
PHYSICAL REVIEW B 84, 235101 (2011)

Giant quantum freezing of nanojunctions mediated by the environment
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We investigate the quantum heat exchange between a nanojunction and a many-body or electromagnetic
environment far from equilibrium. It is shown that the two-temperature energy emission-absorption mechanism
gives rise to a giant heat flow between the junction and the environment. We obtain analytical results for the
heat flow in an idealized high-impedance environment, perform numerical calculations for the general case of
interacting electrons, and discuss giant freezing and heating effects in the junction under typical experimental
conditions.
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I. INTRODUCTION

Electron transport in the presence of an electric field
is always accompanied by heating of the charge carriers.
This effect is especially pronounced in electronic devices,
where overheating leads to instabilities in the current-voltage
characteristics.1,2 This defines the urgent task of studying
far-from-equilibrium heating of charge carriers.

In this paper we study the heat flow between tunneling
electrons and an environment in nanojunctions using a non-
perturbative technique based on a quantum kinetic equation.
We show that a regime exists in which the interaction with
the environment leads to an effective (“giant”) environment
cooling of the junction.

At high electron temperatures phonons play the role of
the cooling agent. At low temperatures the direct energy
transfer to the phonon bath becomes inefficient and the
relaxation is dominated by energy exchange between tun-
neling electrons and an electromagnetic environment and/or
environment of many-body excitations in the electrodes.3 In
both cases, cooling follows the two-temperature emission-
absorption mechanism:1,3 the emission of environment modes
with a temperature equal to that of the tunneling charge
carriers, Te, and the absorption of environment excitations
having the temperature of the environment, Tenv. Moreover,
not only temperatures, but also the distributions of emitted
and absorbed environment modes, may be different in the far
from equilibrium regime.

The coupling between the tunneling electrons and the
environment has a dispersion characterized by the “cut-
off” frequency ωmax. For example, ωmax = Ec for a high-
impedance environment, with Ec being the charging energy
of the tunnel junction; ωmax = 1/

√
LC for an environ-

ment represented by an L-C circuit; and ωmax = 1/RT C

for an ohmic environment, with RT and C being the
ohmic resistance4,5 and capacitance of the tunnel junction,
respectively.6 We are interested in the regime where Te,Tenv >

ωmax. In this case the large number of environment modes,
N ∼ ln[ωmaxτe(Te)] max{Te,Tenv}/ωmax � 1 (τe is the energy
relaxation rate), participate in the heat exchange between
the environment and tunneling electrons in the nanojunction.
At low electron temperatures, when the environment has an

electromagnetic or many-body origin, this regime is easy
to reach.6,7 We show that in general the heat flux acquires
the large factor N � 1 in all orders in electron-environment
interactions increasing the efficiency of the heat exchange.
Using the Landauer scattering theory8 we express the density
matrix as the direct product of the density matrices for emitted
and absorbed environment excitations; this is a typical case for
a two-temperature emission-absorption mechanism far from
equilibrium. The validity of the Landauer approach implies
that the effective energy relaxation length of the environment
modes is larger than the size of the nanostructure.

In our consideration a bath (phonons) is absent. Therefore
our approach is valid when the interaction time between
electrons and environment is much smaller than the one
between environmet and bath, which is the case at not very
high temperatures where the number of phonons is small.

II. MODEL

The rate of heat flow between the tunnel junction and the
environment is given by (see Appendix A and Ref. 7)

Q̇ =
∫ ∞

0
ε{nεP (ε) − [1 + nε]P (−ε)}p(ε)dε, (1)

where P (±ε) is the probability density for the tunneling charge
carrier to lose (gain) the energy ε to (from) the environment.
The distribution function nε in Eq. (1) can be interpreted as
the distribution function of electron-hole pairs that appear at
the junction interface just after the tunneling process: the hole
in the source lead and the electron in the drain [Fig. 2(a)].
The effective temperature of “tunneling electrons” Te should
be identified with limε→0 nε. If the distribution functions
at the electrodes are Fermi functions with equal tempera-
tures T , then nε = {(ε − V )NB(ε − V,T ) + (ε + V )NB(ε +
V,T )}/2ε, with NB(ε ± V,T ) being the equilibrium Bose
distribution function. For this case, Te = V

2 coth V
2T

. At low
applied voltages, V � T , and Te ≈ T . In the opposite case,
V � Te, we obtain Te ≈ V/2. The function p(ε) in Eq. (1) is
the weight function for a junction between two normal metals
(Fig. 1) and can be calculated for any choice of the electron
distribution function in the leads, resulting in p(ε) = 4ε/RT .
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FIG. 1. (Color online) Illustration of the nonequilibrium heating
effects in a nanojunction. Electrons traversing the junction absorb
external photons (incident wavy lines) and emit them, leading to
heating of the contact. Plots show the giant heating effect, Q̇, as a
function of the difference of electron and environment temperatures
(V = 0) compared to the “quasiequilibrium” approximation, where
the radiation density matrix is equilibrium, Q̇0. The full nonequilib-
rium analysis gives a heating effect that is at least 1 order of magnitude
more pronounced than for the latter case: max(Q̇/Q̇0) ∼ N > 10.

III. HEAT FLOW

To calculate Q̇, one has to specify the probability density,
which can be written in the form P (ε) = ∫ ∞

−∞ dt exp[J (t) +
iεt], where the function exp[J (t)] reflects the fact that
tunneling electrons acquire random phases due to interaction
with the Bosonic environment. The equilibrium situation
where the distribution function of the environment modes is
the Bose distribution was discussed in Ref. 6. In the general far-
from-equilibrium situation, the function J (t) can be written as3

J (t)/2 =
∫ ∞

[τe(Te)]−1

dω

ω
ρ(ω)

× [
N (in)

ω eiωt + (
1 + N (out)

ω

)
e−iωt − Bω

]
, (2)

where the terms proportional to N (in)
ω and 1 + N (out)

ω corre-
spond to the absorbed and emitted environment excitations,
respectively, and Bω = 1 + N (out)

ω + N (in)
ω . At equilibrium,

Nω reduces to the Bose function and the functional P (ω)
recovers the result in Ref. 6. The energy relaxation time
τe in the expression for J (t) determines the low-energy
cutoff, since the electrons start to equilibrate on larger time
scales, i.e., the nonequilibrium description does not hold
any more. The spectral function ρ(ω) is the probability of
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FIG. 2. (Color online) (a) Illustration of electron-hole pair gen-
eration in the tunnel junction, resulting in the distribution function
nε [Eq. (1)] of these pairs (environment). (b) Comparison of the
distribution functions for T = 0 in the leads and T = V/2.

the electron-environment interaction and characterizes the
particular system under consideration.

According to scattering theory, modes coming from one
“reservoir” into the other have the temperature of the “reser-
voir” of their origin.8 Then the second quantization operators
c

(in/out)
α of the emitted (absorbed) environment mode α enter

the density matrix

℘ = e−∑
α (c(in)

α )†c
(in)
α /Tin × e−∑

α (c(out)
α )†c

(out)
α /Tout , (3)

where Tin = Tenv and Tout = Te. Thus N (in)
ω = 〈(c(in)

ω )†c(in)
ω 〉 =

NB(ω,Tenv) and N (out)
ω = NB(ω,Te). The quasiequilib-

rium approximation mentioned above corresponds to the
Gibbs distribution of the environment modes: ℘0 =
exp{−∑

α c†αcα/Tenv}.
To estimate the magnitude of the heat flow Q̇, we first

expand the distribution function P (ε) in Eq. (1), in the first
order in ρ(ε):

Q̇(1) = 8

RT

∫ ∞

τ−1
e

dεερ(ε)
{
nε

(
1 + N (out)

ε

) − (1 + nε)N (in)
ε

}
.

(4)

This expression becomes 0 if nε = N (in)
ε = N (out)

ε . If the
distribution functions are not equal to each other, we can
expand Q̇(1) with respect to their difference. We consider
the case where the voltage bias at the nanojunction is 0
but the temperatures of electrons at the leads and those
that comprise the environment are slightly different, Te =
T + δT /2 and Tenv = T − δT /2. Thus, nε = nε(T + δT /2),
N (in)

ε = nε(T − δT /2), and N (out)
ε = nε(T + δT /2), where nε

is the Bose distribution function. Expanding Q̇(1) in the first
order in a small parameter δT /T � 1, we find

Q̇
(1)
θ ≈ δT

8

RT

∫ ∞

τ−1
e

dεερ(ε)n′
ε(T )[1 + θnε(T )], (5)

where n′
ε(T ) = dnε(T )/dT . The index θ is 0 for the quasiequi-

librium situation when the temperatures of emitted and
absorbed environment excitations are equal and 1 for the
nonequilibrium case (the index 1 is skipped throughout
this paper). Since nε(T ) in Eq. (5) is always positive, the
following inequality is valid: |Q̇(1)

0 | < |Q̇(1)|, where Q̇
(1)
0 and

Q̇(1) refer to the heat flux in the quasiequilibrium and in
nonequilibrium cases, respectively. The interaction function
ρ(ε) in Eq. (5) quickly decays at energies higher than some
characteristic frequency ωmax. For temperatures T > ωmax we
can approximate nε(T ) ≈ T/ε � 1 and find

|Q̇(1)|
|Q̇(1)

0 |
≈

∫ ∞
τ−1
e

Tρ(ε)dε

ε∫ ∞
τ−1
e

ρ(ε)dε
≈ T

ωmax
ln(ωmaxτe) ≡ N � 1. (6)

Remarkably, at higher orders with respect to ρ(ε), the
nonequilibrium heat flow Q̇ differs from the equilibrium flow
Q̇0 by the same factor. This result holds even for a finite
electric current flowing through the junction. Thus, the heat
flow between the junction and the environment appears much
larger than what the quasiequilibrium estimates predict.

IV. OHMIC APPROXIMATION

We now turn to the simplest case, an environment with a
very high impedance compared to the quantum resistance, RQ.
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FIG. 3. (Color online) Typical heat exchange Q̇ in Eq. (1) of
the ohmic environment with the tunnel junction between two normal
leads. Q̇(Teff,T ,V ) vs T/T0 and voltages eV/T0 (scaling factor T0 =
30ωmax.). We used ωmax/ωmin = 100, Tenv/T0 = 1, and ρ(0) = 10. Q̇

is measured in units of 103ω2
max/(e2RT ).

In this limit, tunneling electrons easily excite the environment
modes. The spectral density ρ(ω) of these modes is sharply
peaked at the zero frequency, ω = 0. For the correlation
function J (t) the concentration of the environment modes at
low frequencies implies that the expansion of J (t) over t up to
second order yields J (t) ≈ −iat − (b/2)t2, where coefficients
a and b are defined as a = ∫ ∞

τ−1
e

(1 + N (out)
ω − N (in)

ω )ρ(ω)dω and

b = ∫ ∞
τ−1
e

ωρ(ω)Bωdω. Using this expansion for J (t), we obtain
the following result for the density function P (ω):

P (ε) = (1/
√

2πb) exp[−(ε − a)2/2b]. (7)

Here the expansion parameter a can be estimated as a =
a0(1 + (Te−Tenv) ln(ωmaxτe)

πωmax
), where a0 = 2

∫
ρdω ≈ 2ρ(0)ωmax ≈

2Ec, where Ec is the charging energy of the tunnel junc-
tion, Te is the electron temperature in the junction, Tenv

is the temperature of environmental modes, and ωmax ≈
1/(RT C). Similarly to coefficient b in Eq. (7), we obtain b ≈
a0(Te + Tenv).

Substituting the density P (ω), Eq. (7), into the heat flux
Q̇, Eq. (1), we obtain our first main result for the typical heat
exchange of the ohmic environment with the tunnel junction
between two normal leads. The full temperature and voltage
dependence is shown in Fig. 3.

V. DYNAMIC COULOMB INTERACTION

Next we discuss the more realistic situation where the
tunneling junction is connected to two disordered conductors
(leads). Following Ref. 9, one can find the spectral probability
function ρ(ω) corresponding to the electron-environment
interaction,

ρij(ω) = ω

2π
Im

∑
q

(
2π
L

)2
(2δij − 1)Ũij(q,ω)

(Diq2 − iω)(Djq2 − iω)
, (8)

(a) (b)
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FIG. 4. (Color online) (a) Schematic presentation of the system:
single contact junction, with contacts consisting of two thin plates,
which are distance d apart. Their thickness a is much less than the
extension in the x and y directions, such that they can be treated
as two-dimensional contacts. The temperature of the contacts T

is kept constant, while the environment temperature Tenv can be
different, which results in heat production or removal in the junction.
(b) Heating of a tunnel junction taking into account dynamic Coulomb
interactions for the zero bias case (V = 0) (red lines, lower x axis) and
the voltage dependence for T = Te (green lines, upper x axis). The
solid curves represent the quasiequilibrium curves and the dashed
curves assume an equilibrium distribution for Nω (temperature in
units of T0 = 0.1Eth).

where i,j = 1,2 are the lead indices, D1(2) are diffusion
coefficients within the respective electrodes, and Ũij(q,ω)
are the dynamically screened Coulomb interactions within
(across) the electrodes. The form of spectral probability ρ(ω)
[ρ(ω) = 2ρ12 + ρ11 + ρ22] depends on the structure of the
environmental excitations spectrum and, thus, on the external
bias.

The system under consideration is shown in Fig. 4(a): two
contacts are separated by distance d and their thickness is a.
The external bias is V and the contacts are kept at temperature
T and the environment at temperature Tenv.

The screened Coulomb interaction in Eq. (8) in Fourier
space has the form Ũ (q,ω) = {[U (0)(q,ω)]−1 + P(q,ω)}−1,
where U (0)(q,ω) = u(q)I + v(q)σx is the bare Coulomb
interaction and P(q,ω) the polarization matrix, respectively,
with Pij = νiDiq

2(Diq
2 − ıω)−1δij. νi is the electron density

of states at the Fermi surface in lead i.
Below we concentrate on quasi-two-dimensional (2D)

infinite leads. For this geometry with a � L, where L is the
characteristic lead size in the x and y directions, the bare
Coulomb interaction has the form

U
(0)
ij (ri − rj ) = e2

∫
dzi dzj

δ
(
zi − z

(0)
i

)
δ
(
zj − z

(0)
j

)
|ri − rj | , (9)

with z
(0)
i = (1/2 − δi1)d, leading to u(q) = 2πe2/q and

v(q) = 2πe2e−qd/q.
In the following, we consider the case of identical leads with

the same diffusion coefficients D1 = D2 ≡ D and densities of
states, ν1 = ν2 ≡ ν. The dimensionless matrix elements Ũij

of the dynamically screened Coulomb interaction (in units of
e2d) are then given by

Ũii = 4π

q̃

χ (q̃)

χ2(q̃) − coth−2(q̃)
, Ũi=j = Ũii

χ (q̃) coth(q̃)
, (10)
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where q̃ = dq and ω̃ ≡ ω(d2/D), with the dimensionless
function χ (q̃) ≡ 1 + coth(q̃) + 4πe2dνx

q̃2−iω̃
. Using these expres-

sions, we can write Eq. (8) as

ρ(ω̃) = 2e2d

D ω̃Im

∫ ∞

0
q̃dq̃

Ũ11[1 − (χ (q̃) coth(q̃))−1]

(q̃2 − iω̃)2
.

Using this expression we can calculate the heat flux Q̇ in
Eq. (1) between environment and nanojunction with dynamic
Coulomb interaction. The typical energy scale is given by the
Thouless energy for a junction of distance d, Eth = D/d2,
which we use to rewrite all expressions in dimensionless
units. For a typical temperature Eth ≈ 100 K, the temperature
and voltage dependence is numerically calculated and shown
in Fig. 4(b). Again, the nonequilibrium heat flow Q̇ is up
to an order of magnitude larger than the quasiequilibrium
approximation Q̇0. We remark that, in this case, the function
ρ(ω) introduces a natural cutoff for J (t) which behaves as
∼ − |t | for large t .

VI. DISCUSSION

Above, we have assumed that the density of hot electrons
is high enough so that the electron-electron scattering time
is smaller than the time of energy relaxation (this time is
large because of the quasielastic nature of interaction between
the electrons and the environment). In this case the electron
distribution function is close to an equilibrium one with an
electron temperature Te, which, in the high-voltage limit, is
higher than the environment temperature Tenv.

In summary, we have discussed the influence of far-from-
equilibrium heating effects on properties of nanojunctions.
Based on a quantum-kinetic approach, we calculated the
nonlinear heat flux between environment and junction. We
showed that the resulting freezing or heating effects far
from equilibrium are, by orders of magnitude, larger than
estimates based on quasiequilibrium environment theory. We
obtained analytical results for the heat flow in an idealized
high-impedance environment and demonstrated, numerically,
that these results hold for the more general case of an
environment with Coulomb interaction. We showed that the
environment can be a very effective freezing agent if the
effective temperature well exceeds the high-frequency cutoff
h̄ωmax. From the experimental point of view the temperature
regime in which the effect is present is readily accessible.
However, one needs to measure the time dependence of the
junction temperature in order to extract Q̇, which could be
technically challenging for a nanojunction, and the presence
of a substrate might need consideration.

One can expect that our results, in particular, the giant
freezing effect, will be important for electronic transport in
junction arrays,10 which will be the subject of a forthcoming
work.
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APPENDIX A: HEAT FLOW RATE

In this appendix we present a derivation of Eq. (1) for the
rate of the heat flow. A general formula for the heat current
going from the left electrode (1) toward the right electrode
reads

I 1→
q = −(

�1,in
q − �1,out

q

)
, (A1)

where �1→
q (�1←

q ) is the heat transfer tunneling rate calculated
in the left electrode:

�1,out
q = 1

RT

∫
εε′

(ε − φ1)f (1)
ε

(
1 − f

(2)
ε′

)
P (ε − ε′),

�1,in
q = 1

RT

∫
εε′

(ε′ − φ1)
(
1 − f

(1)
ε′

)
f (2)

ε P (ε − ε′).

Under the gauge transformation φ → φ − ∂tk, the distribution
functions transform like f (i)(ε) → f (i)(ε + ∂tk). Therefore
the rates and the heat current defined above are gauge invariant.

Similarly, we can find

I 2→
q = −(

�2,out
q − �2,in

q

)
, (A2)

where �2→
q (�2←

q ) is the heat transfer tunneling rate calculated
in the right electrode:

�2,out
q = 1

RT

∫
εε′

(ε − φ2)f (2)
ε

(
1 − f

(1)
ε′

)
P (ε − ε′),

�2,in
q = 1

RT

∫
εε′

(ε′ − φ2)
(
1 − f

(2)
ε′

)
f (1)

ε P (ε − ε′).

The gradient of the heat current, ∇IQ, at the contact is

∇IQ = I 2→
q − I 1→

q = {
�1,out

q − �2,in
q

} + {
�2,out

q − �1,in
q

}
.

Finally, we find

∇IQ = (φ2 − φ1)I + 1

RT

∫
εε′

(ε − ε′)P (ε − ε′)

× {
f (1)

ε

(
1 − f

(2)
ε′

) + f (2)
ε

(
1 − f

(1)
ε′

)}
.

On the other hand, the conservation law demands

Q̇ + ∇IQ = EI, (A3)

where the right-hand side is the Joule heat, which is related
to the work of the electric field. The Joule heat is dissipated
in the bulk of the electrodes at distance lE from the junction,
where lE is the energy relaxation length. The heat Q̇ is the heat
dissipated into the environment:

Q̇ = 1

RT

∫
εε′

(ε − ε′)
∑
i,j

f (i)
ε σ x

ij

(
1 − f

(j )
ε′

)
P (ε − ε′), (A4)

where σx is the Pauli matrix. Equation (A4) can be rewritten
in terms of “Bose” distribution functions as follows:

Q̇ =
∫ ∞

0
dε εp(ε){nεP

<(ε) − [1 + nε]P (−ε)}, (A5)

with p(ε) = 4ε/RT and nε = {(ε − V )NB(ε − V,T ) + (ε +
V )NB(ε + V,T )}/2ε. Equation (A5) coincides with Eq. (1) in
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the text. In the zero-voltage limit, Eq. (A5) agrees with the
corresponding expression in Ref. 5.

APPENDIX B: HEAT FLOW AT SECOND ORDER IN ρ(ε)

Below Eq. (3), Dbwe derived the heat flow Q̇ in the
leading (first) order in spectral function ρ(ε). In this appendix
we show that the heat flow Q̇ at second order in the
electron-environment interaction and at first (leading) order in
the temperature difference δT = Te − Tenv leads to the same
enhancement as the first order term.

The heat flow can be written as a sum of two terms, Q̇ =
(W1 + W2)τ , where

W1 = 1

2

∫ ∞

−∞
dε εp(ε)[∂T̃ nε]P (ε), (B1)

W2 =
∫ ∞

0
dε εp(ε)nε∂τ {P (ε) − P (−ε)}. (B2)

Here T̃ = (Te + Tenv)/2. Typically, W1 � W2; therefore we
concentrate on contribution W2 below.

At second order in electron-environment interaction [func-
tion ρ(ε)], we obtain the following result for the heat flow:

Q̇(2) ∝
∫ ∞

0
dεdε1dε2εp(ε)

ρ(ε1)

ε1

ρ(ε2)

ε2

{
n(12)

ε

(
1 + N (out)

ε1

)

× (
1+N (out)

ε2

)
δε−ε1−ε2 +n(12)

ε N (in)
ε1

(
1 + N (out)

ε2

)
δε+ε1−ε2

+ n(12)
ε

(
1 + N (out)

ε1

)
N (in)

ε2
δε−ε1+ε2 − (

1 + n(12)
ε

)

×N (in)
ε1

N (in)
ε2

δε−ε1−ε2 − (
1 + n(12)

ε

)(
1 + N (out)

ε1

)
×N (in)

ε2
δε+ε1−ε2 −

(
1 + n(12)

ε

)
N (in)

ε1

(
1+N (out)

ε2

)
δε−ε1+ε2

}
.

(B3)

At low frequencies (T � ε) we find the W2 contribution to
Q̇(2) as follows:

n(12)
ε

(
1 + N (out)

ε1

)(
1 + N (out)

ε2

) − (
1 + n(12)

ε

)
N (in)

ε1
N (in)

ε2

≈ n(12)
ε

(Te)2

ε1ε2
− (

1 + n(12)
ε

) (Tenv)2

ε1ε2

≈ · · · + (Te − Tenv)
(
1 + 2n(12)

ε

)Te + Tenv

2ε1ε2
+ · · · . (B4)

Here dots represent the terms that finally cancel in Eq. (B3).
We mention the presence of a large enhancement factor (1 +
2n(12)

ε ) ≈ (Te + Tenv)/ε � 1 in Eq. (B4).
In the quasiequilibrium case we do not have this large factor.

Indeed, in this case we have

n(12)
ε

(
1 + N (out)

ε1

)(
1 + N (out)

ε2

) − (
1 + n(12)

ε

)
N (in)

ε1
N (in)

ε2

≈ n(12)
ε

(Te)2

ε1ε2
− (

1 + n(12)
ε

) (Te)2

ε1ε2

≈ · · · + (Te − Tenv)
Te + Tenv

2ε1ε2
+ · · · . (B5)

To conclude, at second order in function ρ(ε), the heat flow
Q̇ is enhanced by the same factor (Te + Tenv)/ε � 1 as at first
order. Similar results can be proofed at higher orders in ρ(ε).
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