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Thermal fluctuations and flux-tunable barrier in proximity Josephson junctions
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The effect of thermal fluctuations in Josephson junctions is usually analyzed using the Ambegaokar-Halperin
(AH) theory in the context of thermal activation. “Enhanced” fluctuations, demonstrated by broadening of
current-voltage characteristics, have previously been found for proximity Josephson junctions. Here we report
measurements of micrometer-scale normal metal loops contacted with thin superconducting electrodes, where
the unconventional loop geometry enables tuning of the junction barrier with applied flux. We observe stronger
“enhanced” fluctuations when the flux threading the normal metal loop is near an odd half-integer flux quantum,
and for devices with thinner superconducting electrodes. These findings suggest that the activation barrier, which
is the Josephson coupling energy of the proximity junction, is different from that for conventional macroscopic
Josephson junctions. Simple one-dimensional quasiclassical theory is used to predict the interference effect due
to the loop structure, but the exact magnitude of the coupling energy cannot be computed without taking into
account the details of the sample dimensions. In this sense, the physics of nanoscale proximity junctions can be
related to the thermally activated phase slips (TAPS) model for thin superconducting wires, and indeed our data
can be better fitted with the TAPS model than with the AH theory. Besides shedding light on thermal fluctuations
in proximity junctions, the findings here also demonstrate a different type of superconducting interference device
with two normal branches sharing the same superconducting-normal interface on both sides of the device, which
has technical advantages for making symmetrical interference devices.
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I. INTRODUCTION

Understanding the effect of thermal fluctuations in
nanoscale superconducting devices is important for
applications.1 One particular type of nanoscale supercon-
ducting device is a proximity junction,2,3 consisting of a
normal metal wire contacted by two superconducting wires
as electrodes. The difference between such a device and
a conventional Josephson junction made of bulk supercon-
ducting electrodes separated by a thin insulator is twofold:
(1) instead of tunneling through the insulating barrier, charge
carriers diffuse through the normal metal barrier in proximity
junctions, leading to a stronger coupling between the two su-
perconducting electrodes for proximity junctions; (2) the thin
superconducting electrodes of these nanoscale junctions are
different from bulk superconductors since their dimensions are
now comparable to the superconducting coherence length ξs .

These differences may explain the previously observed
strong fluctuations in nanoscale proximity junctions,4–6 which
manifest themselves as “enhanced” broadening of the current-
voltage characteristics (CVC) compared to the “intrinsic”
broadening of CVC due to thermal activation of a resistively
shunted junction (RSJ), as described by Ambegaokar and
Halperin (AH).7,8 This enhancement can be characterized by
an effective noise temperature TN , which is higher than the
bath temperature Tb.9

In this paper, we report measurements of a special type
of proximity junction with a loop structure embedded into
the junction itself. By threading a magnetic flux through
the loop, we find TN is maximum when the flux through
the loop is an odd half-integer of the superconducting flux
quantum �0 = h/2e, for fixed Tb. The ratio between TN and

Tb depends on the geometries of the particular sample, but does
not depend on the bath temperature Tb. The flux dependence
of TN is better understood if we consider a phase slipping
process similar to that in thin superconducting wires, which
again suggests that for a nanoscale proximity junction, the
activation energy is different from the standard Josephson
coupling energy. Such devices exhibit many of the properties of
dc superconducting quantum interference devices (SQUIDs),
but with the advantage that the devices can be designed to be
almost perfectly symmetric, as the two normal branches share
the same superconducting-normal (SN) interface on both sides
of the device, and hence allow unprecedented tunability of the
system by means of an external magnetic flux.

The remainder of this paper is organized as follows:
In Sec. I, a general introduction for thermal activation in
superconducting wires and Josephson junctions is presented,
followed by a discussion of how quasiclassical theory can
be used to extend the thermal activation model to proximity
junctions. Then the experimental results of magnetoresistance
(Sec. II), the CVC (Sec. III), and temperature dependence
of resistance (Sec. IV) are discussed. Finally we summarize
the findings and propose further theoretical study beyond
one-dimensional quasiclassical theory.

II. THEORETICAL BACKGROUND

The dynamics of a particle trapped in a shallow potential
well is a fundamental problem that has wide applicability to a
number of areas in statistical physics. At finite temperatures,
due to coupling to a thermal bath, the particle may escape from
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the potential well through the process of thermal activation
over the barrier represented by the edge of the potential.

For superconductors, two specific phenomena have been
explored extensively in terms of the physics of thermal
activation. The first phenomenon is the generation of phase
slips in a thin superconducting wire with cross-section size
comparable to the superconducting coherence length ξS .10,11

In this case, thermally activated phase slips (TAPS) lead to the
appearance of a resistance tail of the thin wire at temperatures
below the nominal transition temperature Tc. The voltage V

generated by TAPS is related to the time evolution of the
macroscopic superconducting phase ϕ through the Josephson
relation 2eV/h̄ = dϕ/dt , which on average is determined by
the number of TAPS per unit time, each TAPS corresponding
to a change of 2π . At the instant in space and time where
such a phase-slip event occurs, the superconducting order
parameter vanishes, which costs an energy �F , the barrier over
which the system must be thermally activated. In the earlier
pioneering theory by Little,10 the relevant energy barrier is the
condensation energy in a small coherent volume determined
by the dimensions of the superconducting wire, and the
temperature dependence of resistance R(T ) is described by
an Arrhenius-type equation. Later developments gave a more
accurate description of �F and the attempt frequency for
activation over the barrier, often referred to as the Langer-
Ambegaokar-McCumber-Halperin (LAMH) theory.11,12

The second phenomenon is the onset of finite voltage in
a Josephson junction. A resistively shunted junction (RSJ)
can be modeled as a particle in a one-dimensional washboard
potential in a viscous medium, where the distance coordinate
corresponds to the phase difference ϕ across the junction, as
shown by AH.7,8 With no current through the junction, the
system sits in a local minimum of the potential. Application
of a current through the junction corresponds to tilting the
washboard, shifting the position of the local minima. At some
value of current less than the nominal critical current Ic, the
washboard potential is tilted sufficiently for the system to
be thermally activated over the barrier between two adjacent
potential minima. Once this occurs, the system will continue
to roll down the washboard potential, corresponding to a
continuous time evolution of ϕ, and hence a finite voltage
will appear across the junction according to the Josephson
relation. Here the energy barrier (the height of the washboard
potential) being thermally activated over is the Josephson
coupling energy EJ = (h̄/2e)Ic, where Ic is the critical current.

A proximity junction made by a normal metal wire between
two superconductors exhibits properties different from a
conventional tunneling junction. Proximity superconductor–
normal-metal–superconductor (SNS) junctions have also been
investigated for a long time.13 More recent theoretical in-
vestigations have used the framework of the quasiclassical
theory of superconductivity to discuss the characteristics of
SNS junctions.14 Qualitatively, the physics of the SNS junction
is well understood. The proximity to the superconductor has
two major effects on the quasiparticles in the normal metal.15

First, it induces superconducting-like correlations between
quasiparticles that increase the conductance of the normal
metal, and second, it induces a gap in the quasiparticle density
of states N (E).16 While in the superconductor the energy scale
for the density of states is given by �, the energy scale for N (E)

in the normal metal for the diffusive case is set by the Thouless
energy ET h = h̄D/L2, where D = vF �/3 is the quasiparticle
diffusion constant in the normal metal, � being the elastic
scattering length, and L is the length of the normal metal.
Similarly, the maximal supercurrent that can flow through
such a proximity junction is set by ET h, not by � as for
a conventional Josephson tunnel junction, when ET h � �

(the long junction limit).17 However, it is difficult to obtain
quantitative predictions for the current-voltage characteristics
except in limiting cases. The problem arises from the fact that
a finite voltage results in a time-dependent phase difference
between the superconducting electrodes, which in turn leads
to time-dependent boundary conditions for the quasiclassical
equations. These equations have been solved under certain
simplifying assumptions, such as low interface normal-metal–
superconductor (NS) interface transparency,18 or in the limit
of voltages small compared to ET h/e.19 Unfortunately, these
assumptions do not apply to our samples. Consequently, in
the discussion below, we have chosen to discuss our results
phenomenologically in the framework of the RSJ model
discussed above, but with the energy potential landscape being
calculated using the quasiclassical theory of superconductivity.

The Josephson junction model leads to an interesting
extension, where two junctions can be connected in parallel
to form a dc SQUID. In this case, there are two independent
parameters (the phase differences across the two junctions),
giving rise to a two-dimensional potential for the system.
The system can transition from one local minimum to another
through saddle points in the potential.20 Due to the fact that
the position of the system on the two-dimensional potential
is sensitive to the external magnetic flux �, dc SQUIDs have
been investigated extensively due to their device potential.21,22

With any real dc SQUID, the two Josephson junctions cannot
be fabricated to be exactly the same, which restricts the ability
to tune the system.

As with conventional junctions, two proximity junctions
may be combined in parallel to form a dc SQUID. Schematics
of two types of SNS junctions are shown in Fig. 1. In the
asymmetric device shown in Fig. 1(a), the normal-metal arms
(shown in gold) connect to the superconducting wires (shown
in gray) at different points, likely resulting in different NS
interface transparencies for the two arms of the device, and
consequently an asymmetric dc SQUID.3,23 However, the
long-range nature of the Josephson coupling in SNS devices
enables a different type of device that is not possible with
conventional tunnel junctions. As shown schematically in
Fig. 1(b), the device consists of a single normal-metal loop
between the two superconducting contacts, so that the NS
interface transparencies for the two arms of the device are the
same. In this device, the modulation of quantum interference
by an external magnetic flux occurs within the junction itself,
i.e., the superconducting phase winding happens along the loop
inside the junction, similar to the case of a superconducting
loop that shows classical Little-Parks oscillations.24–26 As the
NS interfaces are the same for both arms of the loop, this device
potentially can behave as a perfectly symmetric dc SQUID,
provided that the length of the two normal-metal arms are the
same.

To understand the flux-tunable thermal activation barrier
in these SNS junctions, we use quasiclassical theory and a
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FIG. 1. (Color online) Schematic diagrams of two SNS quantum
interference devices: asymmetric (a) and symmetric (b). The normal-
metal arms are shown in gold and the superconducting wires are
shown in gray. The arrow in both figures corresponds to the direction
of applied magnetic flux. Insets: Scanning electron micrographs of
the devices measured; the scale bars are 1 μm. The calculated energy
profiles of the asymmetric and symmetric devices are shown in (c)
and (d), respectively, as a function of the external magnetic flux �

and the phase difference across the two superconductors φ, which is
determined by the external current through the device. The energy
profiles are calculated based on the quasiclassical theory, as described
in the text.

simple one-dimensional model to calculate the energy of the
system as a function of the phase difference ϕ between the two
superconductors (see the Appendix for details). The energy of
the system is given by (see, e.g., Ref. 27, p. 198)

EJ (ϕ,�) = h̄

2e

∫ ϕ

dϕ′ Is(ϕ
′,�), (1)

where Is(ϕ′,�) is the supercurrent through the system, which is
a periodic function of the phase difference ϕ′ and the externally
applied flux �. To calculate Is , we use the extended circuit
theory28 and numerically solve the Usadel equations for the
sample geometries shown in Figs. 1(a) and 1(b). In the simple
model we assume that the interfaces between the normal metal
(N) and the superconductors (S) are perfectly transparent, the
gap � regains its bulk value in the superconductor within a very
short distance of the NS interface, and that the distribution of
quasiparticles in the superconducting reservoirs is given by the
equilibrium Fermi function f (E). Since the characteristic unit
for the supercurrent for an SNS junction is ET h/eR, we use
(h̄/2e2R)ET h as the characteristic unit of energy for EJ ,17 with
L being the length of one side of the loop. For the parameters
used in this simulation, the amplitude of the supercurrent is
about 0.2 ET h/eR, so the modulation of EJ at fixed � is about
0.4 (h̄/2e2R)ET h (note that since EJ has an arbitrary constant
from the integration in Eq. (1), in Fig. 1 we assume EJ = 0 at
ϕ = −2π ).

The resulting energy profiles are shown in Figs. 1(c) and
1(d) as a function of ϕ and �, the two parameters under
external experimental control. If � is fixed at integral values
of the superconducting flux quantum �0 = h/2e, there is an
energy barrier for evolution of the phase, as shown by the

FIG. 2. (Color online) Resistance as a function of applied
magnetic flux for the asymmetric sample (a) and the symmetric
sample (b) at 0.6 K (blue curves), 0.4 K (green curves), and 0.03 K
(red curves). While the oscillations for the asymmetric device die
out rapidly with decreasing temperature, the oscillations for the
symmetric device survive to the lowest measurement temperature.
(c) Magnetoresistance of the symmetric device around � = �0/2 at
four different temperatures. The solid lines are fits to the AH theory
as described in the text. Below 0.15 K, the magnetoresistance does
not change with temperature. (d) Critical current at zero applied flux
for the symmetric and asymmetric devices. The plus symbols show
the critical current expected from the fits of (c), multiplied by a factor
of 5, as described in the text.

trajectories of the blue particles at zero flux, so that at low
temperatures, the phase ϕ is stationary, and no voltage is
developed across the device. For half-integral values of the
applied flux [� = (n + 1/2)�0, where n is an integer] there
is a difference between the asymmetric and symmetric cases.
For the asymmetric case, there is still a small energy barrier,
as shown by the trajectory of the red particle in Fig. 1(c).
Consequently, the resistance at odd half-integral flux quanta
will eventually vanish if the temperature is low enough, in the
absence of quantum tunneling. In contrast, for the symmetric
case, there is no energy barrier at odd half-integral flux quanta
[as shown by the trajectory of the red particle in Fig 1(d)], so
that the device will have a finite resistance even at the lowest
temperatures.

III. ZERO-BIAS MAGNETORESISTANCE

Figures 2(a) and 2(b) show the resistance of the asymmetric
and symmetric devices, respectively, as a function of applied
magnetic flux at a number of temperatures. The details of
fabrication and measurement are similar to those reported
elsewhere.3 The data are taken in the limit of zero dc
current, with only a very small ac current for the resistance
measurement (about 10–20 nA). For the small devices studied
here the geometrical inductance is estimated to be about 1 pH,
and the ratio 2LIc/�0 ∼ 10−4 (see, e.g., Ref. 27, p. 227), so
it is safe to neglect the geometrical inductance effect and no
hysteresis behavior is observed.
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At higher temperatures, the resistance is finite at all values
of � for both geometries, and is periodic in the applied
flux, with a fundamental period of �0. As the temperature
is lowered, the resistance for both devices vanishes near � =
n�0. As the temperature is lowered still further, the resistance
of the asymmetric device also vanishes at odd half-integral
values � = (n + 1/2)�0 of the applied flux. In contrast,
the resistance of the symmetric device at � = (n + 1/2)�0

remains finite down to the lowest temperatures, while the peak
width narrows as the temperature is lowered, saturating below
about 0.15 K, as shown for the peak around � = �0/2 in
Fig. 2(c).

According to the physical picture for the symmetric device
in Fig. 1(d), there is a small but finite barrier for the system to
overcome, except at exactly half-integral values of flux. This
barrier decreases monotonically as the system approaches � =
(n + 1/2)�0. In fact, for conventional junctions the Josephson
coupling energy is Ej = (h̄/2e)Ic, Ic being the critical current.
In our SNS junction case, Ej is given by Eq. (1), and is a
function of the external flux �. Assuming symmetrical long
junctions, we obtain the usual sinusoidal dependence of the
current Is on ϕ, with the Josephson coupling energy

Ej = h̄Ic(�)

2e
, (2)

where Ic(�) = Ic(0)| cos(π�/�0)|, the same as that for a
symmetric dc SQUID (see, e.g., Ref. 27, p. 215). Thus, as
the temperature is lowered, the system needs to be closer to
� = (n + 1/2)�0 until the energy barrier is low enough for
the particle to jump over and for the junction to exhibit a finite
resistance. At even lower temperatures, the system may tunnel
through the barrier, resulting in a temperature-independent
resistance. However, it is necessary to verify whether the
electron temperature follows the bath temperature or not,29

which is nontrivial and will not be discussed here. We note that
the measured critical current saturates at lower temperatures
and is about 10 times smaller than the value predicted in the
zero-temperature limit,17,23 probably due to an imperfect SN
interface, fluctuations, and heating.29

To quantitatively model the magnetoresistance around half-
integral flux values for the symmetric device, we can use AH
theory for the RSJ model, as extended here to a dc SQUID
with a flux-tunable barrier. The AH theory predicts that the
normalized resistance in the zero current limit is given by

RAH = I−2
0 (γ /2), (3)

where I0 is the modified Bessel function, and γ = 2Ej/kBT

is the ratio between the barrier and the thermal fluctuation
energy. From Eq. (2), we have γ = h̄Ic(�)/ekBT , and we can
then fit the magnetoresistance of the symmetric device near
� = �0/2 using the AH theory with Eq. (3).

The solid lines in Fig. 2(c) show the resulting fits of R(�) at
four different bath temperatures, using only the measured peak
resistance Rp at � = �0/2 and zero-field critical current Ic(0)
as fitting parameters. Figure 2(d) shows a comparison of Ic(0)
obtained from the fits (multiplied by a factor of 5) compared
to the experimentally measured values of Ic(0). The fitted
values of Ic(0) are a factor of 5 smaller than the experimentally
measured values of Ic(0) over the entire temperature range.
Conversely, we can claim that the effective noise temperature

TN is 5 times larger than Tb since only the ratio between Ej

and kBT matters.
The strong correlation between the measured and the fitted

values indicates that the AH theory is somewhat applicable for
the flux-tunable proximity junction near � = �0/2, but the
effective potential barrier for thermal activation appears to be
smaller by about a factor of 5 compared to Eq. (2). As this
factor is temperature independent, this enhanced fluctuation
could not be due to quantum fluctuations,26 nor due to heating.
In fact, if there is heating during measurements of Ic then
the measured Ic should be smaller than that inferred from
the thermal activation model at zero current limit, but the
opposite is observed. This discrepancy could be related to
the assumption of a standard external shunt resistor as the
thermal noise source in the RSJ model, while the SNS junction
is self-shunted, or it could be due to the neglect of inverse
proximity effect in superconducting electrodes and formation
of minigap in the normal metal,16 which may change the
relation between Ic and Ej in Eq. (2). To better understand this
enhanced fluctuation, below we characterize devices beyond
the zero-bias limit.

IV. FINITE BIAS

Finite bias measurements were conducted on two repre-
sentative proximity junction devices with superconducting Al
electrodes of different widths: about 110 and 220 nm, respec-
tively, for devices s1 and s2 [see Table I for other parameters,
and insets of Fig. 3 for scanning electron microscopy (SEM)
images]. The Al wires extend for several micrometers on
each side of the loop before overlapping with Au leads for
four-probe measurements.

As in early investigations for conventional Josephson
junctions,30–32 we measured the differential resistance of the

FIG. 3. (Color online) Differential resistance at 0.4 K for s1,
(a), and for s2, (c). Different colors correspond to different applied
magnetic flux: 0 (magenta), 0.25 (blue), 0.375 (red), and 0.5 (green)
in units of �0. Solid lines are fits using the AH model. (b) and (d)
show the flux dependence of the noise temperature TN (red) and
critical current Ic (blue) extracted from the AH fits of the differential
resistance in (a) and (c). The insets are SEM images of the devices
with false color enhancement. The area colored in gold is Au and the
area colored in purple is Al. The white scale bars are 1 μm.
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TABLE I. Sample parameters of two representative proximity
junction devices: wAl and tAl are the width and thickness of the Al
electrodes, wAu and tAu are the width and thickness of the Au loops,
T c and Hc are the critical temperature and critical magnetic field of
the Al electrodes, which is sensitive to wAl for quasi-one-dimensional
wires.

wAl tAl wAu tAu T c Hc

(nm) (nm) (nm) (nm) (K) (Gauss)

s1 110 88 90 50 1.2 600
s2 220 81 90 45 1.1 220

two proximity junction devices at 0.4 K, as shown in Fig. 3,
and fit the data by numerical differentiation of the voltage in
the AH theory.7 In the limit of small currents (x = I/IC < 1)
and low temperatures (γ = ICh̄/ekBT � 1), the normalized
voltage v = V/ICR is

v = 2
√

1 − x2 exp[−γ (
√

1 − x2 + x sin−1 x)]

× sinh[πγ x/2]. (4)

As for RAH in Eq. (3), the essential fitting parameter is γ , the
ratio between the energy barrier EJ and the thermal energy
kBTb. Assuming Ej is just the Josephson coupling energy in
Eq. (2), then we need to replace Tb (0.4 K) with an effective
noise temperature TN to characterize the enhancement of
fluctuations.

In Fig. 3 we show the result of fitting at several different
flux values (in units of �0), with both TN and Ic used as
fitting parameters. When EJ is suppressed at around half flux
quanta, TN reaches its maximum, and the quality of the fit is
good to large values of I . When EJ is maximum at around
integer flux quanta, there is clear deviation of the fit from the
experimental data as the bias current approaches Ic, and we
can only fit the low current bias regime. Compared to previous
investigations,30–32 here we can tune the Josephson coupling
(EJ ) without varying the physical temperature, which gives us
a knob to tune γ at a constant temperature.

In Figs. 3(b) and 3(d), the values of Ic and TN resulting
from the fits are plotted as a function of cos(π�/�0), i.e., the
normalized Ej . Ic has a linear dependence on cos(π�/�0),
as expected. TN also increases monotonically from � = �0

to � = 0, but the dependence of TN with flux is difficult to
interpret within the AH theory. For conventional SQUIDs, it is
known that near half flux quanta there are multiple metastable
states which may lead to enhanced fluctuations. However,
such enhanced fluctuations have not been reported in previous
escape rate experiments.33–37 A somewhat similar scenario is
the mesoscopic fluctuations in SNS junctions considering the
situation that several stationary states may exist at a given
current,4,38,39 but the supercurrent fluctuation cannot explain
the flux dependence.

It is clear that the fitted values of TN are larger for s1 than
for s2. Since s1 has thinner superconducting leads, a larger TN

may suggest that the thermal activation energy barrier is related
to the dimensions of the superconducting leads, reminiscent
of the fact that in TAPS theory �F is proportional to the
cross-sectional area. Further investigation is required to verify
this claim.

FIG. 4. (Color online) Current-voltage characteristics at 0.4 K for
s1, (a) and (b) and s2, (c) and (d). The absolute value of voltage is
plotted as the y axis in (a) and (c), in logarithmic scale, and in (b)
and (d), in linear scale. Solid lines are fits using AH theory with the
same TN in Fig. 3.

In recent experimental investigations on proximity
junctions,4–6 CVC were often presented, and strong broad-
ening was reported when comparing experimental data to
the intrinsic broadening predicted by the AH theory and RSJ
model. Here the measured CVC (measured at the same time as
the differential resistance) are plotted in Fig. 4 for comparison.
The strong broadening can be fit well in the regime I < Ic by
Eq. (4) with the same TN in Fig. 3. At higher current bias
the CVC collapse to a single curve, and cannot be fit. For
sample s2, although the superconducting electrodes are wider
than that of s1, the critical current is smaller probably due
to a less transparent interface. The deviation at higher bias is
less obvious for s2 since the spreading of Ic is smaller. We
also show in Fig. 4 the CVC on a logarithmic scale for later
comparison with fits using the TAPS model.

As discussed in the Introduction, in terms of analysis,
superconducting proximity junctions lie somewhere between
weakly coupled conventional junctions and (strongly coupled)
superconducting wires. Consequently, besides the AH theory
for junctions, we also can try the LAMH theory for super-
conducting wires to fit the CVC of our devices. For thin
superconducting wires, the average voltage generated by TAPS
due to thermal fluctuations is11,12

VLAMH = h̄


e
e−�F0/kT sinh

δF

2kT
, (5)

where �F0 = (8
√

2/3)(H 2
c /8π )Aξ is the energy barrier,


 = (L/ξ )(�F0/kT )1/2τ−1
GL is the attempt frequency, τGL =

πh̄/8k(Tc − T ) is the Ginzburg-Landau (GL) relaxation time,
δF = hI/2e is the difference in the energy barrier for phase
slips in two directions (see, e.g., Ref. 27, p. 291), A is the
cross-sectional area, and ξ is the GL coherence length. Note
that the hyperbolic sine term in Eq. (5) has the same form as
in the AH theory [see Eq. (4)]. For our devices, �F0 should
be considerably lower than �F0 for a superconducting wire.
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FIG. 5. (Color online) Current-voltage characteristics at 0.4 K for
s1, (a) and for s2, (c), fitted by V (I ) = V0 sinh(I/I0). In (b) and (d)
the fitting parameter V0 is plotted as a function of flux.

Using interrelations of quantities from GL theory, the energy
barrier can be reformulated as40

�F0 =
√

6(h̄/2e)Ic, (6)

which is similar to the form of EJ in Eq. (2). Thus, �F0/kT

in the LAMH theory is comparable to γ in the AH theory.
At constant temperature, Eq. (5) can be simplified to

VLAMH(I ) = V0 sinh(I/I0), as 
 and �F0 should have a much
weaker dependence on the bias current I than the hyperbolic
sine term.41 Here V0 is the flux-dependent prefactor, and
I0 = 4ekBT /h is a constant27 at fixed temperature. At 0.4 K
I0 is 0.0052 μA. In Fig. 5 CVC at different fields are fitted by
this simplified equation (see Table II for fitting parameters).
The fitting parameter I0 for s1 (s2) is ∼0.07 (0.04) μA, about
10 times larger than the expected value. Previously, about
40% increase of I0 was reported for MoGe superconducting
nanowires,41 but here the increase of I0 is much larger. To
characterize the increase of I0, we can again assume an
effective noise temperature TN that is about 10 times higher
than the bath temperature Tb, similar to that in fitting with
AH theory. However, here TN is flux independent, better than
the AH fit where TN is flux dependent as shown in Fig. 3. We
note that I0 = 4ekBT /h is a constant deduced from the energy
barrier δF in Eq. (5), where 2π phase jumps in two directions
is assumed. For nanoscale proximity junction, this 2π phase
jump assumption may need modification.

The constant V0 can be fit with a simple exponential
equation y = Ae−Bx as shown in Figs. 5(b) and 5(d) following

Eq. (5). Using Eq. (6) and Ic(�) = Ic(0)| cos(π�/�0)|, we
can rewrite V0 as

V0(x) = Ae−Bx = h̄


e
exp

[
−

√
6h̄Ic(� = 0)

2ekT
x

]
, (7)

where x = cos(�/�0). The factor in front of x can be
reformulated as B = √

6Ic(� = 0)/πI0. In Fig. 5(a), if we
define the critical current Ic as the current at which the
measured voltage approaches 1 μV, then at zero flux Ic ∼
0.56 μA. Since I0 = 0.07 μA for s1, the expected B ∼ 6.24,
very close to the fitted value of Bfit = 6.2 (see Table II). This
means we do not need to introduce parameters other than the
flux-independent TN to fit all CVC data. For s2 the expected
B is 6.83, slightly higher than Bfit = 5.8, which could be
due some uncertainty in defining the Ic values. Our analysis
indicates that in general, it seems that the LAMH theory
is better than AH theory for fitting the CVC for nanoscale
proximity junctions.

V. RESISTANCE TAIL

The thermal activation theory can fit the resistance tail
slightly below Tc for a thin superconducting wire. In the
simplest case, we have the Arrhenius law proposed by
Little,10,42

R(T ) = RNe−�F/kBT = RN exp[−c(1 − t)3/2/t], (8)

where t = T/Tc, c = �F0(0)/kTc is the temperature-
independent activation constant.

As we noted earlier, the energy barrier for a proximity
junction could be considerably lower than that for a super-
conducting wire, and Eq. (6) is used for a practical estimate
of c from the measured Ic. Taking B = √

6Ic/πI0 ∼ 6.24
obtained at 0.4 K, and the fitting parameter Tc = 0.78 K (see
Table II for the fitted Tc values with Little and LAMH models,
which is somewhat arbitrary42), from B = c(1 − t)3/2/t we
find c = 9.41, close to the cfit extracted from the R(T ), as
listed in Table II.

In the full LAMH theory the attempt frequency term is
added to Eq. (8) (while the prefactor RN is dropped), and the re-
sistance below Tc derived from Eq. (5) in the zero-bias limit is42

RLAMH = V0

I0
e−�F0/kT

= Dt−3/2(1 − t)9/4 exp[−c(1 − t)3/2/t], (9)

where D is the attempt frequency constant. The total resistance
is given by R = (R−1

N + R−1
LAMH)−1 as quasiparticles provide

a parallel conduction channel to the supeconducting channel.

TABLE II. Fitting parameters. See Fig. 3 for fitting of dV/dI using AH theory, Fig. 4 for fitting of IV C using AH theory, Fig. 5 for fitting
of IV C using LAMH theory, and Fig. 6 for fitting of R(T ) with three different models.

IV C LAMH fit R(T ) Little fit R(T ) LAMH fit R(T ) SNS fit
dV/dI AH fit IV C AH fit

(dV/dI )N RN I 0 A RN T c RN T c D (c) RN T c

(
) (
) (μA) (μV) B (
) (K) (c) (
) (K) (
 (
) (K) (a) (b)

s1 5.8 5.8 0.07 0.33 6.2 6 0.78 14 6 0.92 550 15 6 1.2 1 × 105 14.8
s2 6 5.8 0.04 0.11 5.8 6 0.64 14 6 0.77 550 15 5.5 1.1 7 × 104 15
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The values of c for the LAMH fits and and the fits to Eq. (8) are
very close since R(T ) is very sensitive to the exponential term.
The attempt frequency constant D = (8/π )[L/ξ (0)]RQ

√
c is

formulated for a superconducting wire with length L, where
RQ ≡ h/4e2 is the resistance quantum. From the fitted values
of D and c we get L/ξ (0) ∼ 0.01, a very small value as
expected for proximity junctions.

In the analysis above, the fit for R(T ) is valid only
in a narrow regime below the fitted Tc, which is due to
the fact that �F0 is estimated using Eq. (6), where for
superconducting wires near Tc, Ic ∝ (1 − t)3/2. For SNS
junctions, quasiclassical theory has shown that in the long
junction limit (� � ET h), the simplified solution is43,44

eRNIc = [32/(3 + 2
√

2)]ET h(L/LT )3e−L/LT , (10)

where LT = √
h̄D/2πkBT is the thermal length in the

diffusive limit, and D is the diffusion constant of the normal
metal. We can put this Ic(t) dependence into �F of Eq. (8),
which results in

RSNS = RN exp[a
√

te−b
√

t ],
(11)

a = h̄

e2RN

16

3 + 2
√

2
πb, b = L√

h̄D/2πkBTc

.

The formula is valid to much higher temperatures as shown
by the red lines in Fig. 6, and there is no need to assume an
arbitrary Tc for the junction that is lower than Tc of Al. Close
to the Tc of Al the fits deviate slightly from the data, probably
because the long junction limit is no longer applicable, and
also may be due to the inverse proximity effect. With sample
parameters L ∼ 1 μm, and D ∼ 100 cm2/s, a and b are
estimated to about 5 × 104 and 10, the same order as the fitted
values. We note that with the other thermal activation model,
similar fits can be achieved by using the zero current limit of
junction resistance in AH theory RAH = RNI−2

0 (γ /2), where
I0 is the modified Bessel function. However, in that case the
fitted a values are much smaller than the estimate.

VI. SUMMARY

In conclusion, we have measured nanoscale proximity
junctions made of a mesoscopic normal-metal loop contacted
by thin superconducting electrodes. The effect of thermal
fluctuations in these devices can be characterized by an

FIG. 6. (Color online) Resistance tail at zero field for s1, (a), and
for s2, (b). The green lines are fits using Little’s theory, the blue
lines are fits using LAMH theory, and the red lines are fits combining
Little’s equation and quasiclassical theory for proximity junctions
[RSNS(T )]. The fitting parameters are listed in Table II.

effective noise temperature. We find that the measurement
results can be better described by the LAMH theory for thin
superconducting wires, rather than by the AH theory for weak
coupled Josephson junctions. With the LAMH theory, only
the effective enhanced noise temperature (equivalent to the
reduction of thermal activation barrier) is required to fit the data
at different flux values. We also find that quasiclassical theory
can be combined with thermal activation theory to fit R(T )
of proximity junction devices. These observations indicate
that for nanoscale proximity junctions we need to consider
the finite-size effect of the superconducting electrodes, and
a quasiclassical model more completed than the simple one-
dimensional model presented here may be needed to compute
the reduction of the energy barrier.
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APPENDIX: SIMULATION

The simulations shown in Fig. 1 were done by solving the
linearized Usadel equations in the Riccati parametrization.45,46

In the normal-metal wire, the simplified Usadel equation reads

∂2
x γ + 2iεγ = 0. (A1)

Here the coherent function γ is a complex function of distance
x and energy ε, normalized by the total length L and Thouless
energy ET h, respectively. The equation can be readily solved
with appropriate boundary conditions.

For the SNS SQUID model shown in Fig. 7, we match the
solutions of four normal-metal wires by specifying boundary
conditions at the two nodes and at the SN interface,28,47 e.g.,
at the node connecting wires 1, 2, and 3 we have

γr (1) = γl(2), γr (1) = γl(3),
(A2)

A(1)∂xγr (1) = A(2)∂xγl(2) + A(3)∂xγl(3),

where A(n) is the normalized product of the cross-sectional
area and the normal conductance of the wire, and the subscript
l,r indicates the left or right end of the wire. Similar boundary
conditions are used for the node connecting wires 2, 3, and
4 with phase factor due to the flux taken into account. As
mentioned in the main text, here we assume the gap in the
superconductor is not affected by the normal-metal wire so that
the coherent function takes its value in bulk superconductor,

γ0 = − �

ε + i
√

�2 − ε2
. (A3)

FIG. 7. Schematic of the SNS SQUID with applied magnetic flux
� and phase difference ϕ between two superconducting reservoirs.
Numbers 1–4 correspond to normal-metal wire segments.
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After solving the equations, we compute the spectral
supercurrent

jE = 	
[

2(γ̃ ∂γ − γ ∂γ̃ )

(1 + γ γ̃ )2

]
, (A4)

where γ̃ is the time-reversed coherent function. Then
we integrate the spectral supercurrent to find total
supercurrent

Is =
∫

jE tanh

(
ε

2T

)
dε. (A5)

Since the spectral current is a conserved quantity, this
calculation can be done at any point of the wire. For wire
segments 1 and 4, the total current is the supercurrent through

the SNS SQUID, a dimensionless quantity normalized by
Ec/eR,17,44,46 where R is the normal resistance of wire of
length L. The critical current at particular � is calculated
by finding the maximum total current while varying ϕ. With
the leading-order approximation, the critical current shows
the conventional |cos[π (�/�0)]| modulation. The energy of
the system as a function of the flux � and phase difference
ϕ is then computed according to Eq. (1). The results shown
in Fig. 1, normalized by (h̄/2e2R)Ec, were computed for the
following parameters: � = 30, T = 10, both normalized by
Ec, the length is 1/3 for all four segments, normalized by L,
and A is [1,1,1,1] for the symmetric device and [1,1,0.75,1]
for the asymmetric device, normalized by R and cross-section
area.
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