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BCS superconductivity is explained by a simple Hamiltonian describing an attractive pairing interaction
between pairs of electrons. The Hamiltonian may be treated using a mean-field method, which is adequate to
study equilibrium properties and a variety of nonequilibrium effects. Nevertheless, in certain nonequilibrium
situations, even in a macroscopic rather than a microscopic superconductor, the application of mean-field theory
may not be valid. In such cases, one may resort to the full solution of the Hamiltonian, as given by Richardson in
the 1960s. The relevance of Richardson’s solution to macroscopic nonequilibrium superconductors was pointed
out recently based on the existence of quantum instabilities out of equilibrium. It is then of interest to obtain
analytical expressions for expectation values between exact eigenvalues of the pairing Hamiltonian within the
Richardson approach for macroscopic systems. We undertake this task in the current paper. It should be noted
that Richardson’s approach yields the full set of eigenvalues of the Hamiltonian, while BCS theory yields only a
subset. The results obtained here, then, generalize the familiar BCS expressions (e.g., for the electron occupation
or pairing correlations) to cases where the spectrum of excitations diverges from BCS theory (e.g., in cases where
the spectrum exhibits multiple gaps).
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I. INTRODUCTION AND RESULTS

Our basic understanding of superconductivity is informed
by the mean-field solution of the pairing Hamiltonian, Eq. (1),
given by Bardeen, Cooper, and Schrieffer1,2 (BCS) some half
a century ago. The mean-field solution does extremely well
in many respects because of the fact that, in essence, the
condensate interacts equally strongly with all energy levels
that participate in superconductivity. Thus, a macroscopic
system is well described by mean-field theory. There are some
caveats, though. The BCS expression for the eigenstates does
not capture all possible eigenstates of the pairing Hamiltonian.
For example, the BCS expression predicts a single gap in the
excitation spectrum, whereas it turns out from an exact solution
that any number of gaps may appear in the spectrum. This is
known because Richardson3 solved the pairing Hamiltonian
exactly. These unexpected eigenstates, which correspond to an
unusual spectra of excitations, do not play an important role in
equilibrium—a stroke of luck for BCS theory. Nevertheless,
they may appear in out-of-equilibrium situations, when the
system is far enough from equilibrium;4 this is due to
certain quantum instabilities encountered in nonequilibrium
superconductivity.5

In this paper we study more closely the consequences of
these multigapped eigenstates. We make use of Richardson’s
exact solution and Slavnov’s formula6 as applied to this model7

in order to compute analytically correlation functions of the
pairing amplitude and the occupation number at different
energy levels for a macroscopic system. It should be noted
that Richardson already derived expressions for correlation
functions, which are specific cases of Slavnov’s formulas8

deriving their thermodynamic limit for the case of one gap
and for the expectation value of a single operator.9 Our result
is a generalization of that work, giving expressions for any
number of operators in both the cases of one or two spectral
gaps. Similar approaches were used in Refs. 10 and 11
using numerics and focusing rather on mesoscopic systems.

The relevance of Richardson’s exact solution to the pairing
problem in mesoscopic systems was pioneered in Ref. 12.
Our results, dealing with a macroscopic system, agree with
BCS theory when there is only one spectral gap. Indeed, the
expectation value in that case is given by Eq. (80), below,
[where R2(ξ ) =

√
(ξ − μ)2 + �2], which is an expression

familiar from BCS theory.

II. THE RICHARDSON SOLUTION

BCS superconductivity is captured by a model Hamiltonian
designed to include only those features that are crucial to the
existence of superconductivity. The Hamiltonian includes a
free bilinear part composed of L single-particle levels and an
interaction part which scatters Cooper pairs:

H =
∑

1 � j � L

σj = ±

εj c
†
j,σj

cj,σj
− G

∑
1 � j � L

1 � l � L

c
†
j,+c

†
j,−cl,+cl,−.

(1)

Here, (j,+) and (j,−) denote the quantum numbers of time-
reversed pairs. For example, if (j,+) denotes a state with wave
number �k and spin up, then (j,−) denotes a state with wave
number −�k and spin up. We assume, for simplicity, that each
level j is only doubly degenerate, where σ indexes the two
degenerate states, σ taking + and − as values. Furthermore,
we assume uniform level spacing εj − εj−1 = δ.

It turns out that the model Hamiltonian is exactly solvable;
namely, the eigenvalues and eigenstates can be found exactly.
This was done by Richardson in the 1960s,3 motivated by the
Hamiltonian’s importance in nuclear physics. The solution of
the Hamiltonian is not trivial, and in fact the Richardson solu-
tion may be understood as a Bethe ansatz solution. Indeed, the
Hamiltonian contains a nontrivial interaction which scatters
Cooper pairs (namely time-reverse pairs of electrons). Note
however, that those electrons which singly occupy levels do
not scatter. The levels which contain singly occupied states
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are then called blocked levels, since no pair can scatter into
them. The set of levels which are occupied by single electrons,
together with the corresponding spins of the electrons, are
good quantum numbers. A given set of such quantum number
is termed seniority. For each given seniority, denoted by
(j1,σ1,j2,σ2, . . . ,jM,σM ), one may define a “vacuum” state
|{ji,σi}Mi=1〉, which contains no pairs but only singly occupied
levels: ∣∣{ji,σi}Mi=1

〉 =∏
i

c
†
ji ,σi

|0〉. (2)

Another good quantum number is the number of rapidities,
P . The total number of electrons in the state is then 2P + M ,
since each rapidity contributes one pair of electrons, due to
Eq. (4). There is a one-to-one correspondence of eigenstates
with given P and given seniority and solutions, {Eν}Pν=1, of
the Richardson equations:∑

μ �=ν

1

Eν − Eμ

− 1

2

∑
i∈U

1

Eν − εj

− 1

G
= 0, (3)

where U is the set of all unblocked levels; namely,
U = {i|�k, i = jk}. The eigenstate is then denoted by
|{Ei}Pi=1, {ji,σi}Mi=1〉 and is given explicitly by

∣∣{Eν}Pν=1,{ji,σi}Mi=1

〉 = P∏
α=1

b†α
∣∣{ji,σi}Mi=1

〉
,

(4)

b†α =
∑
i∈U

1

Eα − εi

c
†
i,↑c

†
i,↓.

The eigenvalue for the state is E =∑ν 2Eν +∑j /∈U εj .
We shall call the Eνs rapidities characterizing the state

|{Eν}Pν=1,{ji,σi}Mi=1〉. We shall call a state of the form (4) a
“Richardson state,” even if the rapidities do not satisfy (3).
Namely, a Richardson state is an eigenstate if and only if the
rapidities satisfy (3).

III. ELECTROSTATIC ANALOGY

In what follows we shall be interested in computing
expectation values in the Richardson model in the continuum
limit. To do so, Richardson’s equations (3) must be solved
in different circumstances. The solution of the Richardson
equations are facilitated by the fact that these have a convenient
two-dimensional (2D) electrostatic interpretation. The electric
field at point w of a charge placed in at point z in the complex
plane is given by Ex − iEy = 1/(w − x), which means that (3)
may be interpreted as the condition of electrostatic equilibrium
of the charges Eν , which are assigned a charge +1, given the
the position of charges of magnitude −1/2 at εi (only for
i ∈ U ) and a constant field 1/g pointing in the negative x

direction.
Given this electrostatic analogy it is natural also to define

the field h(z) = δ[Ex(z) + iEy(z)] (here δ is the level spacing).
Explicitly, h(z) is given by

h(ξ ) = − δ

2

∑
j∈U

1

ξ − εj

+ δ
∑

ν

1

ξ − Eν

− 1

g
. (5)

Here, g = G/δ. The continuum limit is taken by letting
δ −→ 0 while letting h(z) tend to a constant, except for certain

arcs and a segment of the real axis. In fact, the solutions
of Richardson’s equations have the following form in the
continuum limit: as can be easily understood, there is always
an electrostatic equilibrium position between any two adjacent
unblocked εj s. As the level spacing is decreased δ → 0, one
may create any line density of charges on the real axis by
placing rapidities on the real axis between adjacent unblocked
levels or by blocking levels. This defines a coarse-grained
charge ρ(ε) on the real axis, which is given by

ρ(ε) = δ

⎡
⎣ ∑

ν,Eν∈R
δ̃δ(ε − Eν) − 1

2

∑
i,�k,jk=i

δ̃δ(ε − εi)

⎤
⎦ , (6)

where δ̃δ is a function tending to a delta function as δ → 0
and has a width much larger than δ, for example, δ̃δ(x) =
(1/

√
π )Aδ exp (( x

Aδ
)2) for some large number A. In addition

to those rapidities, which are on the real axis and lie between
the ε, there may exist truly complex rapidities. These, it turns
out, arrange themselves on arcs. The arcs extend symmetrically
around the real axis (because the Richardson equations are real,
complex rapidities come in complex conjugate pairs). Suppose
there are K arcs. We shall denote the two endpoints of arc j

as μj ± i�j (here i is the imaginary unit).
The field h(ξ ) consequently has a jump discontinuity on

the real axis of magnitude ρ(ε) and on the arcs, where it has
some O(1) jump discontinuity, which must be determined.
Consider the endpoints of the arcs. Those rapidities that sit
on the endpoints must be in electrostatic equilibrium. A closer
analysis shows that this is only possible if the field h(ξ ) tends to
0 as ξ approaches the endpoint. This is an intuitive result since,
if h(ξ ) did not approach 0, the endpoints would feel a force that
would move them. One concludes that h(ξ ) vanishes on the 2K

endpoints of the arcs. Moreover, if we look at the average value
of h(ξ ) across the arc; namely 1

2 [h(ξ+) + h(ξ−)], where ξ± are
points just to the left and to the right of the arc, respectively,
then this average must vanish, the reason being that this average
represents the far-field felt by the charges on the arc. Looking
under a magnifying glass at a segment of the arc, one sees a
long (from this perspective, infinite) chain of charges. These
chains will fly off if an external (or far) field is present. Namely,
the average must vanish. These considerations allow us to find
h(ξ ). In fact Gaudin, in a paper in French13 (later reviewed and
expanded in English in Ref. 14), showed that it is given by

h(ξ ) = R2K (ξ )
∫

ρ(ε)

R2K (ε)(ε − ξ )
dε, (7)

where

R2K (ξ ) =
√√√√ K∏

j=1

(ξ − μj )2 + �2
j . (8)

Indeed, h(ξ ) [defined by (7)] has a jump continuity on the
real axis of the given value ρ(ε), vanishes on the endpoints of
the arc, has a nontrivial jump discontinuity on K arcs, and its
average value across an arc is 0 (since it simply changes sign
across the arc).

Equation (7) is an expression for h(ξ ) given a knowledge
of ρ(ε) and of the endpoints of the arcs μj ,�j , j = 1, . . . ,K .
ρ(ε) is arbitrary and may be tuned by blocking levels and
placing rapidities between adjacent unblocked levels. The
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arc endpoints must be determined self-consistently, however.
These self-consistency conditions can be derived by noting
that h(ξ ) as defined by (5) must have the following asymptotic
behavior as ξ → ∞: h(ξ ) → 1/g + O(1/ξ ). Expanding in
large ξ , Eq. (7) shows that the expected asymptotic behavior
of h(ξ ) is only satisfied if the following K − 1 conditions hold:

∫
ρ(ε)εl

R2K (ε)
dε = 1

g
δl,K−1, l � K − 1. (9)

These are not enough to determine the 2K free parameters
which determine the position of the endpoints. Extra condi-
tions may be found if one knows the number of rapidities on
each one of the arcs. In the case of one arc, the number of
rapidities on the arc is known if one knows the total number
of electrons. Indeed, the total number of particles is 2P + M ,
where P is the number of rapidities and M are the number of
singly occupying electrons. The number of rapidities on the
real axis is known since we know ρ(ε) and so the number
of rapidities on the arc is also known. If there is more than
one arc, however, the total number of particles is not enough
to fully determine the endpoints, and for the same number
of particles, the same given ρ(ε), and the same number of
arcs, one may find different solutions depending on how many
rapidities occupy each arc. The solutions differ by the location
of the endpoints of the arcs.

Since the total number of particles is a good quantum
number, which also factors into finding the endpoints of the
arc, it is useful to have an expression for this quantity. In
fact we shall want to compute Jz = δ

2 (2P + M − L). This
quantity is directly related to the total number of particles,
Jz = δ〈∑i(

N̂i−1
2 )〉. Jz in fact features in the asymptotics of

h(ξ ) as ξ → ∞. Indeed, as ξ → ∞, h(ξ ) → 1/g + Jz/ξ .
Expanding Eq. (7) for large ξ , one obtains

Jz =
∫

[R2K (ξ )]+ ρ(ξ )

R2K (ξ )
dξ, (10)

where [f (ξ )]+ denotes the positive Laurent series of f (ξ )
when expanded around infinity.

The total energy may also be found. Instead of the total
energy E, we compute a slightly different but directly related
quantity E , defined as follows:

E = δ

2

(
E −

L∑
i=1

εi

)
, (11)

then h(ξ ) → 1/g + Jz/ξ + E/ξ 2:

E =
∫

[ξR2K (ξ )]+ ρ(ξ )

R2K (ξ )
dξ. (12)

The eigenstates described by Eq. (4) generalize the eigen-
states found by BCS. States directly corresponding to the BCS
eigenstates may be recovered but, in addition to the states,
one finds states which have no BCS counterpart. To obtain the
BCS eigenstates one must assume K = 1. The expression for
the total number of particles, the energy, and the constraint

[Eqs. (10), (12) and (9), respectively] specialize to

Jz =
∫

(ε − μ)ρ(ε)√
(ε − μ)2 + �2

dε,

E =
∫

ε
(ε − μ)ρ(ε)√
(ε − μ)2 + �2

dε + �2

2g
, (13)

1

g
=
∫

ρ(ε)√
(ε − μ)2 + �2

dε.

These expressions are the familiar BCS expressions if ρ(ε)
is identified as 1

2 [n(ε) − 1], where n(ε) is the occupation
number of excitations at energy ε. Indeed, blocking a level
or inserting an E on the real axis changes the energy of the
system and thus may be viewed as excitations. � is the size
of the spectral gap and μ is the chemical potential of the
condensate, to be determined self-consistently given the total
number of particles in the system. It is not clear, however,
that the Richardson wave function, Eq. (4), becomes the
BCS state (or the number-projected version thereof) in the
thermodynamic limit. In particular, the factorized form of the
BCS state does not appear naturally in Eq. (4). We shall see,
however, that when K = 1 all correlation functions factorize,
thus confirming BCS results.

We shall also derive the results for K = 2, where, we show,
the factorizability of correlation functions no longer holds.

IV. SPHERICAL AND ELLIPTICAL CASES

In the above, we have shown how to obtain the continuum
solution of the Richardson equations and how to relate the
solution to the good quantum numbers Jz and E . This was
based on the electrostatic solution given by Gaudin.13 We
are interested in finding expectation values. The simplest
expectation value to find is that of 〈Ŝz

i 〉, where

Ŝz
i = c

†
i,+ci,+ + c

†
i,−ci,− − 1. (14)

By Hellman-Feynman, 〈Ŝz
i 〉 = 2

δ
∂E/∂εi , where E is given by

(12). More complicated expectation values are not simply
computable by invoking Hellman-Feynman; objects similar to
∂E/∂εi will still appear in such computations. More precisely,
we have

∂E
∂εi

= δ

(
−1

2
+
∑

ν

∂Eν

∂εi

)
,

and the object that will repeatedly appear in subsequent
calculations will be ∂Eν/∂εj . We turn, then, to the computation
of this object.

It is easy to obtain information on ∂Eν/∂εj by considering
the potential function φ(ξ ), which is given by

φ(ξ ) = − δ

2

∑
j

ln(ξ − εj ) + δ
∑

ν

ln(ξ − Eν). (15)

Then, a coarse-grained ∂Eν/∂εi times the density of Es is
given by the jump discontinuity of ∂φ(ξ )/∂εi at ξ = Eν ,
divided by 2πiδ. We compute then the potential in two cases:
the case of one arc, and the case of two arcs.

Note that the solution (7) derives its algebraic properties
from the function R2K (ξ ) defined in Eq. (8). R2K (ξ ) in fact
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defines a spherical double-sheeted algebraic Riemann surface
in the one-arc case an an elliptical surface in the two-arc case.
We shall use basic notions of algebraic geometry, especially
in the two-arc or elliptical case, where direct manipulation
becomes cumbersome, and theorems of uniqueness of func-
tions on Riemann surfaces become a much more powerful
route to obtaining the results.

We are interested in finding the change in electrostatic
potential δφ(ξ ) when one changes the charge density on
the real axis. It will be easier to compute first δh(ξ )dξ

and then integrate. We first compute δh(ξ )dξ when a unit
charge is added at point ε on the real axis and then obtain a
general result through a simple application of the superposition
principle. Based on its definition [Eq. (5)], the field h(ξ )dξ

will have a pole at ε with residue 1. Similarly, there will be
a pole at infinity. Indeed,

∮
h(ξ )dξ = δ(N − L/2), where the

integration contour encircles infinity. In addition, the arc will
move; namely, �i and μi will change. If we look at Eq. (7)
we see that, no matter how �i and μi change, h(ξ ) will retain
the properties that it is an algebraic function defined on the
Riemann surface of R2K (x) and that it changes sign going from
the upper sheet to the lower sheet. This means that δh(ξ )dξ

will also have a pole at the lower sheet at ε and at ∞ but with
residues having reversed signs, respectively. We have δh(ξ )dξ

as a meromorphic differential with given pole structure. Such
a differential is unique on a spherical Riemann surface and in
fact is given by

δh(ξ )dξ = 1√
(ξ − μ)2 + �2

(
1 +

√
(ε − μ)2 + �2

ξ − ε

)
dξ.

(16)

To obtain then δh(ξ ) for a generic disturbance of the charge
density on the real axis, one must employ the superposition
principle:

δh =
∫

δρ(ε)√
(ξ − μ)2 + �2

(
1 +

√
(ε − μ)2 + �2

ξ − ε

)
dε.

(17)

Our goal is to obtain ∂φ(ξ )/∂εi . To obtain this we must
assume that δφ(ξ ) in Eq. (17) corresponds to an infinitesimal
change produced by moving εi . It is important to realize,
though, that when one moves a single εi the rapidities present
near it on the real axis will also move, thus contributing to δρ.
The computation of δρ when one moves a single εi is then
very difficult, since one has to know the exact configuration
of rapidities near εi . This is not necessary, however, since we
will be interested in coarse-grained quantities. Indeed consider
changing not a single εi but rather a number A of them centered
around ε. It is easy to see that, to leading order in δ, as we
shift this group of εis, the whole charge density, including
the rapidities “trapped” between the εis, will shift rigidly.
This implies the following equation for the change of charge
occupation δρ:

δρ(ε′) = δρ(ε)δ′(ε′ − ε)(δε)δ, (18)

where δε/A is the amount each one of the A εis around ε was
shifted. Plugging this into Eq. (17) we obtain

δh(ξ )

δε
= δ

[
ρ(ε)

�2 + (ε − μ)(ξ − μ)

R2(ε)R2(ξ )(ε − ξ )2

]
, (19)

which upon integration yields

δφ(ξ )

δε
= δ

ρ(ε)

ε − ξ

R2(ξ )

R2(ε)
. (20)

We wish now to obtain a similar result when two arcs
are present. This requires working with the elliptic Riemann
surface described by R4(ξ ). Being elliptic, this Riemann
surface has the topology of a torus. We may use a rectangle
with points on opposite sides identified (cyclic boundary
conditions) as a model for the torus. In other words, we shall
write the results first on the rectangle and then map them to the
algebraic curve defined by R4(ξ ). Consider then a rectangle of
sides ω1 ∈ R+ and −iω2 ∈ R+. A function that maps this torus
into the two sheeted algebraic curve defined by R4(ξ ) is given
by the inverse Abel map, written in terms of Weierstrass’s
elliptic Zeta function:

ξ (u) = ζ (u − u∞|ω1,ω2) − ζ (u + u∞|ω1,ω2) + c, (21)

while the direct map is given by

u(ξ ) =
∫ ξ dξ ′

R4(ξ ′)
. (22)

This procedure is standard in the study of algebraic Riemann
surfaces, and is reviewed in any number of textbooks.

Consider now δh(ξ )dξ for the two-arc case. Being com-
pletely general, the pole structure is the same as in the one-arc
case, and just as before starting from (7) we may conclude
that δh(ξ )dξ is an elliptic differential that changes sign as one
changes sheets. We need one more ingredient to find δh(ξ )dξ ,
because these conditions are not sufficient to determine a
differential on an elliptic Riemann surface, due to the existence
of the holomorphic differential du(ξ ). An extra condition is
obtained by considering that the change performed must leave
the number of pairs on each arc constant. Now, the number
of pairs on an arc is proportional to

∮
δh(ξ )dξ , where the

integral is taken around the arc, which serves as the required
additional condition. The image of the arc on the rectangle is
a line extending from 0 to ω1. So we must demand that the
integral of δh(ξ )dξ be zero taken on a line from 0 to ω1. The
final result is then

δh(ξ )dξ

= du(ξ )
∫ {

ζ [u(ξ ) − u(ε)] − ζ [u(ξ ) − u∞]

− ζ [u(ξ ) + u(ε)] + ζ [u(ξ ) + u∞]

+ 4[u(ε) − u∞]ζ
(

ω1
2

)
ω1

}
δρ(ε)dε. (23)

Indeed, it is easy to verify that the expression inside the
brackets in the integrand has poles at u(ε) and u∞, which
are just the images of ε and ∞, respectively. The residues are
correct. The integrand is invariant upon switching sheets [this
is done by taking u(ξ ) → −u(ξ )] but the integral is multiplied
by du, which does change signs when one switches sheets,

224503-4



EXACT EXPECTATION VALUES WITHIN RICHARDSON’s . . . PHYSICAL REVIEW B 84, 224503 (2011)

so that the whole expression has the right behavior upon
switching sheets. It is also easy to verify that the integral
of this expression taken from 0 to ω1 gives zero.

Plugging (18) into (17) amounts to taking a derivative with
respect to u(ε), which yields

δh(ξ )dξ = ρ(ε)

{
℘[u(ξ ) − u(ε)] + ℘ [u(ξ ) + u(ε)]

+ 4ω−1
1 ζ

(
ω1

2

)}
du(ξ )δu(ε). (24)

It is a matter of performing an integral with respect to u(ξ ) in
order to obtain δφ/δε:

δφ(ξ )

δε
δε = ρ(ε)

{
ζ [u(ξ ) − u(ε)] + ζ [u(ξ ) + u(ε)]

+ 4ω−1
1 u(ξ )ζ

(
ω1

2

)}
δu(ε). (25)

Using the identity

R4(ξ )dε

R4(ε)(ξ − ε)
= {ζ [u(ξ ) − u(ε)] + ζ [u(ξ ) + u(ε)]

− ζ [u(ξ ) − u∞] − ζ [u(ξ ) + u∞]}du(ε), (26)

The expression for δφ/δε may be written in a form which will
prove much more convenient later:

δφ(ξ )

δε
= δ

[
ρ(ε)R4(ξ )

R4(ε)

](
1

ξ − ε
− g(ξ )

)
, (27)

where

g(ξ ) = ζ [u(ξ ) − u∞] + ζ [u(ξ ) + u∞] − 4ω−1
1 u(ξ )ζ

(
ω1
2

)
R4(ξ )

.

(28)

V. SLAVNOV’S FORMULA

In order to compute the matrix elements we shall make use
of Slavnov’s formula.6 Two states will have a nonzero overlap
only if they have the same seniority, namely, the same set of
singly occupied levels ji with the spins pointing in the same
direction. We thus suppress the notation of seniority and write
simply |{Eν}Pν=1〉 for a Richardson state. Slavnov’s formula6

as applied7 to the Richardson solution reads

〈 {wν}Pν=1

∣∣ {vν}Pν=1

〉 =
∏

a �=b(vb − wa)∏
b<a(wb − wa)

∏
a<b(vb − va)

det J,

(29)

where {vν}Pν=1 obey the Richardson equations, while {wν}Pν=1
do not necessarily satisfy the Richardson equations. The matrix
J appearing in Eq. (29) is given by

Jab = vb − wb

va − wb

⎛
⎝ P∑

α=1

1

(va − εα)(wb − εα)

−2
∑
c �=a

1

(va − vc)(vb − vc)

⎞
⎠ . (30)

When the set {vν}Pν=1 coincides with the set {wν}Pν=1, Slavnov’s
formula gives the norm of the Richardson state. In this case
the matrix J takes the form

Aab =
{∑

α
1

(va−εα )2 − 2
∑

c �=a
1

(va−vc)2 a = b
2

(va−vb)2 a �= b.
(31)

This limit form A of J will appear frequently in the sequel.

VI. COMPUTATION OF EXPECTATION VALUES:
BASIC EXAMPLES

The notations for the computation of a general correlation
function become quite cumbersome. It is easier to start with
two simple examples which demonstrate the principle of the
computation before plunging into the general scheme. This is
undertaken in the next two subsections.

A. Computation of 〈Ŝz(ε)〉
Consider the computation of 〈Ŝz(ε)〉. Ŝz

α is given by (14).
What is meant by Ŝz(ε) is a coarse-grained version of this
quantity; namely,

Ŝz(ε) = 1

2A

∑
|εi−ε|<Aδ

Ŝz
i . (32)

To compute such an object we may first compute simply 〈N̂i〉
and then perform a coarse graining and subtract a constant to
obtain 〈Ŝz(ε)〉.

We shall want to represent 〈N̂i〉 as an overlap between two
Richardson states in order to use Slavnov’s formula to compute
it. More explicitly, we are computing 〈{vν}Pν=1|N̂i |{vν}Pν=1〉,
where N̂i = (c†i,+ci,+ + c

†
i,−ci,−)/2. We can write:

N̂i

∣∣{vν}Pν=1

〉 =∑
α

b
†
i

vα − εi

∣∣{vν}ν �=α

〉
. (33)

Considering that the operator N̂i simply projects onto the space
of states that have i occupied by a Cooper pair and, inspecting
Eq. (4), it is quite easy to understand how to derive (33). We
shall not give a more explicit proof, but rather explain the
different ingredients on the right-hand side of (33). First note
that, in order for level i to be occupied with a Cooper pair, one
of the the operators bν in Eq. (4) must have hit level i. The sum
over α in Eq. (33) is a sum over all the possible such αs. The
factor (vα − εi)−1 is inherited directly from b†α . b†i in Eq. (33) is
responsible for filling up level i. All the rest of the levels have
a chance to be filled by b†ν except ν = α. This explains the state
|{vν}ν �=α〉 appearing in Eq. (33). This heuristic explanation may
be translated directly into a rigorous proof; an alternative is to
use the language of the algebraic Bethe ansatz to obtain the
result, as done in Refs. 7 and 10.

We shall denote the state b
†
i |{vν}ν �=α〉 by |{vν}ν �=α ∪ {εi}〉.

We have

N̂i |{vν}Pν=1〉 =
∑

α

1

vα − εi

|{vν}ν �=α ∪ {εi}〉. (34)

The state |{vν}ν �=α ∪ {εi}〉 ≡ b
†
i |{vν}ν �=α〉 can be thought of as

a Richardson state, with a set of rapidities vν which do not
satisfy Richardson’s equations. This can be done because of
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the following relationship:

|{vν}ν �=α ∪ {εi}〉 = lim
ε→0

ε|{vν}ν �=α ∪ {εi + ε}〉, (35)

where the state |{vν}ν �=α ∪ {εi + ε}〉 is given by (4).
Having written 〈N̂i〉 as a sum over overlaps between

Richardson states, we are ready to use Slavnov’s formula to
compute it. The result is

〈N̂i〉 =
∑

α

det A

(
α

i

)
det A

, (36)

where A is given in Eq. (31) and A
(
α

i
)

is A with column α

replaced by a column vector V (i), this column vector being
given by

V (i)
ν = 1

(vν − εi)2
. (37)

More explicitly,

A

( α

i

)
μ,ν =

{
V (i)

μ ν = α

Aμ,ν otherwise.
(38)

By Cramer’s rule the ratio of determinants can be computed

as det A
(
α

i
)
/det A = ([A−1V (i)]α). In order to be able to invert

A, we note that A has in fact a straightforward interpretation.
Suppose that each one of the vνs are subjected to an
external field δhν . In order for them to remain in electrostatic
equilibrium they must obey the equations

δ
∑
μ �=ν

1

vν − vμ

− δ

2

∑
i∈U

1

vν − εj

− 1

g
= δhν. (39)

The shift of the vνs in linear order is a matrix multiplying the
vector �δh with components δhν . This matrix turns out to be
2
δ
A−1. Indeed, expanding (39) one obtains

δ

2
Ai,j δvj = δhi. (40)

Suppose we shift εj by an amount δεj . This change
can be represented as having vν experiencing an ex-
ternal field of δhν = ( δ

2 )δεj /(vν − εj )2 = δ
2δεjV

(j )
ν , which

implies

[A−1V (i)]μ = ∂vμ

∂εi

, (41)

which gives

〈N̂i〉 =
∑

α

∂vα

∂εi

. (42)

To compute ∂vμ/∂εi , we resort to the results of Sec. IV, where
we have computed the coarse-grained change in the potential
due to a shift of a group of εs on the real axis. The jump
discontinuity at vμ of ∂φ(ξ )/∂ε is equal to 2πiδ times an
averaged ∂vμ/∂εi times the density of vs. This is true if vμ

is on the arc or on the real axis, except that there is an extra
contribution from unblocked ε. If we integrate over the jump
discontinuity we obtain the sum on the right-hand side of (42)
with two caveats: (1) the result is not a derivative with respect to

a single εi but a coarse-grained quantity, and (2) the unblocked
ε add to the result. These two caveats amount to the fact that,
by integrating over the jump discontinuity of ∂φ(ξ )/∂ε over
the arcs and the real axis, we obtain Ŝz(ε) of definition (32).
Since the integral over the jump discontinuity is simply given
by a contour integral surrounding both the real axis and the
arcs, we have

〈Ŝz(ε)〉 = 1

2πδi

∮
∞

∂φ(ξ )

∂ε
dξ. (43)

In the spherical (one-arc) case, ∂φ(ξ )/∂ε is given by (20),
thus

〈Ŝz〉(ε) =
∮

∞

R2(ξ )

R2(ε)(ξ − ε)

ρ(ε)

2π
dξ = ε − μ

R2(ε)
ρ(ε), (44)

which is the known BCS result, derived in this context by
Richardson,9 based on more direct methods than the use of the
Slavnov formula—methods which are nevertheless harder to
generalize to more complicated expectation values. We extend
the result by considering two arced configurations. In this case,
∂φ(ξ )/∂ε is given by (27), thus

〈Ŝz(ε)〉 = ρ(ε)

R4(ε)

{∮
∞

R4(ξ )

ξ − ε
dξ −

∮
u∞

R4(ξ )g(ξ )

u′(ξ )
du(ξ )

}
.

(45)

u′(ξ ) is computed making use of (21), to yield

u′(ξ )−1 = ℘[u(ξ ) − u∞] − ℘[u(ξ ) + u∞]. (46)

The first integral in Eq. (45) is to be taken over a large circle
encompassing the arcs and ε while the second integral is taken
over the circle’s image under u(ξ ). Performing the integration
is a straightforward exercise in picking up the respective poles,
the final result being

〈Ŝz(ε)〉 = (ε − μ1)(ε − μ2) + �2
1+�2

2
2 − 2℘(2u∞) − 4ω−1

1 ζ
(

ω1
2

)
R4(ε)

ρ(ε). (47)

B. Computation of 〈Ŝ†(ε∗)Ŝ(ε)〉
We now compute 〈{vν}Pν=1|Ŝ†

i∗ Ŝi |{vν}Pν=1〉, assuming both i

and i∗ are unblocked levels. Consider then Ŝ
†
i∗ Ŝi |{vν}Pν=1〉. Ŝ

†
i∗

projects |{vν}Pν=1〉 on the space in which εi∗ is empty and then
fills it. The effect of Ŝ

†
i∗ can be simply achieved by adding εi∗

to the set of vν , because this causes the level i∗ to be filled
while ensuring that no vν hits εi∗ . Namely,

Ŝi Ŝ
†
i∗ |{vν}Pν=1〉 = Ŝi

∣∣{vν}Pν=1 ∪ {εi∗ }
〉
. (48)
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Ŝi projects |{vν}Pν=1 ∪ {εi∗ }〉 on the space in which εi is filled
and then empties it. In formulas:

Ŝi

∣∣{vν}Pν=1 ∪ {εi∗ }
〉

= biN̂i

∣∣{vν}Pν=1 ∪ {εi∗ }
〉

=
∑

α

bi

vα − εi

∣∣{vν}Pν=1 \ {vα} ∪ {εi∗ ,εi}
〉
, (49)

where in the last equality we have used the representation of
N̂i as an overlap [Eq. (34)]. The following identity is easy to
understand:

bi

∣∣{vν}Pν=1 \ {vα} ∪ {εi∗ ,εi}
〉

= (1 − N̂i)
∣∣{vν}Pν=1 \ {vα} ∪ {εi∗ }

〉
= ∣∣{vν}Pν=1 \ {vα} ∪ {εi∗ }

〉
−
∑

β

1

vβ − εi

∣∣{vν}Pν=1 \ {vα,vβ} ∪ {εi∗ ,εi}
〉
, (50)

making use again in the last equality of the representation of
N̂i as an overlap. We obtain〈{vν}Pν=1

∣∣Ŝi Ŝ
†
i∗
∣∣{vν}Pν=1

〉
=
∑

α

1

vα − εi

⎛
⎝ 〈{vν}Pν=1

∣∣ {vν}Pν=1 \ {vα} ∪ {εi∗ }
〉

−
∑

β

1

vβ − εi

〈{vν}Pν=1

∣∣ {vν}Pν=1 \ {vα,vβ} ∪ {εi∗ ,εi}
〉⎞⎠ .

(51)

Making use of Slavnov’s formula, we are now ready to write
the expectation value 〈Ŝ†

i∗ Ŝi〉 as a determinant. The first term
on the right-hand side of (51) goes along the same lines as the
computation of 〈N̂i〉, so we shall not repeat it here. The second
term on the right-hand side of (51) has the added feature that
it has two replacements: vα → εi∗ and vβ → εi . This leads to
the following equation:〈{vν}Pν=1

∣∣ {vν}Pν=1 \ {vα,vβ} ∪ {εi∗ ,εi}
〉

= (vα − εi)(vα − εi∗ )(vβ − εi)(vβ − εi∗ )

(vα − vβ)(εi − εi∗ )
det A

(
αβ

i∗ i

)
,

(52)

where

A

(
αβ

i∗ i

)
μ,ν =

⎧⎪⎨
⎪⎩

V (i∗)
μ ν = α

V (i)
μ ν = β

Aμ,ν otherwise.

(53)

Cramer’s rule for A
(
αβ

i∗ i
)

reads

det A

(
αβ

i∗ i

)
det A

= det

(
(A−1V (i∗))α (A−1V (i∗))β
(A−1V (i))α (A−1V (i))β

)
, (54)

which according to (41) reads

det A

(
αβ

i∗ i

)
det A

= det

(
∂vα

∂εi∗
∂vβ

∂εi∗
∂vα

∂εi

∂vβ

∂εi

)
. (55)

Combining (51), (52), and (55) we obtain

〈Ŝ†
i∗ Ŝi〉 =

∑
α

vα − εi∗

vα − εi

∂vα

∂εi∗
−
∑
α,β

(vα − εi∗ )(vβ − εi∗ )

(vα − vβ)(εi − εi∗ )

×
(

∂vα

∂εi∗

∂vβ

∂εi

− ∂vα

∂εi

∂vβ

∂εi∗

)
. (56)

We now need to take the continuum limit of the expression.
This is achieved by coarse graining the quantities Ŝi and Ŝ

†
i∗ .

Explicitly, the coarse graining reads

Ŝ†(ε∗) = 1

2A

∑
|εi∗ −ε∗|<Aδ

Ŝ
†
i∗

and

Ŝ(ε) = 1

2A

∑
|εi−ε∗|<Aδ

Ŝi .

The first sum in Eq. (56) has the following continuum limit:

∑
α

vα − εi∗

vα − εi

∂vα

∂ε∗ −→ ρU (ε∗)
∮

�

(ξ ∗ − ε∗)

(ξ ∗ − ε)

∂φ(ξ ∗)

∂ε∗
dξ ∗

2πiδ
,

(57)

where the integral encircles the arcs but no part of the real
axis (except the intersection of the arc with the real axis).
ρU (ε∗) denotes the average occupation of unblocked levels at
ε∗. This term appears because the unblocked i’s (and only
them) must be summed over in the coarse-graining procedure.
Indeed i and i∗ are assumed to be unblocked in Eq. (56), and
if either one is blocked the correlation function is obviously
zero. Another point to note is that, since the integral is taken
over �, the contribution of ∂vα/∂ε∗ is neglected for real vα .
However, this presents no difficulty, since only real vα near εi∗

are affected by a change of εi∗ , and their contribution to the sum
is suppressed by a factor (vα − εi∗ ). Namely, this contribution
does not survive in the continuum limit.

Treating now the continuum limit of the second, double,
sum in Eq. (56) we obtain

∑
α,β

(vα − εi∗ )(vβ − εi∗ )

(vα − vβ)(εi − εi∗ )

(
∂vα

∂εi∗

∂vβ

∂εi

− ∂vα

∂εi

∂vβ

∂εi∗

)

−→ −2ρv(ε)
∮

�

(ξ ∗ − ε∗)

(ξ ∗ − ε)

∂φ(ξ ∗)

∂ε∗
dξ ∗

2πiδ

+
∮

�

∮
�

(ξ − ε∗)(ξ ∗ − ε∗)

(ξ − ξ ∗)(ε − ε∗)

×
(

∂φ(ξ )

∂ε

∂φ(ξ ∗)

∂ε∗
∂φ(ξ ∗)

∂ε

∂φ(ξ )

∂ε∗

)
dξ

2πiδ

dξ ∗

2πiδ
. (58)

The double integral on the right-hand side is the obvious
continuum limit of the left-hand side. The single integral
takes into account the contribution of v’s near εi , which is
neglected in the double integral, which is performed over �.
This contribution is naturally proportional to ρv(ε), the average
occupation of v near ε (again being related to the fact that the
v’s move rigidly with the ε’s). The contribution of v near εi∗

is suppressed by the factor (vα − εi∗ )(vβ − εi∗ ) and thus need
not be taken into account.
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Since the average (coarse-grained) charge ρ is defined as
ρ = 1

2 (ρU − 2ρv) we obtain an expression in the continuum
limit in the following form:

〈Ŝ†(ε)Ŝ(ε)〉
= 2ρ(ε)

∮
�

(ξ ∗ − ε∗)

(ξ ∗ − ε)

∂φ(ξ ∗)

∂ε∗
dξ ∗

2πiδ

−
∮

�

∮
�

(ξ − ε∗)(ξ ∗ − ε∗)

(ξ − ξ ∗)(ε − ε∗)

×
(

∂φ(ξ )

∂ε

∂φ(ξ ∗)

∂ε∗ − ∂φ(ξ ∗)

∂ε

∂φ(ξ )

∂ε∗

)
dξ

2πiδ

dξ ∗

2πiδ
.

(59)

We shall not perform the integrals explicitly, since the result is
not very illuminating. We shall proceed instead to giving the
general expression for the expectation value of any number of
operators.

VII. COMPUTATION OF EXPECTATION VALUES:
GENERAL FORMULA

We now compute a general expectation value featuring
any fixed (not scaling with 1/δ) number of operators. The
first thing to do is to write such an expectation value as
an overlap of Richardson states. This is done either by
invoking concepts related to the algebraic Bethe ansatz or by
repeatedly using the tricks of subsections VI A and VI B. The
result is

〈
Ŝi1 Ŝi2 · · · Ŝin Ŝ

†
i∗1

· · · Ŝ†
i∗n
N̂j1 · · · N̂jm

〉 = n∑
k=1

∑
m1<m2<···<mk

∑
ν1,...,νn+m+k

(−)k∏n
l=1

(
vνl

− εil

)∏k
l=1

(
vνn+l

− εiml

)∏m
i=l

(
vνn+k+l

− εjl

)
×
〈{vμ}Pμ=1

∣∣{vμ}Pμ=1 \ {vνl

}n+m+k

l=1 ∪ {εi∗l

}n
l=1 ∪ {εiml

}k
l=1 ∪ {εjl

}ml=1

〉
〈{vμ}Pμ=1

∣∣{vμ}Pμ=1

〉 . (60)

The factor (−)k comes from a straightforward inclusion-exclusion principle or, alternatively, from expanding the product∏n
j=1(1 − N̂ij ), whose origin is the same as the origin of (1 − N̂i) appearing in Eq. (50).
The overlaps appearing in Eq. (60) can be easily computed using Slavnov’s formula, with the result

〈{vμ}Pμ=1

∣∣{vμ}Pμ=1 \ {vνl

}s
l=1 ∪ {εkl

}s
l=1

〉
〈{vi}Pi=1

∣∣{vi}Pi=1

〉 =
∏

l,m

(
vνl

− εkm

)
∏

m<n

(
εkm

− εkn

)∏
m<n

(
vνm

− vνn

) det A

(
ν1 ν2 · · · νs

k1 k2 · · · ks

)
det A

, (61)

in which A
(
ν1 ν2 . . . νs

k1 k2 . . . ks
)

is defined as

A

(
ν1 ν2 . . . νs

k1 k2 . . . ks

)
γ,δ =

{
V (ki )

γ ∃i, δ = νi

Aγ,δ otherwise,
(62)

with

V (ki )
γ = 1(

vγ − εki

)2 . (63)

A−1 is given an electrostatic interpretation just as above to yield

det A

(
ν1 ν2 . . . νs

k1 k2 . . . ks

)
det A

= det
i,j

([A−1V (ki )]νj
) = det

i,j

∂vνj

∂εki

.

(64)

And the whole expectation value has the following continuum-limit version:〈
Ŝ
(
εk1

)
Ŝ
(
εk2 ) · · · Ŝ(εkn

)
Ŝ†(εkn+1

) · · · Ŝ†(εk2n

)
Ŝz

(
εk2n+1

) · · · Ŝz

(
εk2n+m

)〉
=

n∑
k=0

(−)k
∑
I∈Pk

[∏
i∈I

∮
�

dξi

2π

] ∏
(i,j ) ∈ I 2

i < j

(ξi − εkj
)
(
ξj − εki

)
(ξi − ξj )

(
εki

− εkj

) 2n∏
i=n+1

ξi − εki

ξi − εki−n

det
(i,j )∈I 2

δφ(ξj )

δεkj

, (65)

where

Pk = {I ⊆ {1,2, . . . ,2n + m}|I = {j1,j2, . . . ,jk,n + 1,n + 2, . . . ,2n + m} where 1 � j1 < j2 < · · · < jk � n
}
. (66)
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The difficult object to compute in Eq. (65) is
deti,j [δφ(ξj )/δεkj

]. Equation (27) shows that, up to a mul-
tiplication of rows and columns by constant factors, the matrix
δφ(ξj )/δεkj

has a part which is a Cauchy matrix, with the
Cauchy matrix being given by

Ci,j = 1

ξj − εki

. (67)

Indeed,

det
(i,j )∈I 2

δφ(ξj )

δεkj

=
∏
i∈I

ρ
(
εki

)
R4(ξi)

R4
(
εki

) det
(i,j )∈I 2

[C + G]i,j , (68)

where

Gi,j = g(ξj ). (69)

We use this fact to write

det
(i,j )∈I 2

δφ(ξj )

δεkj

=
∏
i∈I

ρ
(
εki

)
R4(ξi)

R4
(
εki

) det
(i,j )∈I 2

(Ci,j ) det
(i,j )∈I 2

×
(

δi,j −
∑
l∈I

C−1
i,l Gl,j

)
. (70)

The determinant of the Cauchy matrix is known to be given by

det
(i,j )∈I 2

(Ci,j ) =
∏

(i,j )∈I 2,i<j

[(
εki

− εkj

)
(ξi − ξj )

]
∏

(i,j )∈I 2

(
ξi − εkj

) . (71)

The inverse of the Cauchy matrix is also known:

C−1
i,j =

∏
l∈I

[(
ξi − εkl

)(
ξl − εkj

)]
∏

l∈I,l �=i(ξi − ξl)
∏

l∈I,l �=j

(
εkj

− εkl

) 1

ξi − εkj

. (72)

Note however, that this is the inverse of C when it is understood
that the indices run only over the set I ; namely,

∑
l∈I

C−1
i,l Cl,j = δi,j ∀(i,j ) ∈ I 2. (73)

Making use of the algebraic identity

∑
j∈I

∏
l∈I

(
ξl − εkj

)
∏

l∈I,l �=j

(
εkj

− εkl

) 1

ξi − εkj

=
∮ ∏

l∈I,l �=i(x − ξl)∏
l∈I

(
x − εkl

) dx

2πi
= 1, (74)

one obtains that the matrix [C−1G]i,j is diadic:

[C−1G]i,j =
∏

l∈I

(
ξi − εkl

)
∏

l∈I,l �=i(ξi − ξl)
g(ξj ). (75)

If r and s are column vectors and F is a diadic matrix formed
from them, F = rst , then det(1 + F ) = 1 + rt s. This allows
us to write

det
(i,j )∈I 2

(
δi,j −

∑
l∈I

C−1
i,l Gl,j

)

= 1 −
∑

i

∏
l∈I

(
ξi − εkl

)
∏

l∈I,l �=i(ξi − ξl)
g(ξi)

= 1 −
∮
C

∏
l∈I

(
x − εkl

)
∏

l∈I (x − ξl)
g(x)

dx

2πi
, (76)

where the contour C on the right-hand side encircles all ξis.
We let this contour be composed of two parts: a large circle
traversed counterclockwise around infinity, and a contour
� traversed clockwise around the arcs:

∮
C = ∮∞ − ∮

�
. The

integral over the large circle can be done immediately by
expanding its radius to infinity. This integral can easily be
seen to be equal to 1. We are thus left only with the integral
over the contour �:

det
(i,j )∈I 2

(
δi,j −

∑
l∈I

C−1
i,l Gl,j

)
=
∮

�

∏
l∈I

(
x − εkl

)
∏

l∈I (x − ξl)
g(x)

dx

2πi
,

(77)

where the integral is taken counterclockwise around the arcs.
Combining (65), (70), (71), and (77) we obtain

〈
Ŝ
(
εk1

)
Ŝ
(
εk2

) · · · Ŝ(εkn

)
Ŝ†(εkn+1

) · · · Ŝ†(εk2n

)
Ŝz

(
εk2n+1

) · · · Ŝz

(
εk2n+m

)〉
=
[ 2n+m∏

i=1

ρ(εi)

] ∮
�

g(x)

[
n∏

i=1

(
2 −

∮
�

R4(ξi)(x − εi)

R4(εi)(x − ξi)(ξi − εi)

dξi

2πiδ

)

×
2n∏

i=n+1

(∮
�

R4(ξi)(x − εi)

R4(εi)(x − ξi)(ξi − εi−n)

dξi

2πiδ

) 2n+m∏
i=2n+1

(∮
∞

R4(ξi)(x − εi)

R4(εi)(x − ξi)(ξi − εi)

dξi

2πiδ

)]
dx

2πi
(78)

The result has a convenient almost-factorized form. Performing the integrals over the ξs directly we obtains our main result:〈
Ŝ
(
εk1

)
Ŝ
(
εk2

) · · · Ŝ(εkn

)
Ŝ†(εkn+1

) · · · Ŝ†(εk2n

)
Ŝz

(
εk2n+1

) · · · Ŝz

(
εk2n+m

)〉
(79)

=
[

2n+m∏
i=1

ρ(εi)

]∮
�

g(x)

{
n∏

i=1

[
1 −

(
[μ1 + μ2 − (x + εi)](x − εi)

R4(εi)

)2]
R4(εi)

x − εi

×
2n∏

i=n+1

x − εi

R4(εi)

2n+m∏
i=2n+1

(
[μ1 + μ2 − (x + εi)](x − εi)

R4(εi)

)}
dx

2πi
,

where g(x) is given by (28) and R4(ξ ) is given by (8). The result appears formidable, but consists only of a single contour
integral over known functions. The computation of this integral involves finding residues of the integrand, which is a
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mechanical task, easily performed by mathematical software, such that more explicit expressions can be derived for a given n

and m.
In case one arc vanishes (e.g., �2 → 0), the function g(ξ ) can be shown to take the limit g(ξ ) → 1/(ξ − μ2). In this case the

integral over x in Eq. (78) can be taken by shrinking the contour of integration to a point, μ2. This amounts to a substitution
x → μ2, and gives the BCS result:

〈
Ŝ
(
εk1

)
Ŝ
(
εk2

) · · · Ŝ(εkn

)
Ŝ†(εkn+1

) · · · Ŝ†(εk2n

)
Ŝz

(
εk2n+1

) · · · Ŝz

(
εk2n+m

)〉 = 2n∏
i=1

�

R2(εi)
ρ(εi)

2n+m∏
i=2n

(εi − μ)

R2(εi)
ρ(εi). (80)

Note, however, that this way to obtain the BCS result is not general. The point μ2 on the real axis is special and has the property
that the far-field [h(μ2 + i0+) + h(μ2 − i0+) = 0] vanishes at this point. Not all solutions with one arc obey this constraint. The
general way to obtain the BCS result is rather to take expression (20) for ∂φ(ξi)/∂εj as a starting point. This amounts to taking
G = 0 in Eq. (68). It is easy then to proceed since the integral over g(x) does not show up and, in fact, the one-arc version of Eq.
(78) takes the simplified form〈

Ŝ
(
εk1

)
Ŝ
(
εk2

) · · · Ŝ(εkn

)
Ŝ†(εkn+1

) · · · Ŝ†(εk2n

)
Ŝz

(
εk2n+1

) · · · Ŝz

(
εk2n+m

)〉
=

2n+m∏
i=1

ρ(εi)
n∏

i=1

(
2 −

∮
�

R2(ξi)

R2(εi)(ξi − εi)

dξi

2πiδ

) 2n∏
i=n+1

(∮
�

R2(ξi)

R2(εi)(ξi − εi−n)

dξi

2πiδ

) 2n+m∏
i=2n+1

(∮
∞

R2(ξi)

R2(εi)(ξi − εi)

dξi

2πiδ

)
.

(81)

The integrals can be explicitly taken to give (80).

VIII. CONCLUSION

We have shown how to compute correlation functions in
the thermodynamic limit of the Richardson model. We gave
explicit results for the case of one arc and two arcs. The
one-arc results converge with the BCS result, as expected.
The correlation functions factorize into independent factors
corresponding to each one of the operators in the correlation
function. In the two-arc case, the factorization property
disappears. Instead, the result [Eq. (79)] is given as a contour
integral over an auxiliary variable x, which has a factorized
form, where again each factor corresponds to an operator in
the correlation function.

It is interesting to see whether our results may also
be obtained from a semiclassical approach, following the
works of Refs. 16 and 17. In this approach the semiclassical
analogs,15 S+, S−, and Sz, of the operators Ŝ†, Ŝ, and
Ŝz, respectively, are considered. These are shown to obey
a classical integrable nonlinear equation. Being integrable,
the equation may be solved.15–17 It may then be possible to
compute correlation functions in a semiclassical approach. In
the case where the order parameter �(t) is time independent,
this approach converges with the BCS approach, producing
correct results. If the order parameter �(t) is time dependent,
it may be more delicate to justify the semiclassical approach to
computating the expectation values. The question of validity
notwithstanding, our final result is suggestive of such an
approach. Indeed, it may be that, by a change of variables, the
integral over x turns into an integral over time, the periodicity
of the integration contour over x related to the periodicity of
a semiclassical solution, in which case our result may turn

simply into a time average of the product of the respective
semiclassical spin components S+, S−, and Sz.

A more challenging task, and one we intend to pursue
in future studies, is the calculation of matrix elements.
For example, 〈v|c†j,σ cj,σ |w〉 or 〈v|c†j,+c

†
j,−|w〉, between two

different eigenstates, |v〉 and |w〉. These matrix elements are
important in predicting the dynamics of Richardson’s state
and in revealing its quantum coherence properties in different
physical situations. Indeed, 〈v|c†j,σ cj,σ |w〉 is related to the
transition rate between state |v〉 and |w〉 under a perturbation
c
†
j,σ cj,σ . Such objects appear in the computation of the Fermi

golden rule rate due to, for example, phonon scattering.
Note that the object 〈v|c†j,σ cj,σ |w〉, does not have a natural

semiclassical counterpart because the operators c
†
j,σ and cj,σ

are not simply related to S+, S−, or Sz. The other matrix
element mentioned (i.e., 〈v|c†j,+c

†
j,−|w〉) appears naturally

when one attempts to compute the tunneling of pairs into
a superconductor in state |v〉. Such a computation appears
in treating the Josephson effect or Andreev reflection. A
Josephson effect setup is the obvious choice to measure the
time-dependent order parameter �(t) in an experiment.
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Résolus (Les Éditions de Physique, France, 1995), p. 247.

14J. M. Román, G. Sierra, and J. Dukelsky, Nucl. Phys. B 634, 483
(2002).

15R. A. Barankov, L. S. Levitov, and B. Z. Spivak, Phys. Rev. Lett.
93, 160401 (2004).

16E. A. Yuzbashyan, B. L. Altshuler, V. B. Kuznetsov, and V. Z.
Enolskii, J. Phys. A: Mathematical General 38, 7831 (2005).

17E. A. Yuzbashyan, B. L. Altshuler, V. B. Kuznetsov, and V. Z.
Enolskii, Phys. Rev. B 72, 220503 (2005).

224503-11

http://dx.doi.org/10.1007/BF01016531
http://dx.doi.org/10.1103/PhysRevB.65.060502
http://dx.doi.org/10.1103/PhysRevB.65.060502
http://dx.doi.org/10.1016/0029-5582(64)90687-X
http://dx.doi.org/10.1063/1.523493
http://dx.doi.org/10.1103/PhysRevB.77.064503
http://dx.doi.org/10.1103/PhysRevB.77.064503
http://dx.doi.org/10.1103/PhysRevLett.88.127003
http://dx.doi.org/10.1103/PhysRevLett.88.127003
http://dx.doi.org/10.1103/PhysRevLett.81.4712
http://dx.doi.org/10.1016/S0550-3213(02)00317-6
http://dx.doi.org/10.1016/S0550-3213(02)00317-6
http://dx.doi.org/10.1103/PhysRevLett.93.160401
http://dx.doi.org/10.1103/PhysRevLett.93.160401
http://dx.doi.org/10.1088/0305-4470/38/36/003
http://dx.doi.org/10.1103/PhysRevB.72.220503

