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Propagation of thermal excitations in a cluster of vortices in superfluid 3He-B
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We describe the first measurement on Andreev scattering of thermal excitations from a vortex configuration
with known density, spatial extent, and orientations in 3He-B superfluid. The heat flow from a blackbody radiator
in equilibrium rotation at constant angular velocity is measured with two quartz tuning fork oscillators. One
oscillator creates a controllable density of excitations at 0.2Tc base temperature and the other records the thermal
response. The results are compared to numerical calculations of ballistic propagation of thermal quasiparticles
through a cluster of rectilinear vortices. We find good agreement which supports the current understanding of
Andreev reflection.
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I. INTRODUCTION

Measurements of quantized vortices and attempts to
develop methods for the visualization of different vortex
configurations have been central in superfluid studies. Re-
cent interest has focused on quantum turbulence.1 In Bose-
Einstein-condensed atom clouds, motion of vortices has been
investigated with optical means.2 In the long-studied case
of superfluid 4He, vortices can be detected, e.g., by ion
trapping on vortex cores or second sound attenuation,3 while
recent work on turbulence studies has been making use
of transmission measurements of charged vortex rings4 or
trapping of micron-sized tracer particles in vortex tangles,5

as well as analyzing the drag force exerted on vibrating
structures.6 In superfluid 3He, the traditional method to study
vortices is nuclear magnetic resonance.7 The superfluid flow
due to quantized vortices modifies the order parameter field
and, thus, the NMR signal. In uniform rotation, a resolution
of a single vortex can be obtained8,9 in a measurement of the
counterflow velocity at temperatures T > 0.5Tc. At very low
temperatures, in the limit T/Tc � 1, a powerful tool is the
Andreev scattering of thermal excitations. This technique has
been developed and exploited at the University of Lancaster.10

Hitherto the Andreev scattering technique has only been
used to detect turbulent vortex tangles, which for interpretation
have been assumed to be homogeneous and isotropic, but
which in practice are of unknown density and poorly known
spatial extent. Thus, it has not been possible to compare
theoretical predictions of heat transport in vortex systems
directly to experimental results. In this work, we provide such
a comparison and justify the use of the Andreev reflection
technique as a visualization method of vortices in superfluid
3He-B in the limit of vanishing normal fluid density.

II. ANDREEV REFLECTION FROM VORTEX LINES

In the ballistic regime of quasiparticle transport, the mean-
free path of thermal excitations is longer than the dimensions
of the container. Therefore, thermal equilibrium is obtained
via interaction of the quasiparticles and the container walls,
and the collisions between excitations can be neglected. In the
presence of vortices, the superfluid flow field around the vortex
lines can constrain the quasiparticle trajectories.

In the rest frame of the superfluid condensate, the BCS
dispersion relation E(p) is symmetrical, and the minimum
energy is the pressure-dependent superfluid energy gap �. The
standard picture of Andreev reflection considers an excitation
moving toward an increasing energy gap.11 In 3He-B, the
superfluid flow field modulates the minimum in the excitation
spectrum. Using the notation of Barenghi et al.,12 the energy
E of the excitation with momentum p in the flow field around
a vortex is given by

E(p) =
√

ε2
p + �2 + p · vs, (1)

where εp = p2/2m∗ − εF is the effective kinetic energy of
the excitation measured with respect to the Fermi energy εF

and p = |p|. Excitations with εp > 0 are called quasiparti-
cles, and excitations with εp < 0 are called quasiholes. For
quasiparticles the group velocity vg(E) = dE/dp is parallel
to the momentum p, whereas for quasiholes it is antiparallel.
Our experiments are performed at the 29 bar pressure, at
which the effective mass m∗ ≈ 5.42m3, where m3 is the mass
of a 3He atom. The superfluid velocity vs is proportional
to the gradient of the phase ϕ of the order parameter, i.e.,
vs = h̄/(2m3)∇ϕ. If we consider a vortex oriented along
the z axis in cylindrical coordinates (r ,φ,z), this becomes
vs = κ/(2πr)φ̂, where κ = h/2m3 ≈ 6.62 × 10−8 m2/s is the
circulation quantum, and φ̂ the azimuthal unit vector.

The consequence of the interaction term p · vs is that an
excitation traveling at constant energy may not find a forward-
propagating state due to the superflow gradient ∇vs along the
flight path. When the excitation reaches the minimum of the
spectrum, its group velocity changes sign, and it retraces its
trajectory as an excitation on the other side of the minimum.
In other words, a quasiparticle Andreev reflects as a quasihole
and vice versa with a very small momentum transfer.13

Let us consider a beam of excitations incident on a single
straight vortex. On one side of the vortex, the flow parallel
to the group velocity of the excitation reflects quasiparticles,
and on the other side the antiparallel flow reflects quasiholes.
An excitation is Andreev reflected if its energy satisfies
E � � + pκ/(2πb) sin θ . Here θ is the inclination angle
of the excitation trajectory measured with respect to the
vortex line and b the impact parameter. At temperature T the
mean excitation energy is Ẽ = � + kBT . In our experiments
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FIG. 1. (Color online) The experimental setup. The upper exper-
imental volume modeled as a black body radiator is separated from
the heat exchanger volume at the bottom by a division plate with a
conical orifice with the minimum diameter of 0.3 mm. The upper
division plate with a 0.75 mm diameter aperture is not relevant to
the measurement described here. The BBR houses two quartz tuning
fork oscillators, one acting as heater, and the other as thermometer.

kBT ∼ 0.1�, and the momentum p is close to the Fermi
momentum pF ≈ 9.26 × 10−25 kgm/s, so a typical excitation
is reflected if b < 5pF κ sin θ/(π�). For an excitation with
θ ≈ π/4, this translates to ∼ 1 μm, which is about two orders
of magnitude larger than the coherence length ξ ≈ 15 nm and
the vortex core radius. Thus, in a typical experimental situation
the probability of an excitation scattering off a vortex core is
negligible compared to the cross section for Andreev scattering
from the flow field around the vortex.

III. EXPERIMENTAL METHODS

In our experiment, we study the heat transport by excitations
through a cluster of vortices. Bradley and coworkers did
a similar measurement with a vortex tangle reflecting the
excitations.14 Our experiment is made in a fused quartz
cylinder filled with 3He-B (see Fig. 1). The cylinder is divided
into two parts by a 0.7-mm-thick quartz division plate with
a 0.3-mm orifice. The lower part consists of a 30-mm-long,
3.6-mm-inner-diameter tube, which opens to a heat exchanger
made out of sintered silver. The sinter provides good thermal
contact with the nuclear cooling stage so that the superfluid
3He below the orifice can be cooled down to below 0.14Tc. The
upper part can be modeled as a blackbody radiator (BBR), an
enclosure with a weak thermal link to the outside superfluid
3He via the small orifice in the division plate.15 Our BBR
consists of a 12-cm-long section of the quartz tube with 6-mm
inner diameter. This volume is furnished with two mechanical
resonators, one acting as a thermometer and the other as a

heater. The heater is used for generating a beam of ballistic
quasiparticles through the orifice.

Our resonators are commercial quartz tuning forks,
which have recently been characterized for probing quantum
fluids.16,17 The forks are made of piezoelectric quartz crystals
with electrodes deposited on the surface. When driven with
alternating voltage, the two prongs of the fork oscillate in
antiphase producing a current I , which is proportional to the
prong tip velocity vp. The heater fork signal is amplified with
a room-temperature I/V converter18 before being fed to a
two-phase lock-in amplifier. This was found to be important
to reduce capacitive losses in the signal line, and thus to
measure accurately the signal amplitude which corresponds
to the power generated by the fork. The thermometer fork
has 32 kHz resonance frequency, a prong cross section of
0.10 × 0.24 mm2 and a length of 2.4 mm. The heater fork
has a higher resonance frequency, 40 kHz, to prevent any
interference between the forks. The prongs of the heater are
2.9 mm long and the cross section is 0.36 × 0.44 mm2.

In our temperature range, the resonance width of the tuning
fork depends only on the damping from ballistic quasiparticles.
The dependence of the linewidth �f on temperature and prong
velocity is given by

�f = �fint + ae−�/kBT

(
1 − λ

pF

kBT
vp

)
, (2)

where λ is a geometrical factor close to unity.19 The second
term in the parentheses is due to Andreev reflection of thermal
quasiparticles from the potential flow field created by the fork
prongs moving the liquid around them. In our experiments vp

is small, and the velocity-dependent term in Eq. (2) can be
neglected. Thus, calibrating the fork to act as a thermometer
requires determining only the geometry-dependent factor a.
The thermometer is calibrated at 0.33Tc against a 3He-melting
curve thermometer, which is thermally coupled to the heat
exchanger. Our calibration gives a ≈ 17 500 Hz for the
detector. The intrinsic damping of the fork was measured to be
�fint ≈ 14 mHz at T ∼ 10 mK in a vacuum, which translates
to a quality factor Q ∼ 2 × 106.

The rough surface of the sinter with a grain size close to
the vortex core diameter provides excellent spots for vortices
to nucleate. Thus, the critical rotation velocity �c for vortex
formation is below 0.1 rad/s in the bottom section of the
long quartz tube. In the equilibrium vortex state in uniform
rotation, the bottom section becomes filled with rectilinear
vortices oriented along the rotation axis. To create the vortex
array, which Andreev reflects a part of the heat back to the
BBR, we rotate our system at constant angular velocity �

around the axis of the container tube. The vortex density in
the equilibrium state is determined by minimization of the
free energy in the rotating frame and is given by the solid-
body-rotation value nv = 2�/κ . The array is isolated from
the container wall by a narrow annular vortex-free layer. The
width of the vortex-free region

√
κ/(

√
3�) is only slightly

larger than the intervortex distance.20

To make sure that we have the equilibrium number of
vortices in the container, we first rapidly increase the rotation
velocity to some value which is higher than the target velocity
for the measurement. Then we go to the final velocity and wait
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for the system to settle to the equilibrium vortex state after the
annihilation of the extra vortices and the slow relaxation of
the vortex array. In our experimental conditions the relaxation
takes about 1 h.

All the power entering our experimental volume modeled as
a blackbody radiator must leave through the hole at the bottom
as a flux of energy-carrying excitations. Assuming thermal
equilibrium inside the BBR the power is given by

Q̇(�) =
∫

N (E)vg(E)Ef (E)T dEdxdydφdθ, (3)

where N (E) and f (E) are the quasiparticle density of
states and the Fermi distribution function, respectively. In
the limit kBT � � the latter reduces to the Boltzmann
distribution f (E) = e−E/kBT . The transmission function T =
T (E,x,y,φ,θ,�) is equal to 1 if an excitation leaving the
BBR [at position (x,y) on top of the orifice to direction (φ,θ )]
reaches the sinter and 0 if it is reflected back. The integration
goes over the cross section of the orifice, φ ∈ (0,2π ), θ ∈
(0,π/2), and E ∈ (�,∞). The power generated inside the
radiator can now be expressed as the sum of the �-dependent
residual heat leak Q̇hl to the BBR and the direct power Pgen

from the excitations produced by the heater fork:

Q̇hl(�) + Pgen = 4πkBp2
F

h3
T e

− �
kB T (� + kBT )Ah(�). (4)

Here Ah(�) is the effective area of the orifice, which is reduced
when part of the excitations is scattered back to the BBR.

The nuclear refrigerant is demagnetized to very low
temperatures, and by further demagnetization its temperature
is adjusted to remain constant. In the ballistic regime, the
heat flux to the sintered heat exchanger flowing through the
large 3.6-mm-diameter opening of the quartz tube or through
the boundary separating the heat exchanger from the 3He-B
bath is in both cases generally assumed to be proportional to
the interfacial open area A and to depend exponentially on
temperature.21 With this assumption, the temperature below
the orifice can be estimated to be less than 0.15Tc even when
a heating of Pgen ∼ 15 pW is supplied to the heater fork in the
measurements. In fact, in a similar quartz cylinder, but with
both division plates removed, the temperature is measured to
be below 0.14Tc when no heating is applied, and its increase
is found to be less than 0.01Tc at the level of heating of our
measurements. This temperature is also found to depend only
very weakly on the rotation velocity. This means that even
when the heater is on in rotation, the quasiparticle density
in the volume below the small orifice is at least two orders
of magnitude lower than in the radiator above the orifice at
0.20Tc. In our analysis, we can therefore safely omit any
upward moving backflow of excitations through the orifice.

IV. REFLECTION MEASUREMENTS

In the measurement, the heater fork is driven to create
the desired excitation beam corresponding to the power Pgen

leaving the radiator. By controlling the rotation velocity, and
thus the vortex density, we can control the fraction of Andreev
reflected excitations. As illustrated in Fig. 2, the flow field
created by the vortices reflects part of the beam back to
the radiator by Andreev scattering. As a consequence, the

Ω≠0Ω=0

T ≥ 0.20T
c

T < 0.15T
c

FIG. 2. (Color online) Sketch of the experiment. In the system
at rest (� = 0), all the excitations which do not migrate back to
the blackbody radiator due to diffuse scattering from the walls are
thermalized in the heat exchanger at the bottom. In rotation (� 
= 0),
part of the beam is Andreev reflected from the cluster of vortices
below the orifice.

temperature increase above the orifice is larger than with the
same applied heating in the absence of vortices. The fraction
ν of heat reflected back into the radiator, which we call the
reflection coefficient, can be obtained from Eq. (4) as

ν(�) = 1 − Ah(�)

Ah(0)
. (5)

The radiator itself is filled with a vortex cluster, which however,
does not change the excitation trajectories sufficiently to create
significant thermal gradients. The main thermal resistance is
across the orifice, and Eq. (5) is valid as long as there is thermal
equilibrium inside the radiator. In fact, we can maintain a
vortex-free state in the volume above the upper division plate
in Fig. 1 up to velocities of 1.5 rad/s. We observe no changes in
the temperature of the radiator volume depending on whether
the upper sample volume is in the vortex-free state or in the
equilibrium vortex state.

At each rotation velocity, we apply different power inputs
to the radiator and measure the corresponding equilibrium
temperature with the thermometer fork. By plotting all the
temperature-dependent parts in Eq. (4) as a function of power
Pgen we get a straight line (Fig. 3). From the inverse slope of
the line we get the effective area Ah and from the intercept
with the power axis, the heat leak Q̇hl .

The measurement with no vortices gives Ah(0) ≈
0.020 mm2. This is less than a half of the geometrical area Ag

of the orifice. The main reason is the diffusive backscattering
of the excitations from the walls of the 0.7-mm-thick division
plate and the quartz tube below it. In any case, the absolute
value of the effective area is not an important issue since we are
only interested in the relative change in Eq. (5). The heat leak
Q̇hl varies from 12 pW at � = 0 to 18 pW at � =1.8 rad/s.
At high rotation velocities the rotation-induced heat leak
fluctuates with variations of about 1 pW. The rotation velocities
used in the measurements had to be carefully selected, since
mechanical resonances at certain velocities cause increased
and temporally varying heating. Figure 4 shows the reflection
coefficient as a function of the rotation velocity. In the
measured rotation velocity range, the dependence of ν on the
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FIG. 3. (Color online) Temperature-dependent part of the power
leaving the blackbody radiator as a function of heating power at three
different rotation velocities. The temperature is obtained from the
linewidth of the detector fork. The data points are averages from
data measured for about 10 min at each power. The intercept of the
linear fit with the power axis gives the residual heat leak to the sample,
while the effective area is given by the inverse of the slope. The slope,
the heat leak, and the scatter in the data all increase with increasing
angular velocity. The inset shows an example of the detector response
to a heating pulse starting at time t = 0.

vortex density is approximately linear. We believe that the
main source of scatter in the experimental data comes from
the variation of the power calibration of the heater fork.

In the measurements, the rotation velocity fluctuates on
the level of �� � 0.01 rad/s. Therefore, it is possible that
we create helical perturbations on vortex lines, which can
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FIG. 4. (Color online) The fraction ν of the heat Andreev reflected
back into the blackbody radiator, as obtained from our steady-state
measurements. The temperature inside the radiator is 0.20Tc. The
simulation points are obtained by integrating Eq. (3) numerically and
solving Eqs. (4) and (5) for ν. The statistical error in the absolute value
of ν for the experimental data varies between 5×10−4 and 2.4 ×10−3

and is smaller than the size of the points. The systematic error sources
are discussed in the text.

end up increasing the total vortex length and decreasing
the polarization in our vortex cluster. By modulating the
rotation velocity at different frequencies and amplitudes, we
can study whether the presence of these perturbations, which
are called Kelvin waves, affects the reflection coefficient.
We find that even an order of magnitude larger modulation
amplitude compared to the highest noise peaks in the rotation
velocity barely affects the fraction of transmitted heat flux.
Thus, we believe it is safe to omit the effect of Kelvin waves
in our analysis. Our preliminary measurements at very large
modulation amplitudes, however, show a decreasing fraction
of transmitted heat, as expected if Kelvin waves are generated.
In the future, we are hoping to utilize these techniques to study
Kelvin waves in more detail.

To test whether our blackbody radiator works as expected,
we can analyze how the system reaches thermal equilibrium
when the heater is suddenly switched on. The expected time
constant for the thermal relaxation is τ = RC, where the
thermal resistance across the orifice R = (dQ̇/dT )−1 ∝ A−1

h ,
and the heat capacity C is given approximately by22

C = kB

√
2πNF

(
�

kBT

) 3
2

e
− �

kB T

(
� + 21

16
kBT

)
V. (6)

Here V ≈ 3.4 cm3 is the volume of the BBR, and NF the
density of states at the Fermi level. The measured time constant
is about 25 s (see inset in Fig. 3), which is in a reasonable
agreement with the expected time constant (≈32 s) obtained
using the effective area from the calibration described above.
This analysis also proves that practically all the heat capacity
of the system is in the bulk superfluid 3He.

Possible error sources are the small statistical error in the
determination of the slope (Fig. 3) and the uncertainties in the
power calibration, the temperature calibration, and the value of
the gap.23 The reflection coefficient ν has a weak logarithmic
dependence on the parameter a and depends on � only through
the temperature calibration [Eq. (2)]. The power calibration, if
time independent, has no effect on ν. We estimate the overall
systematic uncertainty of the measurements shown in Fig. 4 to
be of the order of the scatter in the data.

V. SIMULATION CALCULATIONS

In our numerical simulations, we calculate the transmission
function T for our geometry at different rotation velocities
and solve the integral in Eq. (3) numerically using Monte
Carlo integration with importance sampling. For solving T ,
we trace whether the excitations (quasiparticles or quasiholes)
leaving the BBR with properly distributed energies, directions,
and positions above the orifice are reflected back or not. The
simulations were done with 106 excitations for each rotation
velocity in Fig. 4, while Ah(0) was calculated using 107

excitations. Setting the right hand side of Eq. (4) to equal
that of Eq. (3) for � = 0 (no vortices) and � 
= 0 (with
vortices), we obtain Ah(0) and Ah(�), which allows us to
solve the reflection coefficient from Eq. (5). The simulations
use the exact geometry of our experimental setup including
the thickness and the shape of the radiator orifice. Instead of
solving for the full equations of motions for excitations, which
would require too much computing power, only the vortices for
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which the impact parameter of the excitation is small enough
to allow Andreev reflection are considered. We do not assume
perfect retroreflection, but take into account the small Andreev
reflection angle12 �ϕ = h̄p−1

F

√
π/(3ξb). Figure 4 shows the

reflection coefficient as a function of the rotation velocity from
the numerical simulations. The result is in a good agreement
with the measurements.

In the simulations, diffuse scattering from the container
walls is assumed based on the results in Ref. 24. In reality,
part of the excitations experience Andreev reflection at the
container surfaces.25 Including this effect would lead to
a decrease of the reflection coefficient in the numerical
simulations, as confirmed by our calculations with an un-
realistic steplike order-parameter variation, and improve the
agreement of ν between the simulations and the measurements.
The full accounting for the detailed reflection processes at
diffusely scattering surfaces, including a slight particle-hole
anisotropy,26 would complicate the transport calculation, and
we neglect these effects, arguing as follows. Our simulations
with fully diffusive scattering yield a ratio Ah(0)/Ag which
agrees well with the known geometrical area Ag and the
measured effective area Ah(0). This is neither the case for the
model with a steplike order parameter variation at surfaces nor
for specular scattering, since to produce the measured Ah(0)
the former would require Ag to be roughly two times larger
and the latter less than a half of the known geometrical area.
Moreover, quasiclassical calculations, which model the order-
parameter suppression profile in a more realistic manner,26,27

show that the real Andreev reflection probability at a diffusely
scattering surface is only a small fraction of that in the step
model. Finally, even though the details of the wall scattering
processes do have an effect on A(�), they do not affect
the reflection coefficient ν significantly compared to other
uncertainties in our model.

Recent numerical studies28,29 indicate that especially for
dense vortex structures, the total reflecting “Andreev shadow”

is not necessarily the sum of shadows of single vortices.
Our clusters are relatively sparse, and moreover, after the
first diffuse scattering from the walls, the probability for the
excitation to migrate back to the radiator is not sensitive to
small changes in its trajectory. Thus, we believe that our
somewhat simplified model reproduces the real experimental
situation with good accuracy. The simulations were tested at
different hole radii and positions of the hole on the division
plate. We find that the largest effect on the final result comes
from the uncertainty of the radius: increasing or decreasing
it by 50% changes the reflection coefficient by approximately
±10%.

VI. CONCLUSIONS

In conclusion, we describe the first measurement of the
interaction between thermal excitations and quantized vortices
in a well-defined configuration. Numerical simulations repro-
duce the experimental results within the margin of uncertainty
in the model. Quasiparticle beam techniques are currently
the most popular measuring method of vortices in 3He-B
below 0.2Tc. Our work provides a rigorous quantitative basis
for their use and further development for direct visualization
purposes.
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