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Time-domain simulation of electron diffraction in crystals
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Transmission electron microscopy (TEM) and low-energy electron diffraction (LEED) simulations are
performed by propagating electron wave packets in real space and real time. The method accurately describes
electron scattering in solids for high (>200 keV) and low (20–200 eV) energies. The applicability of the method
is demonstrated by calculating TEM images and LEED intensities of silicon and graphene.
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I. INTRODUCTION

Electron beams are among the most important tools used
to probe the properties of materials at various energy ranges.
Low-energy electron diffraction (LEED) is a powerful tool for
determining the atomic structure of surfaces.1–3 In LEED, a
collimated electron beam of energy E = 20–200 eV (corre-
sponding to a wavelength λ = √

150/E Å) strikes the surface
of a crystalline material. By observing the diffracted electrons
as spots on a fluorescent screen, the surface structure can be
determined.4 Low-energy electron point-source microscopy
(LEEPS) also utilizes a low-energy electron beam and is
important for imaging biological molecules and lensless
electron holographic imaging.5

On the high-energy side, the electrons used in TEM
typically have kinetic energies of Ek = 100–300 keV corre-
sponding to a wavelength λ = 0.037–0.02 Å,6–8 which enables
high-resolution imaging. Unlike the optical microscope, the
best achievable spatial resolution in a TEM is not limited by
the electron wavelength, but instead is set by the intrinsic
imperfections of electron lenses, which are referred to as
spherical and chromatic aberrations.6

Very recently, the aberration-corrected, monochromated
TEAM 0.5 TEM (Ref. 9) has achieved subangstrom
resolution10 for electrons accelerated with an 80-kV
voltage.11–13 The relatively low-energy and aberration-
correction technique provide the capability to resolve every
single atom in the sample with small radiation damage and
high contrast, especially for light element materials.14 This
is important for organic materials, which are too fragile for
the high-energy electrons used in other methods. The desired
electron energy is from 10 to 100 keV, usually referred to as
the intermediate energy range.6

Due to the quantum nature of the interaction between
electrons and solids, the correct interpretation of the LEED

pattern and TEM image requires very careful computer
simulations.2,15–21 For TEM with high-energy electrons, two
methods are widely used: the Bloch wave method22,23 and the
multislice theory.24,25 While the Bloch wave method yields
accurate results for crystalline films, it is generally limited
to calculations employing relatively small simulation cells.
The multislice method, on the other hand, is very successful
in describing high-energy TEM imaging. However, due to the
approximations adopted in the theory,21 it may be less accurate
in describing the scattering processes for the electrons in the
intermediate energy range.

Electron scattering is essentially a time-dependent process.
When a free-electron wave packet scatters on the sample,
part of the wave packet is reflected back, and the rest is
propagated through the solid. Conventional time-independent
electron scattering calculations are done in energy space. The
wave function in the scattering region is calculated for a
given energy and connected to assumed asymptotic states. The
calculation has to be repeated for each desired energy. Here, we
pursue an alternative approach to calculate the scattering wave
function in a time-dependent framework by time propagating a
Gaussian wave packet. The time-dependent approach is similar
to experiments in that a Gaussian free-electron wave packet
is propagated in real time and real space, and the scattering
information is extracted from the transmitted and the reflected
parts of the wave packet. The main advantage of the approach
is that the scattering wave function is calculated for all desired
energies at once.

In this work, we present a unified framework to study elec-
tron diffraction in solids. We show that both the low- and high-
energy electron diffraction patterns can be obtained by propa-
gating the wave packet in real space and real time, and therefore
are treated on an equal footing. For high-energy electrons,
time-dependent calculations have not been pursued in the past
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because the oscillatory nature of the propagated electron wave
packet requires an extremely dense grid, which is prohibitively
expensive.21 At these high energies, we use an ansatz in
which the incoming electron wave function is expressed by
a product of a fast-varying part and a slowly varying envelope
function. The slowly varying function will evolve according
to a modified Hamiltonian derived from the time-dependent
Schrödinger equation. This is somewhat similar to a change
in reference frame when analyzing relative object motion.
After this transformation, the dense grid sampling becomes
unnecessary and electron scattering for both the intermediate-
and the high-energy ranges can be described accurately on a
regular grid in the time domain. Electron scattering simulations
so far have concentrated on static imaging, but the advent of
attosecond technology26 and ultrafast electron microscopy [so
called four-dimensional (4D) electron imaging] has made it
possible to observe electron dynamics at the sub-fs scale.27–30

The method presented in this paper could be useful for
simulating these ultrafast electron dynamics31 as well.

II. TIME-DEPENDENT SIMULATION
OF ELECTRON SCATTERING

A. Low-energy electrons

With the recent development of ultrafast laser techniques,26

it has become possible to manipulate electron pulses in a
controllable manner.28,30 The coherence in both space and time
can be tuned,32 which opens up the possibility of studying
ultrafast electron dynamics in real space and real time.30

From a practical applications point of view, as the size of
electronic and optoelectronic devices continues to decrease to
the nanometer regime, the effect of the electrons’ distribution
will become relevant for understanding electron dynamics.

The wave-packet (WP) description of an electron is a
natural combination of its dual wave and particle nature.
As compared to pure plane waves, the wave packet has
many advantageous features. The parameters of the Gaus-
sian wave-packet widths can be tuned separately in three
directions, allowing for a simulation of the finite-size effects
of the electron source.10 A variety of quantum systems can
be controlled with a sequence of short laser pulses, the relative
phases of which are finely adjusted to control the interference
of electronic or nuclear WPs.32 Quantum information such
as the amplitudes and phases of eigenfunctions superposed
to generate a WP can be retrieved. The WP description has
been used to study theoretically quantum electron scattering,33

barrier tunneling,34–36 and transport.37 WP propagation in the
time domain has been shown to yield the eigenfunctions of

arbitrary nanostructures.38 Very recently, an analogy between
the evolution of a free WP and the Fresnel diffraction has been
demonstrated.39 The study of WP dynamics is also of pedagog-
ical interest for visualizing quantum mechanics.40 Similar to
electron scattering, the WP method has also been successfully
applied to the study of chemically reactive processes.41

We will consider only single electron scattering because
the duration (∼10−9 s) between the electron pulses is much
larger than the very fast propagation process (∼10−15 s) in the
solid. We start from the time-dependent Schrödinger equation
for the incoming electron wave function �(r,t):

ih̄
∂�(r,t)

∂t
= H�(r,t) =

[
− h̄2

2m
∇2 + V (r)

]
�(r,t). (1)

Here, V (r) is the effective potential of the crystal film, which
can be taken as frozen because of the speed of electron
propagation.

At t = 0, an incoming electron wave packet of initial
(average) kinetic energy E0 = h̄2k2

0/2m and momentum
p0 = h̄k0 can be expressed as

�(r,t = 0) = eik0xφg(r,0), (2)

with φg(r,0) the initial distribution of the wave packet. The
form of φg(r,0) must be easy to implement in real space, e.g.,
a Gaussian wave packet (GWP).

The calculation is schematically illustrated in Fig. 1.
A wave packet is placed far away from the sample and
propagated in time. Part of the wave function is reflected and
part of it is transmitted. To avoid artificial reflections from
the boundaries of the simulation cell, a complex absorbing
potential42–44 is placed near these boundaries (see Appendix
A for further details). Periodic boundary conditions are used
in the directions perpendicular to the propagating direction.
This boundary condition does not restrict the calculations in
any way; the change in interlayer spacing and surface-layer
contractions can be included in the calculations.

The wave function is propagated by using

�(r,t + �t) = exp

(
− iH�t

h̄

)
�(r,t). (3)

Once the evolution of the GWP in the whole lattice is complete,
we transform the wave function from the time domain into
energy space:

�(r,E) = 1

2π

∫
�(r,t)eiEt/h̄dt. (4)

In the asymptotic regions to the left and right of the sample
(see Fig. 1), the wave function can be written a

�(r,E) =
{

eik0‖·ρeik0⊥x + ∑
g Rk0⊥ge

i(k0‖+g)·ρe−ik−
g⊥x, x → −∞∑

g Tk0⊥ge
i(k0‖+g)·ρeik+

g⊥x, x → +∞ (5)

where ρ = (x,y). To characterize the scattering for a given
energy E, one has to calculate the transmission and reflection
coefficients Tk0⊥g and Rk0⊥g.

Equation (5) is valid for a thin film where the incident
electrons are reflected or transmitted through the sample. In
the case of a bulk crystal, there is no transmission and Eq. (5)
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FIG. 1. Schematic illustration of wave-packet propagation.

has to be replaced by

�(r,E) = eik0‖·ρeik0⊥x +
∑

g

Rk0⊥ge
i(k0‖+g)·ρe−ik−

g⊥x,

x → −∞. (6)

In this case, we add a complex absorbing potential (CAP)
to the Hamiltonian (see Appendix A for details). The CAP
is reflection free, therefore, it does not change the reflection
coefficients. The CAP absorbs the electrons deep inside the
sample and serves the same purpose as the imaginary potential
used in the LEED calculations.1–3

The transmission and reflection coefficients in Eqs. (5) and
(6) can be determined by fitting the calculated wave function
�(r,E) to the asymptotic forms defined in Eq. (5). The details
of this calculation are given in Appendix A for one dimension
and in Appendix B for three dimensions.

B. Intermediate- and high-energy electrons

For an electron with more than a few tens of keV, a direct
calculation of the wave function �(r,t) requires a very dense
spatial grid sampling. According to the Nyquist theorem, a
small grid spacing �x < π/k0 (where h̄k0 is the electron’s
momentum) is required in order to account for the rapidly
oscillating wave-packet components. This results in the need
for a large dense grid (for example, for electrons with 0.02-Å
wavelength, the grid spacing should be around 0.002 Å), which
is computationally prohibitively expensive.

To avoid this, we note that the electron momentum along the
propagation direction (here x) does not change significantly
during the scattering process, therefore, the time-dependent
wave function can be written as

�(r,t) = ei(k0x− E0 t

h̄
)φg(r,t), (7)

where the electron energy is E0 = h̄2k2
0/2m. In Eq. (7), the

slowly varying and fast-varying parts of the wave function are
separated. By substituting Eq. (7) into Eq. (1), we obtain

ih̄
∂φg(r,t)

∂t
=

[
− h̄2

2m
∇2 + V (r) − h̄2k0

m
i

∂

∂x
+ k2

]
φg(r,t)

≡ Hφg(r,t). (8)

We can time propagate φg as

φg(r,t) = e− i
h̄

Htφg(r − r0,0), (9)

where the propagator e− i
h̄

Ht can be approximated in many
ways, e.g., using a Taylor expansion. The total electron wave
function �(r,t) is then given by Eq. (7). Equation (8) is the
key equation governing the evolution of the slowly varying part
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FIG. 2. (Color online) Propagation of a 1D Gaussian wave packet
in free space. The wave packet is located at x = −25 Åat t = 0.
Solid line: the wave packet distribution obtained by propagating using
Eq. (4). Dashed line: the analytical result. The time step is �t =
1.0 × 10−5 fs. Regular grid spacing �x = 0.2 Åis used.

φg(r,t). Since φg(r,t) is slowly varying in space, moderate grid
spacings can be used (typically 0.1 ∼ 0.3 Å). By propagating
the wave packet according to the modified Hamiltonian H,
dense grid sampling can be avoided without loss of accuracy.

To demonstrate the feasibility of the above technique,
we simulate a one-dimensional (1D) GWP propagating in
free space, with an initial wave vector of k0 = 50 Å−1

(Ek ∼ 10 keV). Figure 2 shows the wave-packet distribution
propagated according to Eq. (8) for t = 0.085 fs. The analytical
result is also shown for comparison. As can be seen from
Fig. 2, the numerical result is in excellent agreement with the
analytical solution, demonstrating that the high-energy wave
packet can be accurately propagated using Eq. (8).

III. RESULTS AND DISCUSSION

A. Diffraction of low-energy electrons from graphene

As a first example for the application of the time-dependent
approach, we show electron diffraction patterns from a
graphene sheet. The remarkable properties of graphene have
stimulated a large amount of experimental and theoretical
research in condensed matter physics and nanoscience.45,46

One interesting application of graphene is to serve as a
support for imaging nanostructures, biomolecules, and soft-
hard interfaces.47,48

The setup of the computational cell is shown in Fig. 3.
We time propagate a single wave packet through the graphene
lattice until the scattered wave function is completely adsorbed
by the CAP (see Appendix A) at the boundary. The evolution
of the wave function with respect to time will be recorded on
the two slice planes indicated in Fig. 3. By using Eq. (4), we
transform the scattered wave functions from time domain to
energy domain, and the diffraction pattern for the energy range
of 20 to 200 eV can be obtained in a single calculation.

The reflected electron densities for various incoming
electron energies are presented in Figs. 4 and 5, showing
the diffraction patterns of graphene. Because the wavelength
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FIG. 3. (Color online) Periodic unit of graphene lattice and our
simulation box. Lx = 60 Å, Ly = 2.46 Å, and Lz = √

3Ly . The
graphene lattice is placed at Lx = 0.

of low-energy electrons depends significantly on the energy
(λ = √

150/E Å), the diffraction patterns vary with respect to
incoming electron energy.

In Fig. 6, we present the transmission and reflection co-
efficients calculated by dividing the transmitted and reflected
electron intensities through the slice plane by the incoming
electron intensity. One can see that within a large energy range
(40–200 eV), nearly 80% of the electron beam can penetrate
the graphene lattice, showing that the graphene could be useful
for LEEPS imaging of biological molecules. A recent LEEPS
measurement by Mutus et al.49 showed that nearly 75% of
electrons with energy from 100 to 200 eV can penetrate the
graphene lattice, in good agreement with our simulation result.
From Fig. 6, there is also a considerable portion (around 15%)
of the electron beams reflected back from the graphene lattice.
This result suggests that graphene could also be useful for
in-line reflected holographic imaging.

Our next example is the calculation of the LEED in-
tensity. Two different systems, the diamond(111) 1 × 1 and
the Cu(100) surface, are used as examples. The surface is
represented by a few-layer crystal slab. The number of layers
is increased until the results converge. In the present case,
about 15 atomic layers were found to be satisfactory to obtain
accurate results.

The LEED intensity for the diamond surface is shown in
Fig. 7. A screened Thomas-Fermi potential is used to represent
the carbon atomic potentials. The results of our approach are
compared to the intensity curve calculated by the multislice
finite difference method50 (see Fig. 7). The two results are in
very good agreement. The slight disagreement is due the use

(a) E = 41 eV (c) E =116 eV(b) E = 75 eV

FIG. 4. (Color online) Density distribution for the reflected
electron on the slice plane at a distance of 12.0 Å from graphene.
(a) E = 41 eV, (b) E = 75 eV, and (c) E = 116 eV.

(a) E = 49 eV (c) E = 173 eV(b) E = 105 eV

FIG. 5. (Color online) Density distribution for the transmitted
electron on the slice plane at a distance of 12.0 Åfrom graphene.
(a) E = 49 eV, (b) E = 105 eV, and (c) E = 173 eV.

of different potentials in our calculation (Thomas-Fermi) and
in the multislice finite difference approach (muffin-tin).50

The calculated LEED intensity for a Cu(100) surface is
compared to a tensor LEED calculation51 in Fig. 8. While
the overall agreement between the calculations is good, the
differences in the crystal potentials might explain the slight
disagreement between the present approach and the tensor
LEED results (see Fig. 8). In our approach, the crystal
potential was determined by density functional theory (DFT)
calculations. In tensor LEED calculations, the crystal potential
is modeled by a lattice of muffin-tin potentials characterized
by a set of atomic phase shifts and the inelastic processes
are modeled by a uniform imaginary potential. The DFT
potential is a fully self-consistent potential of the electrons of
the crystal. Unlike the muffin-tin potential, the DFT approach
properly describes the potential in the interstitial regions, but
the inelastic scattering effects are not fully included in the
DFT potential. The present approach can use any potential that
is numerically or analytically defined in a three-dimensional
space grid, including muffin-tin-type potentials, all electron
potentials, or pseudopotentials.
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FIG. 6. (Color online) Calculated transmission and reflection
coefficients of graphene for the low-energy electron beam.
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FIG. 7. Intensity curves for a 1 × 1 diamond (111) surface. The
solid lines are calculated by the present method and the dashed lines
are showing the results of the multislice finite difference approach
(Ref. 50). The calculations assumed that normal incidence of the
primary electron beam intensity curve belongs to the (00) exit beam.

B. Simulation of transmission
electron microscopy (TEM) imaging

The transmission electron microscope (TEM) is a powerful
tool for determining crystal structures.52–56 In high-energy
electron microscopy, where the kinetic energy of the incoming
electron is much higher than that of the electrons in the
film, the crystal potential can be treated as the summation
of all atomic potentials in the sample and will not change
during the scattering process (i.e., the crystal potential is
frozen). Although frozen atomic potentials are used here,
a self-consistent all-electron potential calculated by density
functional theory can be easily incorporated. In the following,
we adopt the all-electron potentials employed in the multislice
method, as implemented in Ref. 21.
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FIG. 8. (Color online) Intensity curves for the Cu(100) surface
calculated by the present method (solid line) and by the tensor
LEED approach (dashed line). The tensor LEED data are taken
from Ref. 51. The calculations assumed that normal incidence of
the primary electron beam intensity curve belongs to the (10) exit
beam.
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FIG. 9. (Color online) Atomic model for silicon {110} plane used
in the simulation: (a) side view and (b) top view. The incoming
electron propagates along the x direction (indicated by arrows),
perpendicular to the surface. Silicon atoms on the surface (e.g., O
and its two nearest-neighbors B and C) are denoted by larger balls,
forming a zigzag chain. The center of the coordinates is located at
the O atom. One of the nearest neighbors to the silicon atom O inside
the film is labeled as A. The position of the exit plane is indicated by
a dashed line.

To illustrate the approach, described in Sec. II B, for high-
energy electrons, we simulate the TEM image for a silicon thin
film along the [110] direction. To obtain the TEM images, a
Gaussian wave packet

φg(r,0) =
(

2

πα2
0

) 1
4

e
− (x−x0)2

α2
0 (10)

is propagated in the x direction as shown in Fig. 9. Periodic
boundary conditions are used along the y and z directions.
The silicon film (4.4 nm thick) is located at the center of the
simulation box. A large vacuum region (more than 10 Å) on
both sides of the film along the x direction is used to minimize
the possible boundary reflection. For all the simulations below,
we fix the grid spacing to be 0.2 × 0.1 × 0.1 Å. Initially, the
wave packet center x = x0 is located beyond the region of the
crystal potential.

During image formation, the key process is the electron
scattering in the crystal film. The exiting scattered wave
function will have the necessary information about the crystal
structure projected perpendicular to the propagation direction.
A direct comparison with the experimental TEM image needs
to take into account the instrument’s effects, such as the transfer
function of the lens. In this work, we focus on the electron
scattering in the sample and discuss the scattered wave packet
on the exit plane, as indicated by the dashed line in Fig. 9. The
projected intensity is calculated by integrating the wave-packet
density along the propagating x direction.

Figure 10 shows the results calculated from our time-
dependent simulation for a crystalline silicon film at two
different energies, 25 and 75 keV. Results from the multislice
method as implemented in Ref. 21 are also shown for
comparison. The zigzag chain on the projected plane can be
identified in all cases. At the 25-keV energy, the intensity
distribution obtained from the multislice method in Fig. 10(a)
is significantly distorted. In contrast, our time-dependent
simulation shows a clear well-known dumbbell structure, as
can be seen in Fig. 10(b). At the higher 75-keV energy, the
intensity distributions from two methods are similar. This
demonstrates that our technique yields accurate results for
both the high- and the intermediate-energy ranges.
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(b)(a)

(d)(c)

FIG. 10. (Color online) Intensity distribution of the electron wave
function at the exit plane obtained from the multislice method and our
time-dependent simulation. The thickness of the silicon thin film is
4.4 nm. The incoming electron energies are 25 keV in (a) and (b), and
75 keV in (c) and (d), respectively. (a) and (c): the multislice method;
(b) and (d): our time-dependent simulation. The intensity scale of the
contour plot is from 1 to 12.

A line scan of the intensity along the projected OA bond
allows us to compare the results quantitatively. In Fig. 11, the
change of the intensity profiles with respect to the energy are
shown. For a fixed thickness, the incoming electron energy
varies from 25 to 100 keV. Results from the multislice method
are shown as shaded areas.

Comparing the intensities in Figs. 11(a) and 11(b), we
find that for a given incoming electron energy, the intensity
is smaller for thinner films. Thicker samples give higher
contrast. For a given sample thickness, the intensity decreases
as the energy increases, which indicates that electrons of lower
energy will be scattered more significantly by the crystal
potential. This results in a higher intensity contrast. Overall,
the results from the two methods are very similar, especially
for thin films at intermediate energy ranges and thick samples
at high energies. However, as can be seen from the bottom
panels in Figs. 11(a) and 10(b), the atomic sites in the profile
from the multislice method are not easy to identify. This is
also true for the profile of 50 keV in Fig. 11(b). In contrast,
our time-dependent simulations yield rather regular intensity
profiles for both 25 and 50 keV, as can be seen in Figs. 11(a)
and 11(b).

Figure 12 shows the change of intensity with respect
to the film thickness for a fixed energy (50 keV). Thicker
samples have larger relative intensity signals and therefore
higher contrast. Although the two methods give very similar
intensity distributions for the thickness of 2.2 nm, a noticeable
difference can be seen starting from 4.4 nm, which becomes
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FIG. 11. (Color online) Intensity profile along the projected O–A
bond for the silicon thin film with thickness of (a) 2.2 nm and
(b) 4.4 nm. The incoming electron energies are 25, 50, 75, and
100 keV, respectively. Blue line: time-dependent simulation; Shaded
area: multislice method.
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FIG. 12. (Color online) Intensity profile of the projected O–A
bond on the yz plane for silicon specimen with thickness of 2.2, 4.4,
and 6.6 nm. The incoming electron energy is fixed at 50 keV. Blue
line: time-dependent simulation. Shaded area: multislice method.
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clearer for 6.6 nm. There are several small peaks appearing
on the profile from the multislice calculation. The result
for 6.6 nm is heavily distorted and the dumbbell structures
on the projected plane are barely identified. In contrast, the
time-dependent simulation still yields well-defined intensity
distributions for thicker samples. Note that in the thick
samples, a considerable intensity accumulates between the two
atoms, indicating a bonding feature between silicon atoms at
O and A sites.

It is well known that the multislice method is more
accurate for higher-energy TEM simulation, typically, E >

100 keV. This is because of the approximations employed
in the multislice theory, i.e., the second-order term along the
propagation direction has been neglected.21 However, when
the energy becomes smaller, the validity of this approximation
becomes questionable. As can be seen above, distortions in
the intensity distribution become evident for lower-energy
electrons and thicker samples, indicating the limitation of the
multislice method to the intermediate energy range. In contrast,
our time-dependent simulations start from the time-dependent
Schrödinger equation. Without any approximation, the time-
dependent simulation, in principle, yields the most accurate
results for both high- and intermediate-energy ranges. This
unified framework might also be useful for the further study
of ultrafast electron dynamics in the time domain.

Another advantage of our time-dependent simulation is its
ease of use. The multislice method requires a careful choice
of the slices along the propagation direction for a given
sample. In contrast, only the atomic structure is necessary
in our simulations. Therefore, our time-dependent simulation
can be easily extended to study more complicated structures,
including interfaces and nanostructures.

The present approach is using frozen atomic positions, but
the statistical fluctuation of the atomic positions can also be
included by averaging the atomic potentials over positions
describing the motion of atoms. One way to achieve this is to
use the frozen phonon approximation21 in the same way as in
the multislice approach.

IV. SUMMARY

In summary, we have presented a unified framework for
simulating electron diffraction in solids in any energy range
in real space and real time. The method is straightforward and
easy to implement. Since we directly propagate the incoming
electron wave function according to the time-dependent
Schrödinger equation, the results are expected to be more
accurate than previously used methods that are based on
various levels of approximations. The main advantage of the
method is that the scattering information can be extracted for
all energies at once from a single wave-packet propagation,
i.e., the calculation does not have to be repeated for many
energy points. At the same time, the present method has to
be repeated for each scattering direction, while other methods
used in LEED calculations can handle all scattering directions
at once. The computational time, therefore, depends on the
number of required energy points and scattering directions.

Nearly all previous LEED calculations have been per-
formed by employing an average potential, using a muffin-tin
shape. Our approach can be implemented with a full potential

(e.g., all electron density functional potential) description
without relying on a muffin-tin description. In muffin-tin
approaches, the potential is averaged around the ionic core with
a chosen radius and assumed constant in the interstitial region.
This drastic approximation works relatively well in metals,
but the agreement with experiments is poorer for materials
with covalent bonds.57 Full potential calculations have been
proposed,50 but their applications so far are limited due to
the high computational cost. The present approach greatly
reduces the required computational time; most calculations
require about an hour on a single processor.

In this work, we have presented examples for the application
of the time-dependent approach to low- and high-energy
regions. In the intermediate-energy range (10–50 keV), the re-
flection high-energy electron diffraction (RHEED) technique
is used to characterize the surface of crystalline materials.
The most accurate method for calculating RHEED intensities
was developed by Zhao et al.58 In principle, the present time-
dependent approach may also be used to calculate RHEED
intensities, and we will implement and test such an approach
in the near future.

Using a special ansatz, the rapidly oscillating high-energy
scattering wave function can also be simulated by the
present approach. The present work is concentrated on time-
independent TEM images, but the approach can also be
extended to 4D electron imaging to observe electron dynamics
at the fs scale.27–30
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APPENDIX A: SCATTERING OF LOW-ENERGY
ELECTRONS IN 1D

In this Appendix, we show the application of the method to
calculate the transmission probability for a one-dimensional
finite-square potential barrier. In one dimension, the time-
dependent Schrödinger equation reads as

ih̄
∂�(x,t)

∂t
= H�(x,t) =

[
− h̄2

2m
∇2 + V (x,t)

]
�(x,t).

(A1)

To solve this equation, the wave function and the Hamiltonian
are discretized in space and time using finite differences, and
the wave function is time propagated:

�(x,t + �t) = exp[−iH (x,t)�t/h̄]�(x,t), (A2)

where the initial wave function is a chosen to be a Gaussian
wave packet

�(x,0) =
(

2

πα2
0

) 1
4

e
− (x−x0)2

α2
0 (A3)
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and a fourth-order Taylor expansion will be used to represent
the exponential operator.

Due to the finite size of the lattice grid, if the wave
packet spreads quickly, any reflected portion of the wave
will then interfere with the incident wave, giving rise to
a nonphysical interference pattern. This situation imposes
limitations on the choice of the input parameters, e.g., x0

and α0 in Eq. (A3), which must be chosen so that the wave
functions at the boundaries are essentially zero, at least at the
beginning t = t0.40 To avoid unphysical reflections, a complex
absorbing potential (CAP) iW (x) (Refs. 42–44) is added to
the Hamiltonian

H (x,t) = − h̄2

2m
∇2 + V (x,t) − iW (x). (A4)

The CAP approach is widely used in time-dependent quantum
mechanical calculations to avoid artificial reflections caused
by the use of finite basis sets or grids.59 These CAPs are located
in the asymptotic region and annihilate the outgoing waves,
preventing the undesired reflections (see Fig. 1).

Once the evolution of the GWP in the whole lattice is known
for the scattering process, we can transform the WP from t

to E:

�(x,E) = 1

2π

∫
�(x,t)eiEt/h̄dt. (A5)

In the asymptotic region, �(x,E) can be written as

�(x,E) =
{
eikx + Re−ikx, x → −∞
T eikx, x → +∞.

(A6)

By writing the asymptotic wave function in this form, we have
assumed that the wave packet is propagated from left to right,
that is, there is no incoming wave from the right. In principle,
one can use Eq. (A6) to extract R and T by fitting the calculated
wave function and its derivative to the asymptotic expression.
In practice, it is found to be more accurate to fit the wave
function in an extended region (see Fig. 1) to the asymptotic
form.

To test the approach, a wave packet with initial momentum
k0 = 6.2 Å and average energy of 146 eV is scattered at a
potential barrier (see Fig. 13). The calculated transmission
coefficient, shown in Fig. 14, is in excellent agreement with the
analytical results, showing that the scattering information over
a wide energy range can be extracted from a single wave-packet
propagation.

V = 100 eV

a

<E> ~ 146 eV

FIG. 13. (Color online) Schematic plot of a Gaussian wave packet
tunneling through a square potential barrier. The width of the barrier
is a = 8.3 Å, and the height of the barrier is V0 = 100 eV. Regular
grid spacing of 0.2 Å is used.
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FIG. 14. (Color online) Calculated (solid line) and analytical
transmission probability T (E).

As has been discussed in Sec. II A, in case of a bulk target,
the asymptotic behavior of �(x,E) can be written as

�(x,E) = eikx + Re−ikx, x → −∞, (A7)

and a CAP is added to the Hamiltonian to absorb the electrons
deep inside the sample. In this work, we will adopt the CAP
suggested in Ref. 60. This negative, imaginary CAP is derived
from a differential equation and its form is

iw(r) = −i
h̄2

2m

(
2π

�x

)2

f (x̃), (A8)

where �x = x2 − x1, x1 is the start, and x2 is the end of the
absorbing region, c is a numerical constant, m is the electron’s
mass, and

f (x̃) = 4

(c − x̃)2
+ 4

(c + x̃)2
, x̃ = c(x − x1)

�x
. (A9)

The CAP goes to infinity at the end of the absorbing region
and effectively cuts off the bulk beyond that distance.

APPENDIX B: EXTRACTION OF TRANSMISSION
AND REFLECTION COEFFICIENTS

In a three-dimensional system, the wave packet can be
calculated by time propagation in the same way as in one
dimension by extending the grid into three spatial dimensions.
The extraction of the scattering information, however, is more
complicated because the three-dimensional asymptotic form
[Eq. (5)] has to be used.

In the asymptotic region, the wave function can be
decomposed into plane waves. One needs to calculate the
transmission and reflection probabilities of a plane wave with
wave vector k0 incident on the surface of a slab of crystal. We
may decompose k0 into components parallel and perpendicular
to the direction of propagation:

k0 = k0‖ + k0⊥. (B1)

When the incident wave reaches the crystal surface, part of
the wave function will be reflected. The reflected portion will
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travel with wave vectors that can similarly be decomposed into
parallel and perpendicular components:

k−
g = k−

g‖ + k−
g⊥. (B2)

The other part will be transmitted, with corresponding wave
vectors

k+
g = k+

g‖ + k+
g⊥. (B3)

Above, we have used + and − to indicate transmission and
reflection, respectively. From 2D momentum conservation, we
obtain

k+−
g‖ = k0‖ + g, (B4)

where g is the 2D reciprocal lattice vector of the crystal. To
extract the transmission and reflection coefficients, we proceed
by placing matching planes close to the top and bottom of the
crystal slab (see Fig. 1). At points above the upper matching
plane, we may write the wave function using the incident and
reflected plane waves as

�(r,E) = eik0‖·ρeik0⊥x +
∑

g

Rk0⊥ge
i(k0‖+g)·ρe−ik−

g⊥x, (B5)

where

E = h̄2

2m
(k0‖2 + k0⊥2) (B6)

is the electron energy. In the following, in the lower matching
plane, we may write the wave function in terms of the
transmitted plane waves as

�(r,E) =
∑

g

Tk0⊥ge
i(k0‖+g)·ρeik+

g⊥x. (B7)

Once �(r,E) is known, one can use a Fourier transformation
over the perpendicular plane (y,z):∑

y,z

�(E,r)e−i(k0‖+g′)·ρ = [
eik0⊥xδg′,0 + Rk0⊥g′e

−ik−
g′⊥x]

Ns,

(B8)∑
y,z

�(E,r)e−i(k0‖+g′)·ρ = Tk0⊥g′eikg′⊥+xNs, (B9)

where Ns is the number of surface points on our grid. With this
transformation, we have obtained an equation that is analogous
to Eq. (A6) and the transmission and reflection coefficients can
be obtained in a similar way by fitting the Fourier-transformed
wave function.
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