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Landau levels and edge states in carbon nanotubes: A semiclassical approach
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The effects of a transverse magnetic field on the quantum mechanical magnetoelectronic structure of carbon
nanotubes (CNs) are investigated, making use of the Einstein Brillouin Keller (EBK) semiclassical quantization.
This approach, which is based on Dirac fermions moving on a cylindrical surface, gives detailed knowledge of
the correspondence between the classical paths (cyclotron orbits localized at the top or the bottom of the CN,
edge-skipping orbits restricted on the flanks of the tube, and traversing trajectories with charges rotating around
the circumference) and the quantized EBK single-electron energies. The semiclassical approach also allows us to
clearly distinguish within the magnetosubbands the geometrical effects of the curvature from the lattice effects
and to estimate analytically the threshold field for the semiconducting-metallic transition in CNs.
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Two-dimensional carbon compounds have recently at-
tracted much attention due to the experimental observation
in these materials of a number of novel electronic properties.
Since its experimental isolation has become practicable,1 it has
been possible to measure the transport properties of a single
layer of graphite (so-called graphene), providing evidence that
the quasiparticles have a conical dispersion around discrete
Fermi points.2 Moreover, in the presence of a magnetic field
perpendicular to the graphene plane, an unusual quantum Hall
effect was discovered. These observations demonstrated that
electrons can move through graphene with very low effective
mass, exhibiting a behavior analogous to the transmission of
relativistic massless particles.

Carbon nanotubes (CNs) can be considered as the result
of wrapping up a graphene sheet, leading to systems with
unconventional transport properties.3 The electronic structure
of CNs is closely related to the geometric structure, and
single-wall CNs (SWCNs), which are obtained by wrapping up
just a single layer of graphene, are predicted to be metallic or
semiconducting depending on their radius and chiral angle.3

The metallic CN and the graphene sheet have in common
that their low-energy electronic dispersion mimics the physics
of quantum electrodynamics and is governed by a Dirac
equation for massless particles with spin around each of the
two Fermi points of the undoped systems.4 The appearance
of an additional pseudospin quantum number intrinsic to
the Dirac spectrum has allowed us to understand, for instance,
the degeneracy of molecular orbitals in fullerenes5 or the
properties of the polarizability in CNs.6 The presence of
the (pseudo) spin degree of freedom due to the atomistic
details of the carbon honeycomb lattice is responsible both for
the insurgence of a gapless lowest Landau level in graphene
and metallic CNs7 and for the transition from the van
Hove singularity pattern to the Landau level pattern at high
magnetic field, which transforms a semiconducting CN into a
metallic CN.8

In this paper, the effects of a transverse magnetic field on
the magnetoelectronic band structure of CNs are investigated,
making use of the description of the charge carriers as relativis-
tic massless fermions with spin 1/2. This goal is pursued using
the tools of semiclassical quantization,9 namely, the Einstein
Brillouin Keller (EBK) semiclassical quantization.10 The latter
quantization approach involves a path integral over the phase

space of each coordinate qi and its conjugate momentum pi ,
given by (

ni + μi

4

)
h̄ = 1

2π

∮
pi(qi)dqi + SS, (1)

where μi is the Maslov index, which is the total phase loss
during one period in units of π/2. In detail, the Maslov index
for a rotation is 0 and, for a libration, it is 2. With the aim
of calculating the energies of particles with spin, an additive
action SS , which is due to the spin degree of freedom, is added
in the EBK quantization rule when the particle undergoes a
closed path. The latter action, calculated in Ref. 11 starting
from the spin Lagrangian,12 can be SS = h̄/2 or SS = 0
according the trajectory. From this follows a general result
obtained by Keppeler and coworkers13 that, for relativistic
fermions with spin 1/2, the Maslov phase and the spin
contribution cancel each other when we consider a libration.

In CNs the effects of the geometrical curvature and those
of the carbon lattice compete and produce a peculiar magne-
toelectronic structure. Thus, in the remainder of the paper, the
EBK electron energies in both a nanometric cylinder9 and in a
graphene layer11 will be discussed as necessary grounds from
which to calculate the magnetosubbands in CNs.

Since the classical and quantum motion of a spinless
charged particle constrained to a curved surface and with a
magnetic field applied is a nontrivial problem,14 in Ref. 9 the
electrons belonging to a cylindrical two-dimensional electron
gas15 were studied. In a cylindrical surface, different kinds
of orbits are permitted as cyclotron orbits limited at the top
or bottom of the tube surface, edge states localized on the
flanks of the tube, and traversing trajectories corresponding
to electrons which rotate around the tube. These classical
trajectories were compared9 with the one discussed for a plane
quantum waveguide.16 The explanation of Ref. 9 was based
on an effective potential depending on the momentum of the
charges along the cylinder’s axis (p⊥ ∝ κ) and including both
the effects of the external field and the consequences of the
geometrical curvature. Thanks to the semiclassical approach,
a correspondence between the classical orbits and the energies
was carried out analogously to what was shown for a planar
system in Fig. 39 of Ref. 16. In momentum-energy space,
(κ,ε), the different types of trajectories are separated by the
two parabolas as in Fig. 5 of Ref. 9.
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The low-energy electronic excitations in graphene obey
a (2 + 1)-dimensional Dirac equation,17 with holes and the
sublattice state playing the role which positrons and spin play,
respectively, in relativistic quantum mechanics.18 Properly, the
Dirac equation is a relativistic quantum mechanical equation
which does not have a classical counterpart and which provides
a description of elementary spin 1/2 particles while graphene’s
Dirac equation, which follows from the tight binding (i.e.,
hopping) model, is

HG = vF (σxπx + σyπy), (2)

where vF � 1 × 106 m/s is the Fermi velocity and π is the
momentum measured from the Dirac points,

πα = p − eA(r)/c − h̄Kα. (3)

Here, α is the valley index (α = ±) labeling the two inequiv-
alent points K± in the Brillouin zone. According to the EBK
action quantization for Dirac fermions,11 the Hamiltonian
HG can be simplified once one finds a constant of motion
such as the spin along the direction of motion. The latter
approach is equivalent to the so-called strong-coupling-limit
(SCL) approximation used in several recent papers devoted
to the semiclassical quantization of spinfull particles.19 In the
following, we use the SCL in order to denote the projection of
spin along the direction of π .

In Ref. 11 the EBK action quantization was applied to
obtain Landau levels in plane graphene and the band structure
of SWCNs.

For the SCL and from the classical equations of motion for
carriers in magnetic field, circular orbits were obtained with
a cyclotron radius Rc = vF /ω, where ω = v2

F eB/(εc) is the
relativistic cyclotron frequency and ε is the particle energy.11

Moreover, for cyclotron orbits in graphene, the spin precession
during the period give a contribution to Eq. (1) of SS = h̄/2.
Thus, the expression of the Landau levels as obtained in a fully
quantum derivation20 was recovered also by using EBK with
εn = ±vF

√
2nh̄eB. The presence of a zero-gap lowest Landau

level for n = 0 explains the anomalous quantum Hall effect
observed in graphene with the sequence of steps shifted by 1/2
with respect to the standard sequence. Moreover, notice that the
level spacing between adjacent Landau levels is not equally
spaced since εn ∝ √

n as is typical for relativistic particles
(also spinless).

SWCNs are characterized by a roll-up wrapping vector,
�w = mwa1 + nwa2, where nw and mw are integers (see Fig. 1).
The CN’s radius is R = (| �w|)/(2π ) and the momenta in Eq. (2)
have to be taken along the circumference (πw) and along
the axis of the tube (π⊥) by using a rotation of an angle θ

where tan(θ ) = (mw − nw)/[
√

3(mw + nw)]. It follows that
Kw = {mw − nw}/(3R) and K⊥ = {mw + nw}/(

√
3R). From

Eq. (2) in the SCL follows that ε = vF |π |. Thus, once the
energy ε is fixed, the result is

pw(qw,ε,K,p⊥) =
√

ε2/v2
F − π2

⊥ + h̄Kw. (4)

The EBK quantization along the wrapping direction is given
by

1

2π

∮ √
ε2

v2
F

− π2
⊥dqw + SS −

∮
Kwdqw =

(
n + μi

4

)
h̄, (5)

where μi = 0 and SS = 0 for rotations. From Eq. (5), ε

is calculated and the semiclassical dispersion relation for
massless Dirac fermions in a chiral CN is obtained as

εm,p⊥, �w = vFh̄

√
δ2

R2
+ (k⊥ − Kα)2, (6)

where δ = {3m − (mw − nw)}/3 and p⊥ ≡ h̄k⊥. Thus, a CN
is considered metallic if the value nw − mw is divisible by
three. Otherwise, the CN is semiconducting.

Now we have to solve the semiclassical quantization
equations for SWCNs in the presence of a magnetic field B (in
the z direction); thus, the Landau gauge A = (Aw,A⊥,Az) =
(0,Bxw,0) is chosen. We follow the same procedure reported
in Ref. 9, where an effective potential was introduced. Here,
p⊥ is a constant of motion, and

Veff(ϕ,κ0) = π2
⊥ = �2

0 [κ0 − cos(ϕ)]2 ,

where ϕ ≡ qw/R, �0 = Rmωc, and κ0 = (p⊥ − h̄K⊥)/
(Rmωc). The effective potential is analogous to that reported
in the panels of Fig. 1 of Ref. 9 and an accurate analysis of
Veff(ϕ,κ0) allows a classification of the different trajectories
reported in Figs. 1 and 2 of Ref. 9. EBK quantization
rules, Eq. (5), provide the semiclassical quantized energies
For transversing trajectories (rotations)

∮
Kwdqw �= 0 and

SS = 0 while, both for cyclotron orbits and edge trajectories,∮
Kwdqw = 0 and SS = h̄/2.
The classification of the different motions is now reported

in Fig. 2 (top left), where the trajectories are represented in the
energy-momentum space analogously to what was shown for
a planar system in Fig. 39 of Ref. 16 and for a semiconducting
tube in Fig. 5 of Ref. 9. The four straight lines divide the (κ0,ε)
plane into four regions which correspond to different types of
trajectories, with cyclotron orbits localized at the top or bottom
of the CN, edge-skipping orbits restricted to the flanks of the
tube, and traversing trajectories with charges rotating around
the circumference.

FIG. 1. (Color online) Structure of a SWNT can be conceptu-
alized by wrapping a layer of graphene into a seamless cylinder.
The way the graphene sheet is wrapped is represented by the chiral
vector �w. The lattice vectors a1 = a(

√
3,1)/2 and a2 = a(

√
3,−1)/2

are shown. Here, a0 = a/
√

3 ≈ 1.42 Å is the carbon-carbon distance
and K± ≡ (0,±4π/(3a)). In the case of the armchair CN (top panel),
the vector �w is �w = (n,n), while the zigzag CN (bottom panel) is
made by coiling a graphene sheet with a vector (n,0) or (n,−n).
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FIG. 2. (Color online) (top left) Energy-orbit phase space for a
CN. Four regions correspond to different types of classical trajectories
in a magnetic field: skipping orbits (edge states) and cyclotron orbits,
where the electrons are confined in a single well Veff, traversing
trajectories where the particle moves around the tube, and the region
where the particle is confined in a double well Veff. The white region
is forbidden. The region at the upper center contains transversing
trajectories. (top right) The dispersion relation εn(κ0) for strong
magnetic field obtained by using the EKB quantization and the
harmonic expansion of Veff near the minima. Notice that, as in Ref. 9
and also in CNs, the Landau level is not degenerate (i.e., for subbands
with n � 1 the nondegenerate cyclotron orbits can be localized just at
the top or at the bottom of the CN). In this case (n � 1), the anomalous
reverse edge states are present with backward velocity, as discussed
in Ref. 9. This is not more true for the lowest subband (n = 0),
where a gapless, flat, and degenerate lowest Landau level exists for
|κ0| < 1 and while edge states dominate for |κ0| > 1. Thus, for n = 0,
cyclotron orbits are localized all over the CN’s surface and exist for
all the values of |κ0| < 1. (bottom panel) Adapted from Ref. 21.
Sequence of band structures of a metallic zigzag CN �w = (510,0)
in transverse magnetic field for B = 0 T, B = 10 T, and B = 20 T
compared with theoretical phases predicted by using the semiclassical
approach.

The latter orbits determine the dispersion relation εn(κ0)
shown in Fig. 2 (top right). At the upper center, the typical
parabolic behavior of transversing trajectories is reported. In
the middle, the subbands coming from different kinds of orbits
are presented: (i) the linear shape of the edge states, (ii) the
nondegenerate Landau levels for κ = 0, and (iii) the reverse
edge states for κ0 < 1. At the bottom appears the special case
of the lowest gapless subband, which has a sharp transition
at |κ0| = 1 from the cyclotron orbits (flat degenerate lowest
Landau level) to edge states localized on the flanks. For large
magnetic field strength, the energy levels at κ0 = 0 follow the
quantization rule εn ∝ √

n, which is peculiar to graphene.20

A comparison between semiclassical prediction about the
energy orbit phase space and quantum results for the magnetic
subbands obtained with a numerical tight-binding calculation
is reported in the bottom panels of Fig. 2. The figure can be
compared to what was shown for a planar system in Fig. 40 of
Ref. 16.

As follows from Eq. (6), a semiconducting gap character-
izes the band structure of two thirds of the CNs in the absence
of a magnetic field. The semiconducting gap εg = vFh̄δ/R

due to the CN’s chirality is relevant just for the quantization
of the transversing trajectories, where a rotation around the
tube is allowed and

∮
Kwdqw �= 0. Thus, when a magnetic

field is switched on, a transition from semiconducting to
metallic behavior happens. The lowest-energy transversing
trajectory for κ0 = 0 is allowed if ε > Veff(0,0). Using the
approximated value for ε ∼ vFh̄/{R[δ2 + Veff(0,0)/2]1/2}, we
obtain a threshold field for the semiconducting-metallic
transition:

Bt ∼ ch̄
√

2

eR2
δ.

It follows that, for a CN with R ∼ 20 nm, [ �w = (500,0)], such
as the one discussed in Ref. 21, the threshold field is Bt ∼ 2 T
and is consistent with the results for semiconducting CNs from
Ref. 22. From there we can infer that the magnetic field needed
to close the gap of a CN with radius R = 10 nm must be of the
order of ∼10 T. In agreement with Ref. 21, we obtained that
the field strength Bt would be reduced by a factor of 4 after
doubling the CN radius.

In this paper the effects of a transverse magnetic field on
the electronic subband of CNs were investigated, making use
of a long-wavelength description in terms of Dirac fermions.
Thus, EBK semiclassical quantization, which includes the
contribution of the spin degree of freedom, is adopted to deduce
the quantum-mechanical energies.

The approach discussed allows a good understanding of the
correspondence between the band structure and the trajectories
of the charges along the tube by focusing on the following
strange effects due to the curvature and those caused by the
pseudospin:

(1) The interplay of the curvature and magnetic field causes
the presence of different kinds of orbits: cyclotron orbits, edge
orbits localized on the flanks of the tube, traversing trajectories,
and anomalous edge orbits with backward velocity.

(2) The effects of the carbon lattice are due to the contribu-
tion of the spin action SS and are emphasized by the presence
of a gapless lowest Landau level.

(3) The level spacing between adjacent Landau levels is not
equally spaced (εn ∝ √

n) as a consequences of the relativistic
nature of carriers in graphene.

(4) Both the geometrical effect and the pseudospin con-
tribution are responsible for the closure of the gap in a
semiconducting CN at a threshold magnetic field proportional
to the inverse square of the tube’s radius, in agreement with
the numerical results.

(5) Following Ref. 21, it is possible to calculate the Hall
conductivity for a CN and to show that it is given by even
multiples of 2e2/h. Thus, for thick CNs in a transverse
magnetic field the transport properties are governed by the
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states localized at the flanks of the CN (edge-skipping orbits),
which carry quantized currents in the longitudinal direction.

From a theoretical point of view the approach presented
here does not require the inclusion of the Berry topological
phase in the calculation; in fact, the presence of the gapless
lowest Landau level is explained just by applying the semiclas-
sical quantization of Dirac fermions with spin, in agreement
with the results obtained by Keppeler. This is a little different
from the semiclassical approaches to graphene proposed in
other previous works.23,24

From an experimental point of view, in some measurements
it was shown that, when large-radius CNs (e.g., multiwall CNs)
with a radius of the order of some tens of nanometers are
examined, a magnetic field of tens of Tesla is sufficient to
see relevant consequences.25 We have to point out, however,
that the results obtained herein describe the behavior of
thick CNs—quite different from that of CNs with typical
radii of 1 nm. In fact, for thin CNs in strong magnetic
fields,26 there is no regime where the continuum limit can be
realized.
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