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Temperature effect on ideal shear strength of Al and Cu
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According to Frenkel’s estimation, at critical shear stress τc = G/2π , where G is the shear modulus, plastic
deformation or fracture is initiated even in defect-free materials. In the past few decades it was realized that, if
material strength is probed at the nanometer scale, it can be close to the theoretical limit, τc. The weakening
effect of the free surface and other factors has been discussed in the literature, but the effect of temperature on
the ideal strength of metals has not been addressed thus far. In the present study, we perform molecular dynamics
simulations to estimate the temperature effect on the ideal shear strength of two fcc metals, Al and Cu. Shear
parallel to the close-packed (111) plane along the [112] direction is studied at temperatures up to 800 K using
embedded atom method potentials. At room temperature, the ideal shear strength of Al (Cu) is reduced by 25%
(22%) compared to its value at 0 K. For both metals, the shear modulus, G, and the critical shear stress at which
the stacking fault is formed, τc, decrease almost linearly with increasing temperature. The ratio G/τc linearly
increases with increasing temperature, meaning that τc decreases with temperature faster than G. Critical shear
strain, γc, also decreases with temperature, but in a nonlinear fashion. The combination of parameters, Gγc/τc,
introduced by Ogata et al. as a generalization of Frenkel’s formula, was found to be almost independent of
temperature. We also discuss the simulation cell size effect and compare our results with the results of ab initio
calculations and experimental data.
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I. INTRODUCTION

Defect-free crystalline materials have strength two to three
orders of magnitude higher than conventional ones. In 1926,
Frenkel offered a very simple estimation of the critical shear
stress of an ideal crystal, τc ≈ G/2π , where G is the shear
modulus.1 Critical tensile stress is also used to characterize
ideal strength of materials and it is of the same order of
magnitude as the critical shear stress. The possibility of achiev-
ing strength close to the theoretical limit was demonstrated
already in the early 1950s in the experiments on whiskers.2

Nowadays, it is widely accepted that theoretical strength has
not only fundamental but also practical importance, especially
for nanomaterials, where the dislocations either are absent or
cannot move or multiply.3 Materials exhibiting strength greater
than 10% of the theoretical limit are often called ultrastrength
materials.3

Recent experiments on mechanical loading of small-
volume metals have shown that local stress can reach a
significant fraction of the ideal strength. For instance, Wu
et al.4 carried out a bending test of Au nanowires with a
diameter of 40 nm using an atomic force microscope tip
and measured yield stress to be 5.6 GPa, which is close to
Frenkel’s estimation. Minor et al.5 performed nanoindentation
experiments of Al and estimated maximum shear stress of
2.3 GPa, compared to the theoretical strength of 2.84 GPa.6

Experiments on uniaxial compression of submicron- and
nanopillars fabricated by a focused ion beam7–10 or by an
alternative technique11 demonstrate increase in the yield stress
with decreasing sample diameter, d, according to the power
law, σy ∼ d−n, when the samples have dislocations. On the
other hand, samples free of initial dislocations have strength
close to the theoretical limit and do not demonstrate the
size effect.12–15 It has been found that even dislocation-free

grain boundaries in mechanically annealed nanometer-sized
W bicrystals having nanometer dimensions are capable of
withstanding extreme stresses close to the values of the
theoretical strength of single crystals.16

The effect of a free surface on the ideal strength has
been experimentally investigated by comparing the results of
nanoindentation tests with those of the uniaxial compression
of micropillars.17 It is known that, during nanoindentation,
maximum shear stress is observed beneath the contact surface,
resulting in homogeneous nucleation of dislocations.18,19 On
the other hand, during compression of pillars, semi- or
quarterloops can be nucleated at the sample surface or edge.
In Mo-based alloys, it was found that the critical resolved
shear stress for dislocation nucleation is equal to G/8 in single
crystals under nanoindentation, while compression tests on
micropillars reveal a critical shear stress of G/26.

Urged by these experimental results, many computational
studies have been carried out to evaluate ideal strength of
various crystals by means of ab initio and molecular dynamics
approaches. While in the earlier works the aim was to calculate
the ideal strength,20 recently the interest of researchers shifted
to the problem of why nanomaterials fail at stresses lower than
the theoretical limit.

The effect of different factors on the ideal strength has
been investigated numerically. For example, the weakening
effect of twins and grain boundaries has been studied.21,22 A
pronounced effect of crystallographic orientation on plastic
deformation during nanoindentation of Al and Cu has been
revealed.23 In a series of works by Kolluri et al., thin films
of fcc metals, including Al and Cu, have been studied,
ultrahigh strength has been demonstrated, and crystallographic
orientation effects have been examined.24–26 The effect of
normal stresses on the ideal shear strength in several covalent
crystals has been studied.27,28 Effect of triaxial loading on
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the ideal strength of six fcc crystals has been addressed.29

The obtained results revealed that the compressive strengths
increase (decrease) linearly with the transverse compressive
(tensile) stresses. A free surface without notches does not
noticeably affect the ideal strength of a two-dimensional model
crystal;30 in the presence of a notch, dislocations in a Cu single
crystal are nucleated at stresses lower than the theoretical
limit.31

The ideal strength calculated at 0 K sets the “athermal”
limit of the local stress,32 while experiments are carried out
at finite temperatures. Since thermal fluctuations at elevated
temperature can assist structural instability or defect nucle-
ation, it is important to understand the effect of temperature
on the ideal strength. Recently, Zhu et al.33 established a
statistical model for dislocation nucleation stress and gave
a function of the form −T ln T . This model was applied to
dislocation nucleation from surfaces in a Cu nanopillar under
compression. At room temperature and strain rates used in
experiments, the critical stress is evaluated to be only 30%
of the ideal strength at 0 K. However, the model includes the
effects of free surfaces and temperature. As was indicated in
nanoindentation and punched micropillar experiments by Bei
et al.,17 a wide range of critical stresses reported for various
types of specimen indicates that the type of structure strongly
affects the critical stress of instability. Thus one may naturally
expect that the effect of temperature would depend on the
structure.

To better understand the mechanism of crystal instability
under loading, one should clarify how much the reduction in
critical stress solely by the temperature effect is. It is therefore
necessary to reveal the “ideal strength at finite temperature,”
i.e., critical stress of mechanical instability of a perfect crystal
at nonzero temperature. To the best of our knowledge, this
problem has not been addressed for metals thus far.

In the present study, we use molecular dynamics (MD)
simulations to investigate the temperature effect on the ideal
shear strength (ISS) of single crystals of Al and Cu. Shear
deformation in the [112] direction on the (111) plane is
considered because this is the direction of easiest shear for
fcc metals. We select for our study Al and Cu as fcc metals
with high and low stacking fault energies, respectively.

For six fcc crystals including Al and Cu, a simple way of
estimating uniaxial tensile strength on the basis of theoretical
shear strength was offered.34 The results of the present study on
ISS, with the help of their approach, can be used for estimation
of the ideal tensile strength.

The instability problem for a single crystal can be addressed
in terms of continuum mechanics by checking the positive
definiteness of the elastic constant matrix at different strain
levels35 and different temperatures. However, we have chosen
the most straightforward for an atomistic simulations way of
stress-controlled loading until the instability event takes place
with an abrupt structure transformation.

The paper is organized as follows. In Sec. II, we briefly
describe the interatomic potentials used in our study and other
simulation details. Then, in Sec. III A, our main numerical
results are presented. Cell size effect is discussed in Sec. III B.
Section IV concludes the paper.

II. SIMULATION DETAILS

A. Interatomic potentials

Our MD simulations of Al and Cu single crystals rely on
potentials based on the embedded atom method (EAM). Boyer
et al.36 performed a comparison of shear deformation in Al
and Cu using EAM potentials with the results of ab initio
simulations based on the density functional theory (DFT). It
was shown that the Mishin potential for Cu overestimates both
ideal shear strength (2.91 GPa, while DFT gives 2.16 GPa)
and critical strain, but qualitatively reproduces stress-strain
relations. Moreover, the interplanar spacings during affine
shear and stacking fault energy obtained by using this potential
are in reasonably good agreement with those obtained by DFT.
Therefore, we used the Mishin potential in calculations of Cu.

In contrast, Boyer et al. found the Mishin potential for
Al37 unsatisfactory, in the sense that it cannot accurately
describe the evolution of distances between atomic planes
during shear predicted by DFT calculations. This contradiction
was explained by the more complicated process of charge
redistribution during breaking and reforming bonds, caused
by anisotropic electron density and directional bonding in Al.
Besides, the stress-strain curve obtained with the use of the
Mishin potential does not show nonlinearity, even at high
strains, which does not make physical sense. Thus it was
concluded that EAM potentials for Al reported by Mishin37

were not suited for the present study.
Several alternative EAM potentials for Al have been

developed and, in our investigation of ISS of Al, we used
the EAM potential developed by Zope and Mishin.38 Their
potential correctly predicts the equilibrium crystal structure
and accurately reproduces basic lattice properties. A reason-
ably good agreement with experimental data was reported for
the stacking fault energy and energies of point defects.38

B. Simulation procedure

Simulation cell vectors, a, b, and c, are initially parallel
to [112], [110], and [111] directions of the fcc lattice,
respectively. The smallest sampled cell contains six atoms,
which are located on three close-packed planes. To build larger
cells and investigate the cell size effect on ISS, we used a
replication of this cell in x, y, and z directions. For both metals,
simulation cells containing from 48 up to 20250 atoms were
used. The main results were obtained for the simulation cell
with 1296 atoms. Justification of the choice of the simulation
cell size will be given in Sec. III B.

We use engineering strain, γ = δx/Lz, where δx is the
displacement of simulation cell vector c, which is initially
along the [112] direction, and Lz is the projection of the vector
to the z direction [see Fig. 1(b)].

Temperature range from 0 K up to 800 K was sampled with
a 100 K step for both metals and for each cell size.

Simulation started from equilibration of the crystal at a
given temperature for 10 ps with a time step of 1 fs. Then,
shear stress increasing with a constant rate of 50 MPa/ps
was applied along [112](111), while keeping other stress
components equal to zero. The duration of the MD simulations
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FIG. 1. Schematics of a simulation cell and atom positions.
Atoms in different atomic planes parallel to the plane of figure
are shown by open and filled circles. (a) γ = 0; (b) under shear
deformation but before instability; (c) after stacking fault formation.

from zero to critical stress for different temperatures was
typically in the range of 40 to 60 ps. The decrease in the stress
increase rate may result in certain reduction in critical stress,
especially at high temperatures, because triggering of a lattice
instability event has a probabilistic nature. Nevertheless, we
report the results with the above-mentioned stress increase rate,
which is typical for MD simulations. Stress components were
controlled using the Parinello-Rahman method.39 Temperature
was kept constant during the simulation by the velocity scaling
method. Periodic boundary conditions were imposed in all
three directions.

A note should be made on why we use the stress-
controlled rather than strain-controlled loading. In the case
of simple shear, for not small values of shear strain, nonzero
compression stress acting normal to the close-packed planes
appears and it affects the critical values of shear strain (or
shear stress).27 We have chosen an alternative way of stress-
controlled loading aimed at analyzing critical shear stress at
zero tension/compression stress normal to the close-packed
atomic planes.

Because of the thermal atomic fluctuation, especially at high
temperatures, results vary significantly from one simulation
run to another, even for the same set of parameters. That is why
we performed several runs (at least 10) for each structure and
each set of parameters and analyzed the averaged values and
dispersion. In our study, parameters of the Parinello-Rahman
scheme were chosen in a way to minimize the role of
fluctuations of the periodic cell. Technical details related to
the accuracy control in our study are reported individually.40

Two packages for MD simulations were used in our
investigation, viz. MDSPASS developed in the University of
Tokyo and LAMMPS.41 Having analyzed the influence of
parameters of the simulators, we set their appropriate values;
this resulted in a negligible difference in the results obtained
by the two codes.

III. RESULTS AND DISCUSSION

A. Temperature effect on stress-strain curves, critical shear
stress, and critical strain

Shear stress, τ , as a function of shear strain, γ , in Al and
Cu is shown in Figs. 2(a) and 2(b), respectively. The results
were obtained using a simulation cell containing N = 1296
atoms (see Sec. III B). Each figure shows a set of nine curves,
which correspond to different temperatures. In the simulations

FIG. 2. Stress-strain curves of (a) Al and (b) Cu under stress-
controlled loading by applying shear stress along [112](111) at
different temperatures. The number of atoms is 1296. The right end
of each curve indicates the instability point.

at finite temperatures, τ and γ fluctuate over time, and thus
in Fig. 2 we plot values averaged over several periods of
fluctuation.

Shear elastic modulus at 0 K, calculated from the slope
of the corresponding stress-strain curve at γ = 0, was found
to be G = 29.3 GPa in Al and G = 30.3 GPa in Cu. The
latter is in a good agreement with 31.0 GPa by DFT, while the
former is larger than 25.4 GPa by DFT.42 For both metals,
the slope of stress-strain curves at γ = 0 decreases with
increasing temperature, meaning the reduction of the shear
elastic modulus G. For instance, G = 24.5 GPa in Al and
G = 28.0 GPa in Cu at 300 K.

Stress-strain curves terminate at the critical points, where
shear strain suddenly increases at practically constant shear
stress (the sudden increase in strain is not shown in Fig. 2).
Within the studied temperature range, the mechanism of
instability was the same, namely, stacking fault formation.
It is seen that the increase in temperature causes the decrease
of critical stress, τc, and critical strain, γc, in both metals.
The critical shear stress of Al obtained at 0 K is τ 0

c =
2.47 GPa. This value is lower than 2.84 GPa evaluated by DFT
calculations.6,36,42 The critical strain, γ 0

c = 0.135, is about
35% lower than a DFT evaluation (0.2).6 Boyer et al.36 reported
that the Mishin potential gives critical stress of 3.12 GPa and
critical strain of 0.15. In Cu, the critical stress at 0 K obtained
using the Mishin potential is τ 0

c = 2.85 GPa, compared to
2.16 GPa by DFT. As for the critical strain, the obtained value
is γ 0

c = 0.185, more than 40% higher than that by DFT (0.130).
In Fig. 3, as a function of temperature normalized to

the melting temperature, we present (a) critical shear stress
normalized to its value at 0 K τc/τ

0
c and (b) critical shear

strain normalized to its value at 0 K, γc/γ
0
c . The experimental
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FIG. 3. Normalized critical shear stress (a) and critical shear
strain (b) as functions of normalized temperature. Filled and open
circles are for Al and Cu, respectively. Each point is the result of
averaging over 10 numerical runs. Critical values at 0 K are as follows:
for Al τ 0

c = 2.47 GPa, γ 0
c = 0.135, and for Cu τ 0

c = 2.85 GPa, γ 0
c =

0.185. We took for Al Tm = 870 K43,44 and for Cu Tm = 1327 K45

(experimental values are Tm = 933 K for Al and Tm = 1358 K for
Cu).

values of Tm of Al and Cu are 933 and 1358 K, respectively,
but we use the values found by simulations, i.e., Tm = 870 K
for Al43,44 and Tm = 1327 K for Cu.45 One can see that in
both metals the critical shear stress decreases with temperature
almost linearly in a wide temperature range. In the normalized
coordinates, the decrease rate is practically the same in Al and
Cu. On the other hand, critical strain decreases with increasing
temperature in a nonlinear fashion and the decrease in Cu is
faster than in Al.

The linear decrease of critical stress with increasing
temperature observed in our simulations is in line with the
theory developed by Zhu et al. for dislocation nucleation from
the surface.33 According to their theory, at strain rates used
in experiments, nucleation stress drops by more than 70%
when temperature increases from 0 K to room temperature. For
strain rates typical for MD simulations, the expected decrease
is about 40%, while we observed a decrease of 25% for Al and
22% for Cu. This difference should be attributed to the absence
of defects in our study. The critical stress of Al at 800 K is
about 35% of that at 0 K, while the reduction in strength of Cu
is about 50%.

The above-mentioned Frenkel’s formula suggests G/τc =
2π for all crystalline materials. It is interesting to see how the
ratio, G/τc, depends on temperature. The result is presented
in Fig. 4, where it can be seen that for both metals the ratio
increases with temperature almost linearly. The increase rate
for Cu is somewhat higher than for Al. Since both G and τc

FIG. 4. Temperature dependence of the ratio G/τc for Al (filled
circles) and Cu (open circles). Each point is the result of averaging
over 10 numerical runs.

decrease with increasing temperature, the increase of the ratio,
G/τc, means that τc drops with temperature faster than G.
In the work of Ref. 20, a generalization of Frenkel’s formula
was offered in the form Gγc/τc = π/2, which incorporates
the critical shear strain (shearability), γc. In Fig. 5, we present
Gγc/τc as a function of normalized temperature and reveal that
this quantity is practically temperature-independent due to the
nonlinear temperature dependence of γc. Indeed, the increase
of temperature up to 800 K results in the increases of G/τc by
50% –60%, while Gγc/τc varies within 10%.

According to our results, critical shear stress of Al and
Cu at room temperature is about τc = 1.86 GPa and τc =
2.24 GPa, respectively, which may be compared to the values
of critical resolved shear stress for dislocation nucleation that
have been obtained in recent nanoindentation tests.5,46 Wang
et al.46 performed experiments with single crystals of Cu using
different crystal orientations and indenter tips. Using the values
of the reduced elastic modulus by Hertz’s elastic theory,47 the
maximum shear stress can be estimated to be around 5.2 GPa
in the case of indentation to a (111)-oriented surface, when
one of the edges of the cube-corner indenter was parallel
to [112] direction. Minor et al.5 performed experiments on
polycrystalline Al with a dislocation density of 1014 m−2 to
observe that most of the preexisting dislocations in indented
grain escape to the surface in the early stage, followed by
the so-called pop-in/load-drop effect that happens because of
structural instability. They estimated the maximum shear stress
right before the pop-in to be 2.3 GPa. The above-mentioned
values of critical shear stress estimated from experimental data
are higher than those predicted by our study, especially for Cu.

FIG. 5. Same as in Fig. 4, but for the quantity Gγc/τc.
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We attribute this to the effect of the increase in the critical shear
stress under superposed compressive stress reported by Ogata
et al., since material under the indenter tip is also compressed
significantly.42 Ogata predicted up to two times larger critical
stress when external normal stress is about 10 GPa, being
of the same order of magnitude as normal stress induced by
the indenter tip. Moreover, since all experimental values are
accompanied by large scatter with about the order of 1 GPa,
it can be stated that our results are in a reasonably good
agreement with the experimental results.

To examine the atomistic mechanism of stacking fault
formation, we have done an analysis of the structure factor
defined as

S(x,z) =
〈

1

Ny
2

∣∣∣∣∣
Ny∑
j

exp(iTKrj )

∣∣∣∣∣
2〉

, (1)

near the instability point. Here, K = (4π/a0)(1,0,0) is the
reciprocal lattice vector in the unstrained crystal, with a0

being the lattice parameter, T is the transformation matrix
that takes into account strain and rotation of the deformed
crystal, Ny is the number of atoms in the atomic row normal
to the (x,z) plane, rj is the coordinate vector of the j th atom
in the row, and i is the imaginary unit. If atoms sit on the
points of a homogeneously deformed lattice, then the structure
factor is S = 1. The deviation of atoms from the lattice points
results in reduction of S. In Fig. 6, we present S(x,z) in Cu at
T = 0 K at the values of strain (a) γ = 0.179, (b) γ = 0.182,
and (c) γ = 0.185. It can be seen that a static sinusoidal
wave of displacements of very small amplitude (∼10−4 Å)
is formed prior to the stacking fault formation that occurs
at the critical strain (γc = 0.185). Further loading transforms
the sinusoidal modulation to the form of kink and the latter
eventually triggers formation of the stacking fault at γ = γc.
The wave of atomic displacements is observed not only at
0 K, but also at finite temperatures, though, for increasing
temperature, loading should be done much slower to have
enough time to average out thermal fluctuations.

No qualitative difference in the stacking fault formation
mechanism was found between Al and Cu; therefore, we show
only the results for Cu.

It should be pointed out that the scenario of crystal lattice
instability presented above seems generic, as it has been
observed in similar settings in other studies.18,19,48

B. Cell size effect

The critical stress of Al, τc, under shear along [112](111)
is presented in Fig. 7 as a function of the number of atoms in
the simulation cell, N , for different temperatures. For clarity,
we present the results only for 10, 100, 200, 400, 600, and
800 K. Each point is the result of averaging over 10 MD runs.
The scatter in the critical stress is shown by error bars. At
10 K, nearly the same value of 2.45 GPa was obtained for
all studied N and negligible dispersion of τc was observed.
However, already at 100 K, the critical stress estimated for the
cells containing 48 and 162 atoms is noticeably lower than the
value obtained with N = 1296. This means that tiny simulation
cells can be used in MD simulations for the investigation of
ISS only at very low temperatures.
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FIG. 6. Structure factor S(x,z) calculated for Cu at T = 0 K at
the values of strain (a) γ = 0.179, (b) γ = 0.182, and (c) γ = 0.185.
The critical value of strain is γc = 0.185.
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FIG. 7. Critical stress of Al, τc, under shear along [112](111)
as a function of the number of atoms in the simulation cell, N , for
temperatures 10, 100, 200, 400, 600, and 800 K. Each point is the
result of averaging over 10 numerical runs. The scatter in the critical
stress is shown by the error bars.
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In all cases, the results saturate and the dispersion of the
results becomes relatively small at N ∼ 1000. This implies that
a simulation cell containing about 1000 atoms is large enough
for the investigation of ISS even at high temperatures. It is
worth noting that the scatter of critical stress depends on both
the temperature and the cell size. It is therefore indispensable
to average results over several runs at elevated temperatures,
especially for small cells. The saturation of ideal stress for
more than 750 atoms indicates that the application of ab initio
calculation to investigation of ISS at high temperatures is
difficult, considering that long-time simulation for each MD
run is required.

The results obtained for Cu in the study of the cell size
effect are very similar to those presented for Al, indicat-
ing that the aforementioned tendency of the size effect is
general.

IV. CONCLUSIONS

MD simulations have been performed for investigating the
effect of temperature on ideal shear strength of Al and Cu
using EAM potentials. Gradually increasing shear stress was
applied along the direction of the easiest sliding, [112](111),
until structural instability occurred. The temperatures up to
800 K were studied, which correspond to 0.9Tm for Al and
0.6Tm for Cu.

It was found that the elastic shear modulus, G, the critical
shear stress, τc, and the critical shear strain, γc, decrease with
increasing temperature. G and τc drop with temperature almost
linearly, while γc also decreases with temperature, but in a
nonlinear manner.

According to Frenkel’s formula, the ratio, G/τc, is constant
for all crystalline materials. Ogata et al.20 have found that for a
number of metals and ceramics the quantity, Gγc/τc, is indeed

nearly constant. Both these relations were obtained neglecting
the temperature effect. We have found that for Al and Cu the
ratio, G/τc, linearly increases with temperature and thus the
decrease of τc with temperature is faster than that of G. On
the other hand, Gγc/τc was found to be almost temperature
independent due to the nonlinear temperature dependence
of γc. We believe that the temperature independence of the
quantity Gγc/τc is one of the main findings of the present
work.

Our simulation results suggest that the critical shear stress
of single crystals decreases slower with growing temperature
than that of dislocation nucleation from surfaces. To be
specific, for strain rates typical for MD simulations, Zhu
et al.33 predicted that the critical stress needed for dislocation
nucleation from the surface at room temperature reduces by
40% compared to its value at 0 K. In our study of defect-free
fcc metals, the reduction of ideal shear strength due to heating
up to the room temperature is 25% for Al and 22% for Cu.
This indicates that the temperature effect on the critical stress
depends on structure.

Although empirical interatomic potentials do not produce
quantitatively rigorous results, it seems to be difficult to em-
ploy ab initio calculations for the investigation of temperature
effect on the ideal strength. This is because averaging over
a number of MD runs with relatively large simulation cells
(∼1000 atoms) is required to evaluate critical stress and strain
at finite temperature (�100 K).
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