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General quantum fidelity susceptibilities for the J1- J2 chain
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We study slightly generalized quantum fidelity susceptibilities where the differential change in the fidelity
is measured with respect to a different term than the one used for driving the system toward a quantum phase
transition. As a model system we use the spin-1/2 J1-J2 antiferromagnetic Heisenberg chain. For this model,
we study three fidelity susceptibilities, χρ , χD , and χAF, which are related to the spin stiffness, the dimer order,
and antiferromagnetic order, respectively. All these ground-state fidelity susceptibilities are sensitive to the
phase diagram of the J1-J2 model. We show that they all can accurately identify a quantum critical point in
this model occurring at J c

2 ∼ 0.241J1 between a gapless Heisenberg phase for J2 < J c
2 and a dimerized phase

for J2 > J c
2 . This phase transition, in the Berezinskii-Kosterlitz-Thouless universality class, is controlled by a

marginal operator and is therefore particularly difficult to observe.
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I. INTRODUCTION

The study of quantum phase transitions, especially in one
and two dimensions, is a topic of considerable and ongoing
interest.1 Recently the utility of a concept with its origin
in quantum information, quantum fidelity, and the related
fidelity susceptibility was demonstrated for the study of
quantum phase transitions (QPTs).2–5 It has since then been
successfully applied to a great number of systems.6–11 In
particular, it has been applied to the J1-J2 model that we
consider here.12 For a recent review of the fidelity approach to
quantum phase transitions, see Ref. 13. Most of these studies
consider the case where the system undergoes a quantum phase
transition as a coupling λ is varied. The quantum fidelity
and fidelity susceptibility are then defined with respect to
the same parameter. Apart from a few studies,14–17 relatively
little attention has been given to the case where the quantum
fidelity and susceptibility are defined with respect to a coupling
different than λ. Here we consider this case in detail for
the J1-J2 model and show that, if appropriately defined,
these general fidelity susceptibilities may yield considerable
information about quantum phase transitions occurring in the
system and can be very useful in probing for a nonzero order
parameter.

Without loss of generality, the Hamiltonian of any many-
body system can be written as

H (λ) = H0 + λHλ, (1)

where λ is a variable which typically parametrizes an interac-
tion and exhibits a phase transition at some critical value λc.
In this form Hλ is then recognized as a term that drives the
phase transition.5 Using the eigenvectors of this Hamiltonian
the ground-state (differential) fidelity can then be written as

F (λ) = |〈�0(λ)|�0(λ + δλ)〉|. (2)

A series expansion of the GS fidelity in δλ yields

F (λ) = 1 − (δλ)2

2

∂2F

∂λ2
+ · · · , (3)

where ∂2
λF ≡ χλ is called the fidelity susceptibility. For a

discussion of sign conventions and a more complete derivation

see the topical review by Gu, Ref. 13. If the higher order terms
are taken to be negligibly small then the fidelity susceptibility
is defined as

χλ(λ) = 2[1 − F (λ)]

(δλ)2
. (4)

The scaling of χλ at a quantum critical point λc is often
of considerable interest and has been studied in detail, and
previous studies10,11,14,15,18 have shown that

χλ ∼ L2/ν, χλ/N ∼ L2/ν−d , (5)

with N = Ld the number of sites in the system. An easy way
to rederive this result is by invoking finite-size scaling. Since
1 − F obviously is dimensionless it follows from Eq. (4) that
the appropriate finite-size scaling form for χλ is

χλ ∼ (δλ)−2f (L/ξ ). (6)

If we now consider the case where the parameter λ drives the
transition we may at the critical point λc identify δλ with λ −
λc. It follows that ξ ∼ (δλ)−ν . As usual, we can then replace
f (L/ξ ) by an equivalent function f̃ (L1/νδλ). The requirement
that χλ remain finite for a finite system when δλ → 0 then
implies that to leading order f̃ (x) ∼ x2 ∼ L2/ν(δλ)2, from
which Eq. (5) follows.

Here we shall consider a slightly more general case where
the term driving the quantum phase transition is not the same
as the one with respect to which the fidelity and fidelity
susceptibility are defined. That is, one considers

H (λ,δ) = H1 + δHI , H1 = H0 + λHλ. (7)

The fidelity and the related susceptibility are then defined as

F (λ,δ) = |〈�0(λ,0)|�0(λ,δ)〉|, (8)

χδ(λ) = 2[1 − F (λ,δ)]

δ2
. (9)

The scaling of χδ at λc for this more general case was derived
by Venuti et al.15 where it was shown that

χδ ∼ L2d+2z−2
v , χδ/N ∼ Ld+2z−2
v . (10)

Here, z is the dynamical exponent, d the dimensionality,
and 
v the scaling dimension of the perturbation HI . In all
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cases that we consider here z = d = 1. We note that Eq. (10)
assumes [H1,HI ] �= 0; if HI commutes with H1 then F = 1
and χδ = 0. The case where Hλ and HI coincide is a special
case of Eq. (10) for which 
V = d + z − 1/ν and one recovers
Eq. (5).

A particularly appealing feature of Eq. (5) is that when
2/ν > d, χλ/N will diverge at λc and the fidelity susceptibility
can then be used to locate the λc without any need for knowing
the order parameter. Second, it can be shown5,14 that the
fidelity susceptibility can be expressed as the zero-frequency
derivative of the dynamical correlation function of HI , making
it a very sensitive probe of the quantum phase transition.19 On
the other hand, if a phase transition is expected one might then
use the fidelity susceptibility as a very sensitive probe of the
order parameter through a suitably defined Hδ in Eq. (7). This
is the approach we shall take here using the J1-J2 spin chain
as our model system.

The spin-1/2 Heisenberg J1-J2 chain is a very well studied
model. The Hamiltonian is

H =
∑

i

SiSi+1 + J2

∑
i

SiSi+2, (11)

where J2 is understood to be the ratio of the next-nearest-
neighbor exchange parameter over the nearest-neighbor ex-
change parameter (J2 = J ′

2/J
′
1). This model is known to

have a quantum phase transition of the Berezinskii-Kosterlitz-
Thouless (BKT) universality class occurring at J c

2 between
a gapless “Heisenberg” (Luttinger liquid) phase for J2 < Jc

2
and a dimerized phase with a twofold-degenerate ground state
for J2 > Jc

2 . Field theory,20,21 exact diagonalization,22,23 and
DMRG24,25 have yielded very accurate estimates of the Lut-
tinger liquid–dimer phase transition, the most accurate of these
being due to Eggert23 which yielded a value of J c

2 = 0.241167.
Previous studies by Chen et al.12 of this model using the fidelity
approach used the same term for the driving and perturbing part
of the Hamiltonian as in Eq. (1) with the correspondence H0 =∑

i SiSi+1, Hλ = ∑
i SiSi+2, λ = J2.12 Chen et al. demon-

strated that, although no useful information about the Luttinger
liquid–dimer phase transition could be obtained directly from
the ground-state fidelity (and similarly the fidelity suscepti-
bility), a clear signature of the phase transition was present in
the fidelity of the first excited state.12 Sometimes this is taken
as an indication that ground-state fidelity susceptibilities are
not useful for locating a quantum phase transition in the BKT
universality class. Here we show that more general ground-
state fidelity susceptibilities indeed can locate this transition.

Specifically, we will study three fidelity susceptibilities,
χρ , χD , and χAF, which are coupled to the spin stiffness,
a staggered interaction term, and a staggered field term,
respectively. In Sec. II we present our results for χρ , while
Sec. III is focused on χD and Sec. IV on χAF.

II. THE SPIN STIFFNESS FIDELITY SUSCEPTIBILITY, χρ

We begin by considering the J1-J2 model with J2 = 0 but
with an anisotropy term 
, what is usually called the XXZ

model:

HXXZ =
∑

i

[

Sz

i S
z
i+1 + 1

2
(S+

i S−
i+1 + S−

i S+
i+1)

]
. (12)

The Heisenberg phase of this model, occurring for 
 ∈
[−1,1], is characterized by a nonzero spin stiffness26,27 defined
as

ρ(L) = ∂2e(φ)

∂δ2

∣∣∣∣
φ=0

. (13)

Here, e(φ) is the ground-state energy per spin of the model
where a twist of φ is applied at every bond:

HXXZ(
,φ)

=
∑

i

[

Sz

i S
z
i+1 + 1

2
(S+

i S−
i+1e

iφ + S−
i S+

i+1e
−iφ)

]
.

(14)

The spin stiffness can be calculated exactly for the XXZ model
for finite L using the Bethe ansatz,28 and exact expressions
in the thermodynamic limit are available.26,27 Interestingly
the usual fidelity susceptibility with respect to 
 can also
be calculated exactly.29,30

Since the nonzero spin stiffness defines the gapless Heisen-
berg phase it is therefore of interest to define a fidelity
susceptibility associated with the stiffness. This can be done
through the overlap of the ground state with φ = 0 and a
nonzero φ. With �0(
,φ) the ground state of HXXZ(
,φ) we
can define the fidelity and fidelity susceptibility with respect
to the twist in the limit where φ → 0:

F (
,φ) = |〈�0(
,0)|�0(
,φ)〉|, (15)

χρ(
) = 2[1 − F (
,φ)]

φ2
. (16)

To calculate χρ the ground state of the unperturbed Hamilto-
nian was calculated through numerical exact diagonalization.
The system was then perturbed by adding a twist of eiφ at each
bond and recalculating the ground state. From the correspond-
ing fidelity, χρ was calculated using Eq. (16). Our results for
χρ/L versus 
 are shown in Fig. 1. For all data φ was taken
to be 10−3 and periodic boundary conditions were assumed.
In all cases it was verified that the finite value of φ used had
no effect on the final results. The numerical diagonalizations
were done using the Lanczos method as outlined by Lin et al.31

Total Sz symmetry and parallel programming techniques were
employed to make computations feasible. Numerical errors are
small and conservatively estimated to be on the order of 10−10

in the computed ground-state energies.
In order to understand the results in Fig. 1 in more detail

we expand Eq. (14) for small φ:

HXXZ(
,φ) ∼ HXXZ(
) + φJ − φ2

2
T + · · · , (17)

J = i

2

∑
i

(S+
i S−

i+1 − S−
i S+

i+1), (18)

T = 1

2

∑
i

(S+
i S−

i+1 + S−
i S+

i+1). (19)

Here, J is the spin current and T a kinetic energy term.
The first thing we note is that when 
 = 0 both J and T
commute with HXXZ(
 = 0). The ground-state wave function
is therefore independent of φ (for small φ) and χρ ≡ 0. This
can clearly be seen in Fig. 1.
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FIG. 1. (Color online) χρ

L
vs 
: The spin stiffness fidelity

susceptibility [χρ(
)/L] as a function of the z anistropy 
. At
the 
 = 0 point the spin-current operator J and kinetic energy T
commute with the XXZ Hamiltonian and thus such a perturbation
does not change the ground state, and the fidelity is one. Thus, χρ is
zero at this point.

In the continuum limit the spin current J can be expressed
in an effective low-energy field theory32 with scaling dimen-
sion 
J = 1. However, we expect subleading corrections to
arise from the presence of the operators (∂x�)2 with scaling
dimension 2 and cos(

√
16πK�) with scaling dimension 4K .

Here, K is given by K = π/{2[π − arcos(
)]}. For 
 �= 0
both of these terms will be generated by the term T in
Eq. (17).15 With these scaling dimensions and with the use
of Eq. (10) we then find

χρ/L = A1L + A2 + A3L
−1 + A4L

3−8K. (20)

In Fig. 2 a fit to this form is shown for 
 = 0.25,0.5, and
0.75; in all cases we observe an excellent agreement with
the expected form with corrections arising from the last term
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FIG. 2. (Color online) χρ vs L (the XXZ model at different
values of 
): This graph shows the scaling of χρ with system
size for different values of the z anisotropy 
. The points represent
numerical data and the lines represent fits to the scaling form predicted
for the spin stiffness susceptibility χρ/L = A1L + A2 + A3L

−1 +
A4L

3−8K . It can be seen that there is good agreement.

L3−8K being almost unnoticeable until 
 approaches 1. We
would expect the subleading corrections L−1 and L3−8K to be
absent if the perturbative term is just φJ .

We now turn to a discussion of a definition of χρ in the
presence of a nonzero J2 but restricting the discussion to the
isotropic case 
 = 1. In this case we define

H (φ) =
∑

i

[
Sz

i S
z
i+1 + 1

2
(S+

i S−
i+1e

iφ + S−
i S+

i+1e
−iφ)

]

+ J2

∑
i

[
Sz

i S
z
i+2 + 1

2
(S+

i S−
i+2e

iφ + S−
i S+

i+2e
−iφ)

]
.

(21)

That is, we simply apply the twist φ at every bond of the
Hamiltonian. As before we can expand

H (φ) ∼ H (0) + φ(J1 + J2) − φ2

2
(T1 + T2) + · · · , (22)

J1 = i

2

∑
i

(S+
i S−

i+1 − S−
i S+

i+1), (23)

J2 = i

2

∑
i

(S+
i S−

i+2 − S−
i S+

i+2), (24)

T1 = 1

2

∑
i

(S+
i S−

i+1 + S−
i S+

i+1), (25)

T2 = 1

2

∑
i

(S+
i S−

i+2 + S−
i S+

i+2). (26)

Our results for χρ/L versus J2 using this definition are
shown in Fig. 3 for a range of L from 10 to 32. In the region
of the critical point at J2 = 0.241167 the size dependence of
χρ/L vanishes yielding near scale invariance. How well this
works close to J c

2 is shown in the inset of Fig. 3. This alone
can be taken to be a strong indication of χρ/Ls sensitivity
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FIG. 3. (Color online) χρ

L
vs J2 and inset: The generalized

spin stiffness susceptibility χρ as a function of the second-nearest-
neighbor exchange coupling J2. The system acquires a clearly
size-invariant form in the vicinity of the critical point J2 ∼ 0.24
(as well as tending to a global minima). Inset shows the minima for
system sizes L = 16, 20, 24, 28, 32 with J c

2 indicated as the vertical
dashed line. A clear dependence of the J2 value of χρ/L minima on
the system size can be seen.
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FIG. 4. (Color online) (a) The J2 value of χρ minima as a function
of system size, as well as a (power-law) line of best fit. As the
system size tends toward infinity the power-law best fit predicts a
minima at J2 = 0.24077 in good agreement with previously published
results. (b) Scaling of χρ at J2 = 0.23 (the highest, linear curve),
J2 = 0.25 (the second highest, linear curve), and the critical point
J2 = 0.241167 (flat curve). The near constant scaling of χρ

L
at the

critical point as well as nonconstant scaling on either side of the
critical point can clearly be seen.

to the phase transition. In fact, this scale invariance works so
well that one can locate the critical point to a high precision
simply by verifying the scale invariance. This is illustrated in
Fig. 4(b) where χρ/L is plotted as a function of L for J2 =
0.23, J2 = J c

2 , and J2 = 0.25. From the results in Fig. 4(b)
the critical point J c

2 where χρ/L becomes independent of L is
immediately visible.

As can be seen in the inset of Fig. 3 χρ/L reaches a
minimum slightly prior to J c

2 . The J2 value at which this
minimum occurs has a clear system-size dependence which
can be fitted to a power law and extrapolated to L = ∞
yielding a value of J2c = 0.24077. Hence, the minimum
coincides with J c

2 in the thermodynamic limit. This is shown
in Fig. 4(a). Comparison of this value with the accepted J c

2 =
0.241167 reveals impressive agreement. Another noteworthy
feature of the results in Fig. 3 is that χρ/L is nonzero at the
critical point, J c

2 . This value is very small but we have verified
in detail that numerically it is nonzero.

The scale invariance of χρ/L is clearly induced by the
disappearance21 of the marginal operator cos(

√
16πK�) at

J c
2 . We expect that in the continuum limit the absence of

this operator implies that the spin current commutes with
the Hamiltonian resulting in χρ being effectively zero at J c

2 .
The observed nonzero value of χρ/L would then arise from
short-distance physics. At present we have no explanation for
why this small nonzero value should scale with L at J c

2 .
Note that, as mentioned previously, we take the spin

stiffness to be represented by a twist on every bond, both first-
and second-nearest-neighbor and not merely on the boundary
as is sometimes done. This choice is not just a matter of
taste. Imposing a twist only on the boundary (usually) breaks
the translational invariance of the ground state and, through
extension, effects the value and behavior of the fidelity itself.
Another point of note is the use of a twist of only φ between
next-nearest neighbors. Geometric intuition would suggest that

a twist of 2φ should be applied between next-nearest-neighbor
bonds. However, for the small system sizes available for exact
diagonalization it is found that a simple twist of φ on both
bonds yields significantly better scaling.

III. THE DIMER FIDELITY SUSCEPTIBILITY, χD

We now turn to a discussion of a fidelity susceptibility
associated with the dimer order present in the J1-J2 model for
J2 > Jc

2 . This susceptibility, which we call χD , is coupled
to the order parameter of the dimerized phase by design.
Usually in the fidelity approach to quantum phase transitions
one considers the case where the ground state is unique in the
absence of the perturbation. This is not the case here, leading to
a diverging χD/L in the dimerized phase even in the presence
of a gap. Specifically, we consider a Hamiltonian of the form

H =
∑

i

[SiSi+1 + J2SiSi+2 + δh(−1)iSiSi+1]. (27)

Thus, in correspondence with Eq. (7) we have HI =
(−1)iSiSi+1 and we choose the driving coupling to be J2.
This perturbing Hamiltonian represents a conjugate field for
the dimer phase. The scaling dimension of HI is known,33


D = 1
2 , and from Eq. (10) we therefore find

χD ∼ L4−2
D = L3 (
at J c

2

)
. (28)

Due to the presence of the marginal coupling we cannot
expect this relation to hold for J2 < Jc

2 . However, the marginal
coupling changes sign at J c

2 and is therefore absent at J c
2 where

Eq. (28) should be exact.21 For J2 < 0.241167 it is known33

that logarithmic corrections arising from the marginal coupling
for the small system sizes considered here lead to an effective
scaling dimension 
D > 1

2 . At J2 = 0 Affleck and Bonner33

estimated 
D = 0.71. Hence, using these results at J2 = 0, we
would expect that χD ∼ L2.58 which we find is in reasonable
agreement with our results at J2 = 0 where a best fit yields an
exponent of χD ∼ L2.78. See Fig. 6(a).

We now need to consider the case J2 > 0.241167. At J2 =
1/2 the ground state is exactly known for even L,34 and the two
dimerized ground states are exactly degenerate even for finite
L. For J c

2 < J2 < 1/2 the system is gapped with a unique
ground state but with an exponentially low-lying excited state.
In the thermodynamic limit the twofold degeneracy of the
ground state is recovered, corresponding to the degeneracy of
the two dimerization patterns. From this it follows that χD is
formally infinite at J2 = 0 and as L → ∞ for J c

2 < J2 < 1/2
we expect χD to diverge exponentially with L. At J c

2 we expect
χD to exactly scale as L3 and for J2 < Jc

2 we expect χD ∼ Lα
eff

with αeff < 3. Hence, if χD/L3 is plotted for different L we
would expect the curves to cross at J c

2 . However, the crossing
might be difficult to observe since it effectively arise from
logarithmic corrections.

Our results for χD/L3 are shown in Fig. 5, where a
crossing of the curves is visible around J2 ∼ 0.2–0.25. As an
illustration, the inset of Fig. 5 shows the crossing of L = 12
and L = 24. In order to obtain a more precise estimate of J c

2
the intersection of each curve and the curve corresponding to
the next largest system were tabulated (L and L + 2). These
intersection points as a function of system size were then
plotted in Fig. 6(b) and found to obey a power law of the
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FIG. 5. (Color online) χD

L3 vs J2: The generalized dimer fidelity
susceptibility χD/L3 as a function of the second-nearest-neighbor
exchange parameter J2. A clear intersection of all curves can be seen
in the vicinity of the proposed critical point at J2 ∼ 0.2–0.25. The
inset explicitly shows the crossing of L = 12 and L = 24. The dashed
vertical lines indicate J c

2 .

form a − bL−α with α ∼ 1.8 and a = 0.241. This estimate of
the critical coupling is in good agreement with the value of
J c

2 = 0.241167.23

To further verify the scaling of χD at J c
2 we show in

Fig. 6(a) χD for various values of J2 � J c
2 as a function of

the cubed system size, L3. A strong linear scaling with an
exponent of 3 is observed at J c

2 while for J2 < Jc
2 logarithmic

corrections lead to an effective exponent that is less than 3,
consistent with expectations.33

IV. THE AF FIDELITY SUSCEPTIBILITY, χAF

Finally, we briefly discuss another fidelity susceptibility
very analogous to χD . We consider a perturbing term in the
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FIG. 6. (Color online) (a) Scaling of χD vs L3 at the points J2 =
0.0,0.1,0.2, and 0.241167. For J2 < 0.241167 the scaling exponent
is fitted to be less than 3. (b) The J2 value of the intersection of χD

L3

between systems of size L and L + 2 plotted as a function of L. The
curve can be fitted with a power-law line of best fit. The line of best
fit is found to converge to J2 = 0.241.
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FIG. 7. (Color online) χAF/L
3 vs J2: χAF is expected to approach

zero exponentially with the system size for J2 > J c
2 , to scale as L3 at

J c
2 , and to scale as Lαeff with αeff > 3 for J2 < J c

2 . A crossing close
to the critical point J c

2 (dashed vertical line) is then visible.

form of a staggered field of the form
∑

i(−1)iSz
i with an

associated fidelity susceptibility, χAF. The scaling dimension
of such a staggered field is 
AF = 1

2 and as for χD we therefore
expect that χAF ∼ L3 at J c

2 . However, in this case it is known33

that the effective scaling dimension for J2 < Jc
2 is smaller than

1
2 resulting in χAF ∼ Lαeff with αeff > 3 for J2 < Jc

2 . On the
other had, in the dimerized phase χAF must clearly go to zero
exponentially with L. Hence, if χAF is plotted for different L

as a function of J2 a crossing of the curves should occur.
Our results are shown in Fig. 7 where χAF/L

3 is plotted
versus J2 for a number of system sizes. It is clear from these
results that χAF indeed goes to zero rapidly in the dimerized
phase as one would expect. Close to J c

2 the scaling is close to
L3 where as for J2 < Jc

2 it is faster than L3. Hence, as can be
seen in Fig. 7, a crossing occurs close to J c

2 .

V. CONCLUSION AND SUMMARY

In this paper we have demonstrated the potential benefits
of extending the concept of a fidelity susceptibility beyond a
simple perturbation of the same term that drives the quantum
phase transition. By using the spin-1/2 Heisenberg spin
chain as an example we first created a susceptibility which
was directly coupled to the spin stiffness but of increased
sensitivity. This fidelity susceptibility, which we labeled χρ ,
can be used to successfully estimate the transition point at J2 ∼
0.241. Next we constructed another fidelity susceptibility, χD ,
this time coupled to the order parameter susceptibility of the
dimer phase. Again, we were able to estimate the critical point
at a value of 0.241. Finally, we discussed an antiferromagnetic
fidelity susceptibility that rapidly approaches zero in the dimer-
ized phase but diverges in the Heisenberg phase. Although sus-
ceptibilities linked to these quantities appeared the most useful
for the J1-J2 model we considered here, it is possible to define
many other fidelity susceptibilities that could provide valuable
insights into the ordering occurring in the system being
studied.
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