k0

m=+∞∑

m=0

(2 − δm,0)|cm|2, (6)

where cm = −Um/(Um + iVm) are the scattering coefficients
and Um and Vm are determinants of 4 × 4 matrices (see Ref. 16
for a complete derivation). In the quasistatic limit (λ/as � 1),
the expression of the nth scattering order simplifies, and it can
be shown that it scales as order (k0as)n. This means, that Csca

is dominated by the zeroth order, which corresponds to the
dipolar approximation. The expression for c0 is

c0 ≈ −iπk2
0

4

[
(εs − εc)a2

s − (εs − 1)a2
c

]
. (7)

It is clear from Eq. (7) that an analytical result can be
provided that links the core radius ac and its permittivity εc to
the required shell radius as and permittivity εs(ω) in order to
suppress the entire scattered signal. It turns out that16

γ 2 = εs − 1

εs − εc

, (8)

with γ = ac/as (a shell, in simple words, that possesses the
properties specified by this equation acts as an antireflection
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FIG. 5. (Color online) (a) Dispersion of a plasmonic cloak in blue (dashed) line compared to vacuum in solid line and the bare obstacle
in dashed-dotted line. Simple case where the permittivity of the medium is taken to be constant, εideal = −3.5454 + δi, where δ is a small
imaginary part, to mimic loss. (b) Zoom on the direction �X, where the scattering is governed by the dipole term, and where we expect the
structure to be invisible: the dispersion curves of the core-shell system almost coincide with those of vacuum, and the agreement is better in
the zero-frequency limit (quasistatic case) within the homogenization regime as indicated by the dotted ellipses in (a).
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FIG. 6. (Color online) Dispersion of a plasmonic cloak. (a) The permittivity of the shell follows the well-known Drude model (dashed line
gives the dispersion of the ideal cloak, green (light gray) one stands for vacuum, while dashed-dotted line corresponds to the bare obstacle and
black (dark gray) gives the dispersion of the Drude’s cloak). (b) Zoom on the region where Re(ε) = εideal = −3.5454 and where the Drude shell
is supposed to cloak perfectly the dielectric obstacle. This can be observed, since the two curves have an intersection point at ω/ωp ≈ 0.47 [as
indicated by the arrow in (a)]. (c) Complete dispersion diagram showing the normalized frequency versus the modulus of the Bloch vector in
the X� direction for the bare obstacle (red), the vacuum (green), and the obstacle with the ideal shell (blue) and with the Drude shell (black).

coating for the core). Figure 4 shows the results of the
numerical simulations of such a cloak and confirms this
mechanism in the quasistatic limit. The shell can be made
from a natural material or from a metamaterial itself to provide
specific values at a desired target frequency.37

B. Spectral analysis of plasmonic cloaks

Let us now consider first the dispersion of a cloak consisting
of a single layer of plasmonic material given by Eq. (8). In
Fig. 5 the material dispersion of the plasmonic layer is not
taken into account. It is clear from this figure that the Bloch
modes of the cloak coincide with those of vacuum at relatively
low frequencies [for the regions �X and M� and around the
� point as can be seen from Fig. 5 (b)]. For higher modes
and thus frequencies (smaller wavelengths), the modes of the
cloaked obstacle are still closer to those of vacuum than those
of the bare obstacle, but a discrepancy between the first modes
should be noticed. This can be explained by the fact that the
quasistatic limit ceases to be valid, and the dipole contribution
to the scattering cross section is no longer dominant. Then, the
permittivity of Eq. (8) does not completely cancel the scattered
field as it does in the long-wavelength limit.

Now we proceed with the more realistic case by taking into
account the material dispersion relying on the Drude model
ε = ε∞ − ω2

p/(ω2 − iγ ω), where ωp is the plasma frequency
of the metal (2175 THz for silver), γ is the damping constant
(4.35 THz for silver), and ε∞ = 1. The problem in computing
dispersion curves with frequency-dependent permittivity
is that the eigenvalue problem is now nonlinear and
requires another formulation for computing the eigenmodes
conveniently. Davanço et al. proposed a different formulation
for this class of problems, consisting of using the complex
modulus of the Bloch vector as the eigenvalue for both a
fixed frequency ω and the direction of the k vector.38 Figure 6

displays the band structure of a square-lattice plasmonic
crystal as function of the real part of the Bloch vector for
vacuum, the bare obstacle, and the cloaked structure. As can
be seen from Figs. 6(a) and 6(b), cloaking is matched when
the value of εDrude satisfies Eq. (8), in agreement with the
plasmonic cloaking predictions. To enhance the bandwidth
of operation, many layers of different metals (with different
plasma frequencies ωp,i) are needed, as shown in Ref. 17.

IV. CONCLUSION

The invisibility of arrays of coated particles was numer-
ically studied using methods of both transformation optics
and the plasmonic scattering cancellation technique. The
dispersion curves of Bloch modes associated with these
structures show an invisibility effect for the entire spectrum,
except for a discrete set of eigenfrequencies associated with
Mie resonances of the invisibility region, when transformation
optics is used. In contrast, scattering reduction could be
achieved with plasmonic coatings only in a narrow band. Our
results show that it is possible to cloak an array of dielectric
particles for a large range of frequencies independently of
their shapes or the period of the photonic crystal which they
constitute. Unlike most of the previous studies, which focused
only on the scattering properties of cloaks, here we presented
another point of view by analyzing their spectral response
in terms of the dispersion relation, which unveiled the role
played by quasitrapped modes in the collective response of
an array of coated particles. This study could be of use for
many devices, such as low-interference communication (for
example, when one has an array of cloaked antennas), sensing,
and detection. We are confident this will be beneficial for a
variety of real-world applications, including biomedical sens-
ing, noninvasive probing, sensing networks, multiobjective
camouflaging, communications, and information processes.
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We finally believe that this provides an additional perspective
for studying these structures.
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