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Dirac cones at �k = 0 in phononic crystals
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We show that two-dimensional phononic crystals exhibit Dirac cone dispersion at �k = 0 by exploiting dipole
and quadrupole accidental degeneracy. While the equifrequency surface of Dirac cone modes is almost isotropic,
such systems exhibit super-anisotropy, meaning that only transverse waves are allowed along certain directions,
while only longitudinal waves are allowed along some other directions. Only one mode, not two, is allowed near
the Dirac point, and only two effective parameters, not four, are needed to describe the dispersion. Effective
medium theory finds that the phononic crystals have effectively zero mass density and zero 1/Ceff

44 at the Dirac
point. Numerical simulations are used to demonstrate the unusual elastic wave properties near the Dirac point
frequency.
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I. INTRODUCTION

Dirac points and Dirac cone dispersions can be found at the
zone boundary of classical wave systems, such as photonic and
acoustic wave crystals, and many interesting phenomena can
be derived from these special dispersions.1–9 Recently, it has
been shown that Dirac cone dispersions can also be realized
at �k = 010 in some two-dimensional (2D) electromagnetic
crystals comprising dielectric cylinders and that, in some cases,
these crystals are related to a system with simultaneously
zero permittivity and permeability through effective medium
theory. This linkage has practical implication as it means
that systems exhibiting zero permittivity and permeability11–17

simultaneously can actually be implemented with pure di-
electrics, without the need to use metallic resonators which
have intrinsic loss.

It is well known that many intriguing characteristics of
electromagnetic crystals can also be realized in acoustic and,
in some cases, elastic crystals.18–31 For acoustic waves in 2D,
there exists a mapping between the acoustic wave problem
and one polarization of the 2D electromagnetic wave problem.
As such, we should be able to find Dirac cones at �k = 0 for
acoustic waves and map the acoustic crystal to a system with
effectively zero mass density and zero reciprocal modulus.
However, for elastic waves in a solid structure, the coexistence
of longitudinal and transverse waves makes the problem much
more complicated.

In this paper, we show new physics specific to elastic
wave systems near the Dirac point at �k = 0 by exploiting the
accidental degeneracy. We will see that near the elastic wave
Dirac point at �k = 0, the equifrequency contours are nearly
circles in contrast to ordinary 2D phononic crystals (PCs) with
a square array (C4v symmetry) whose dispersion is anisotropic
even in the low-frequency regime.32,33 On the other hand,
the Dirac cone modes exhibit the so-called super-anisotropic
behavior34 as the k vector sweeps around the Brillouin zone
such that only purely transverse waves are allowed along
certain directions, while only longitudinal waves are allowed
along some other directions. This behavior was recently found
in a special kind of elastic wave metamaterial that has four
components (steel, foam, and soft and hard rubber) with
fairly complex resonating building blocks.34 Here, we show

that super-anisotropy can arise naturally near the Dirac point
in the simplest two-component PCs. In addition, effective
medium theory found that PCs with a Dirac cone at �k = 0
have effectively zero 1/Ceff

44 and zero mass density ρeff , and
two effective parameters (instead of four) are sufficient to
describe the dispersion. The elastic constants Ceff

11 ,Ceff
12 drop

out of the description as Ceff
11 ≈ −Ceff

12 due to the dominance of
quadrupolar mode near the Dirac point. The super-anisotropic
behavior and the effective index of almost zero near the
Dirac point frequencies are demonstrated using numerical
simulations. These novel properties can neither be found in
electromagnetic or acoustic wave systems nor in ordinary
elastic wave materials.

II. METHODOLOGY

A. Physical system

The 2D PCs considered in this study are composed of rubber
cylinders arranged in a square lattice in the xy plane embedded
in an epoxy host. The lattice constant is denoted by a, and the
radius of the cylinders is set to R = 0.266a. Both rubber
and epoxy are taken to be isotropic, with the density ρ of
rubber and epoxy taken to be 1.3 × 103 kg/m3 and 1.18 ×
103 kg/m3, respectively. The velocity of longitudinal waves is
vl = 817 m/s (vl0 = 2605 m/s) and the velocity of transverse
waves is vt = 335 m/s (vt 0 = 1068 m/s) in rubber (epoxy).

B. Describing the system using Christoffel’s equation

From the theory of linear elasticity,35,36 a two-dimensional
square lattice elastic solid has three independent elastic moduli
C11, C12, and C44. The constitutive relation takes the form as⎛

⎝Txx

Tyy

Txy

⎞
⎠ =

⎛
⎝ c11 c12 0

c12 c11 0
0 0 c44

⎞
⎠

⎛
⎝ Sxx

Syy

2Sxy

⎞
⎠ , (1)

where Tij is the stress tensor and Sij = 1
2 ( ∂ui

∂xj
+ ∂uj

∂xi
) is

the strain tensor and ui is the displacement in the ith
direction. By substituting Eq. (1) into Newton’s second law, i.e.
ρ∂2ui/∂t2 = ∂Tij /∂xj where ρ is mass density, and using a
plane-wave solution of the form ui = u0

i F [t − (nx)/v], where
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v is phase velocity, u0
i is the wave polarization giving the

direction of the particle displacement, and ni denotes the
propagation direction, we get,

ρv2u0
i = �ilu

0
l , (2)

where �il = cijklnj nk is the Christoffel tensor. In a two-
dimensional square lattice elastic solid, �il has the form

�il =
∣∣∣∣�11 �12

�12 �22

∣∣∣∣ , (3)

where �11 = c11 cos2 ϕ + c44 sin2 ϕ, �22 = c11 sin2 ϕ +
c44 cos2 ϕ, and �12 = (c12 + c44) sin ϕ cos ϕ. Here, ϕ denotes
angle between the propagation direction and the x axis. By
solving the Christoffel’s equation of Eq. (2), we obtain two
eigenvalues γm = ρv2

m(m = 1,2) as functions of the angle ϕ,

2ρv2
1 = C11 + C44

+
√

(C11 − C44)2 cos2 2ϕ + (C12 + C44)2 sin2 2ϕ,

2ρv2
2 = C11 + C44

−
√

(C11 − C44)2 cos2 2ϕ + (C12 + C44)2 sin2 2ϕ.

(4)

For each eigenvalue γm(m = 1,2) there is a corresponding
eigenvector u0

mi whose components satisfy Eq. (2)

(�11 − γm)u0
mx + �12u

0
my = 0,

�12u
0
mx + (�22 − γm)u0

my = 0.
(5)

The polarizations of the plane waves, defined by the angles
which βm makes with the x axis, can be obtained from

the equation tan βm = u0
my

u0
mx

. In general, the polarizations of
the plane waves with phase velocities v1 and v2 are neither
transverse nor longitudinal except in the high-symmetry
directions (e.g. �X and �M directions).

III. RESULTS AND DISCUSSION

A. Band structure

Figure 1(a) shows the band structure of our system that
exhibits a Dirac point at �k = 0. The dispersions are calculated
using a numerical solver (COMSOL Multiphysics) for the
in-plane (xy) modes,37,38 which include the longitudinal
and transverse vibrations in the plane perpendicular to the
cylinder’s axis. As shown in the enlarged view of the band
structure, two cones are formed by the linear branches and
touches at a Dirac point at �k = 0 [with frequency ω0 =
0.721(2πvt 0/a)]. A flat branch with a small group velocity also
intersects at the Dirac point. This flat band can be interpreted
as a consequence of the zero effective density of the system.19

If the zero-effective-density system is perfectly homogeneous,
the band will be dispersionless, and thus the band will be a
deaf band which does not couple with external waves. But in
any real PC, which comprises discrete building blocks, there is
always some spatial dispersion so that the band is not perfectly
dispersionless away from the zone center, and the flat band can
be excited if external wave is incident with nonzero k-parallel
components.

To illustrate the Dirac cones visually, the three-dimensional
dispersion surfaces near the Dirac point frequency are plotted
in Fig. 1(b). Figure 1(c) shows the equifrequency surface at

(a)

(b) (c)

FIG. 1. (Color online) (a) Band structure for the in-plane modes. The inset provides an enlarged view of the band dispersion near the Dirac
point. Two linear bands intersect at a Dirac point, ω = 0.721(2πvt 0/a), and a third band with small group velocity also crosses that point.
Here, vt 0 is the transverse wave velocity of epoxy; T and L denote transverse and longitudinal modes, respectively, and DP denotes Dirac point.
(b) Three-dimensional dispersion surfaces near the Dirac point frequency showing the relationship between the frequency and wave vector.
The linear bands (blue/medium gray) form cones that touch at the Dirac point. There is an additional sheet (red/dark gray) corresponding to the
flat band that can be interpreted as additional solutions due to a zero effective density [see text and part (F) in supplementary material]. (c) The
equifrequency surfaces of the PCs calculated numerically (blue/medium gray circle) and those derived from the boundary effective medium
theory (magenta/light gray dot) at frequency [ω = 0.712(2πvt 0/a)] below the Dirac point. Note that the equifrequency is essentially circular
and is described well by the effective medium parameters shown in Fig. 3.

224113-2



DIRAC CONES AT �k = 0 IN PHONONIC CRYSTALS PHYSICAL REVIEW B 84, 224113 (2011)

a frequency that is slightly below the Dirac point. We note
in particular that the equifrequency contour is circular. This
is not required by symmetry in a cubic-elastic-wave system
in which the equifrequency contours (or equivalently, the
slowness surfaces) are anisotropic, even in the low frequency
limit.33 This emerges as a special property of a Dirac cone
which in turn is derived from the accidental degeneracy of the
dipolar and quadrupolar degrees of freedom.

B. Multiple scattering theory analysis

We apply multiple scattering theory (MST) to obtain
the condition of the accidental degeneracy. The dispersion
relations of a phononic crystal are determined by the solutions
to the following secular equation:

det

∣∣∣∣
(

T llGl T ltGt

T tlGl T ttGt

)
− I

∣∣∣∣ = 0, (6)

where T α,β is the T matrix with matrix elements t
αβ

mm′ =
D

αβ
m δmm′ and D

αβ
m is the elastic Mie scattering coefficient of

angular momentum number m for the scatter. Here, α and β can
take the values of l and t , which denote, respectively, the longi-
tudinal and transverse waves. Explicit expressions of the elastic
Mie scattering coefficient D

αβ
m can be found in the literature.23

Here, Gl and Gt denote the matrices with matrix elements
given by the lattice sum G

β

m′m = ∑
q �=p g

β

m′m′′ei �K �Rq (β = l,t),

and the lattice sum is given by∑
q �=p

g
β

m′m′′e
i �K �Rq = S(β,m′ − m′′), (7)

where

S(β,n) = 1

Jn+1(kβ0a)

{
4in+1kβ0

�

∑
h

Jn+1(Qha)

Qh

(
k2
β0 − Q2

h

)e−inφh

−
[
H

(1)
1 (kβ0a) + 2i

πkβ0a

]
δn,0

}
(n�0)

, (8)

S(β,−n) = −S∗(β,n).

Here, �Qh = (Qh,φh) denotes the vector �K + �Kh, where
�K = (K,φK ) and �Kh = (Kh,φKh) represent, respectively, the

Block wave vector and reciprocal-lattice vector. Here, kl0 =
ω

√
(κ0 + μ0)/ρ0 and kt0 = ω

√
μ0/ρ0 are the wave vectors

inside the host, where κ0, μ0, and ρ0 are the material parameters
of the host. Here, Jn+1(x) and H

(1)
1 (x) are the Bessel and

Hankel functions, respectively. From the eigenstate fields near
the Dirac point, we know they are mainly dipolar (m =±1) and
quadrupolar (m = ±2) modes. We can hence apply the MST
to the subspace spanned by dipolar and quadrupolar modes.
At �k = 0 for the square lattice, the lattice symmetry requires
that S(β,0) �= 0, S(β,±1) = S(β,±2) = S(β,±3) = 0, and
S(β,±4) �= 0.33 Thus, the secular equation can be simplified
as

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Dll
2 S(l,0) − 1 0 0 Dll

2 S(l,4) Dlt
2 S(t,0) 0 0 Dlt

2 S(t,4)

0 Dll
1 S(l,0) − 1 0 0 0 Dlt

1 S(t,0) 0 0

0 0 Dll
−1S(l,0) − 1 0 0 0 Dlt

−1S(t,0) 0

Dll
−2S(l,−4) 0 0 Dll

−2S(l,0) − 1 Dll
−2S(t,−4) 0 0 Dlt

−2S(t,0)

Dtl
2 S(l,0) 0 0 Dtl

2 S(l,4) Dtt
2 S(t,0) − 1 0 0 Dtt

2 S(t,4)

0 Dtl
1 S(l,0) 0 0 0 Dtt

1 S(t,0) − 1 0 0

0 0 Dtl
−1S(l,0) 0 0 0 Dtt

−1S(t,0) − 1 0

Dtl
−2S(l,−4) 0 0 Dtl

−2S(l,0) Dtt
−2S(t,−4) 0 0 Dtt

−2S(t,0) − 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

(9)

Equation (9) can be transformed to∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Dll
2 S(l,0) − 1 Dlt

2 S(t,0) Dlt
2 S(t,4) Dll

2 S(l,4) 0 0 0 0

Dtl
2 S(l,0) Dtt

2 S(t,0) − 1 Dtt
2 S(t,4) Dtl

2 S(l,4) 0 0 0 0

Dtl
−2S(l,−4) Dtt

−2S(t,−4) Dtt
−2S(t,0) − 1 Dtl

−2S(l,0) 0 0 0 0

Dll
−2S(l,−4) Dlt

−2S(t,−4) Dlt
−2S(t,0) Dll

−2S(l,0) − 1 0 0 0 0

0 0 0 0 Dll
1 S(l,0) − 1 Dlt

1 S(t,0) 0 0

0 0 0 0 Dtl
1 S(l,0) Dtt

1 S(t,0) − 1 0 0

0 0 0 0 0 0 Dll
−1S(l,0) − 1 Dlt

−1S(t,0)

0 0 0 0 0 0 Dtl
−1S(l,0) Dtt

−1S(t,0) − 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

(10)

As the cylindrical symmetry of the cylinders ensures that Dll
1 = Dll

−1,D
tt
1 = Dtt

−1,D
lt
1 = Dlt

−1 and Dtl
1 = Dtl

−1, we have∣∣∣∣∣D
ll
1 S(l,0) − 1 Dlt

1 S(t,0)

Dtl
1 S(l,0) Dtt

1 S(t,0) − 1

∣∣∣∣∣ =
∣∣∣∣∣D

ll
−1S(l,0) − 1 Dlt

−1S(t,0)

Dtl
−1S(l,0) Dtt

−1S(t,0) − 1

∣∣∣∣∣ = 0, (11)
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which yields doubly degenerate orthogonal dipolar eigenmodes at a particular frequency ωd . As the lattice sum S(β,±4) �= 0,
the quadrupolar modes interact with each other and split into two nondegenerate modes. Thus,∣∣∣∣∣∣∣∣∣

Dll
2 S(l,0) − 1 Dlt

2 S(t,0) Dlt
2 S(t,4) Dll

2 S(l,4)

Dtl
2 S(l,0) Dtt

2 S(t,0) − 1 Dtt
2 S(t,4) Dtl

2 S(l,4)

Dtl
−2S(l,−4) Dtt

−2S(t,−4) Dtt
−2S(t,0) − 1 Dtl

−2S(l,0)

Dll
−2S(l,−4) Dlt

−2S(t,−4) Dlt
−2S(t,0) Dll

−2S(l,0) − 1

∣∣∣∣∣∣∣∣∣
= 0, (12)

which yields two nondegenerate quadrupolar solutions at �k =
0. We shall label these two frequencies as ωq (2) and ωq (−2).
The frequencies of these quadrupolar modes are not required
by symmetry to be related to the dipolar modes, but if we tune
the structural parameters such as the cylinder diameter, one of
them can be equal to the dipolar mode solution ωd = ωq (2) [or
ωd = ωq (−2)]. This is type of degeneracy is called accidental
degeneracy as it is not required by the symmetry of the system,
and we can realize accidental degeneracy for our elastic wave
system simply by tuning structural parameters.

C. The displacement fields near the Dirac point

Figure 2 shows the displacement field distributions of
the eigenstates near the Dirac point with a small �k along the
�X direction (kx = 0.01 × π/a, ky = 0.0 × π/a) and the

�M direction (kx = 0.01 × π/a, ky = 0.01 × π/a). In
Figs. 2(a) and 2(b), we show the imaginary and real parts
of the displacement fields of the lowest frequency state [ω =
0.720(2πvt 0/a)]. The eigenmode of this linear band which
forms the Dirac cone is a linear combination of quadrupole
and dipole excitations. Figure 2(b) shows that the dipole
displacement is perpendicular to k, and the quadrupolar mode
couples only to transversely polarized incident waves, and
thus the linear band is a band of transverse modes along �X

direction. The eigenmode for the highest frequency state [ω =
0.722(2πvt 0/a)] (not shown here), which belongs to the upper
Dirac cone, is also a linear combination of a quadrupole and
a transverse dipole. The real part of the eigenmode of the flat
band, which has a frequency sandwiched between the upper
and lower Dirac cones, is plotted in Fig. 2(c), and the imaginary
part is almost zero. We can see that it is a pure dipolar mode

X(a)
0.0-0.4 -0.2 0.2 0.4 0.0-0.4 -0.2 0.2 0.4 0.0-0.4 -0.2 0.2 0.4

0.0-0.4 -0.2 0.2 0.4 0.0-0.4 -0.2 0.2 0.4 0.0-0.4 -0.2 0.2 0.4

X(a) X(a)
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0.4
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0.0

-0.2

-0.4
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0.0
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Y
(a

)
Y

(a
)

(a) (b)

(d) (e) (f)

0.0

1.0

2.0

3.0

(c)

FIG. 2. (Color online) (a)–(c) The displacement field distributions of the eigenstates near the Dirac point with a small �k along the �X

direction: (a) the imaginary part and (b) the real part of the displacement fields of the linear band at frequency ω = 0.720(2πvt 0/a); (c) the real
part of the displacement fields of the flat band at frequency ω = 0.721(2πvt 0/a). (d)–(f) The displacement field distributions of the eigenstates
near the Dirac point with a small �k along the �M direction: (d) the imaginary part and (e) the real part of the displacement fields of the
linear band at frequency ω = 0.720(2πvt 0/a); (f) the real part of the displacement fields of the flat band at frequency ω = 0.721(2πvt 0/a).
The black arrows denote the directions of the displacement, and the red/dark gray arrows in panels (a) and (d) indicate the direction of wave
vector �k.
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polarized parallel to the wave vector �k. Thus, the flat band
is a longitudinal wave band near the Dirac point in the �X

direction.
By contrast, the nature of waves is different in the �M

direction. Figures 2(d) and 2(e) show the imaginary and
real parts of the displacement fields of the lowest frequency
state [ω = 0.720(2πvt0/a)], which belongs to the lower
Dirac cone. The polarization of the eigenmode is completely
changed along �M . While the eigenmode along �M is also a
combination of a quadrupole and a dipole, the dipolar mode
is along the wave vector direction, while the quadrupolar
mode can only be excited by longitudinal waves. Therefore,
the linear band is a pure longitudinal wave band in the �M

direction. The eigenmode for the highest frequency state
[ω = 0.722(2πvt0/a)] (not shown here), which belongs to
the upper Dirac cone, is also similar to that for the lowest
frequency state. The real part of the eigenmode of the flat
band is plotted in Fig. 2(f). As it is a pure dipolar mode
perpendicular to the wave vector �k, the nature of the flat band
is also different. Figures 1(b) and 1(c) show that the Dirac
cone modes have isotropic dispersion (circular equifrequency
contours), but Fig. 2 shows that the Dirac cone modes are
super-anisotropic, as they are purely transverse in one direction
but purely longitudinal in another.

Located below the Dirac point [at about ∼0.7(2πvt 0/a)],
the branch marked by cyan/gray open circles corresponds to a
rotation mode confined inside the rubber cylinder. This mode
is highly confined and nearly dispersionless along �X. Due
to the hybridization with this rotation mode, the mode pattern
of the linear branch near the avoided crossing point along �X

[∼0.7(2πvt0/a)] is rather complex and cannot be taken as
simple mixtures of quadrupolar and dipolar excitations.

D. Effective medium description

We note that the energy associated with displacement fields
of the eigenstates near the Dirac point mainly localize in the
rubber cylinders as the wave velocity of rubber is lower than the
wave velocity of epoxy, and the displacement fields are fairly
homogeneous in the matrix composite. It has been argued39,40

that, near the standing wave frequency, homogenization theory
is still valid near �k = 0 for periodic media, even if the
frequency is relatively high. Here, we employed the boundary-
effective medium theory34 to obtain the effective parameters
for the Dirac cone modes of our structure, even though
the Dirac point has a relatively high frequency. We remark
here that the effective medium description can be made as
accurate as we like by lowering the Dirac point frequency,
which can in principle be achieved if we employ a softer
material for the cylinder inclusions. In this study, however,
we stuck with commonly available materials. The use of the
effective medium description is justified since our numerical
simulations showed that the effective parameters can indeed
predict the wave transmission properties reasonably well. It is
known that dipolar and quadrupolar resonances are associated
with mass density and certain components of elastic moduli,
respectively.22,23 We will see that the transport properties of
our system can be understood if we can obtain the effective
medium parameters.

(a)

(b)

(c)

FIG. 3. (Color online) (a) The effective moduli Ceff
11 , Ceff

12 , and
Ceff

44 ; (b) the effective mass density ρeff ; and (c) the reciprocal of
effective modulus, 1/Ceff

44 , of the PC as a function of frequency near
the Dirac point.

We show the effective moduli Ceff
11 , Ceff

12 , and Ceff
44 of the PC

as functions of frequency in Fig. 3(a). For most known mate-
rials, the elastic moduli C11 and C12 are both positive, and the
strains Sxx and Syy compress or extend simultaneously under
external stress. However, the quadrupolar mode displacement
corresponds to compression in one direction and simultaneous
extension in the orthogonal direction, and thus Ceff

11 and Ceff
12

have opposite signs here if the field displacements have a
quadrupolar mode pattern. It can be seen from Fig. 3(a) that
Ceff

11 and Ceff
12 actually have opposite signs and Ceff

11 ≈ −Ceff
12 . In

addition, all the effective moduli Ceff
11 , Ceff

12 , and Ceff
44 evaluated

using the eigenmode appear to diverge near the Dirac point due
to the quadrupolar resonance. In Fig. 3(b), the effective mass
density ρeff of the PC as a function of frequency is plotted.
It can be seen that ρeff approaches zero at the Dirac point
frequency. The PC generally allows for two in-plane modes
whose phase velocities v1 and v2 can be obtained using the
Christoffel’s equations and the effective elastic parameters
found above.

Below the Dirac point frequency, we find that Ceff
11 > 0,

Ceff
44 < 0, and in particular Ceff

12 ≈ −Ceff
11 due to quadrupolar

resonance. The eigenvalues γ1 and γ2 [Eq. (4)] reduce to
γ1 = ρeffv

2
1 = Ceff

11 and γ2 = ρeffv
2
2 = Ceff

44 , respectively, for
any propagation direction ϕ. For ρeff < 0, v1 =

√
Ceff

11 /ρeff is
imaginary and v2 =

√
Ceff

44 /ρeff is real. Thus, only the branch
with eigenvalue γ2 is allowed for the lower band. With the
eigenvalue γ2, we can also obtain the polarization of the plane
wave in the high-symmetry directions by using Eq. (5). For
the �X direction ϕ = 0◦, �11 = ceff

11 , �22 = ceff
44 , and �12 = 0.

Thus, Eq. (5) becomes(
ceff

11 − ceff
44

)
u0

2x = 0,
(
ceff

44 − ceff
44

)
u0

2y = 0. (13)

It can be seen that u0
2x = 0 and u0

2y are arbitrary. Thus,

tan β2(�X) = u0
2y

u0
2x

= ∞, and β2(�X) = 90◦, which indicates that

the plane wave is a transverse wave in the �X direction. For

the �M direction ϕ = 45◦, �11 = (ceff
11 +ceff

44 )
2 , �22 = (ceff

11 +ceff
44 )

2 ,

and �12 = (ceff
44 −ceff

11 )
2 . Thus, Eq. (5) becomes(

ceff
11 − ceff

44

)
2

u0
2x +

(
ceff

44 − ceff
11

)
2

u0
2y = 0,

(14)(
ceff

44 − ceff
11

)
2

u0
2x +

(
ceff

11 − ceff
44

)
2

u0
2y = 0.
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Thus, it can be seen that tan β2(�M) = u0
2y

u0
2x

= 1, and β2(�M) =
45◦, which indicates that the plane wave is a longitudinal wave
in the �M direction.

Above the Dirac point frequency, with Ceff
11 < 0, Ceff

44 > 0,

and Ceff
12 ≈ −Ceff

11 , the eigenvalues γ1 and γ2 [Eq. (4)] reduce
to γ1 = ρeffv

2
1 = Ceff

44 and γ2 = ρeffv
2
2 = Ceff

11 , respectively, for
any propagation direction ϕ. For ρeff > 0, v1 =

√
Ceff

44 /ρeff is
real and v2 =

√
Ceff

11 /ρeff is imaginary. Thus, this time, only
the branch with eigenvalue γ1 is allowed for the higher band.
Again, with the eigenvalue γ1, we can obtain the polarization
of the plane wave in the high-symmetry directions by using
Eq. (5). For the �X direction ϕ = 0◦, �11 = ceff

11 , �22 = ceff
44 ,

and �12 = 0. Thus, Eq. (5) becomes(
ceff

11 − ceff
44

)
u0

1x = 0,
(
ceff

44 − ceff
44

)
u0

1y = 0. (15)

It can be seen that u0
1x = 0 and u0

1y are arbitrary. Thus,

tan β1(�X) = u0
1y

u0
1x

= ∞, and β1(�X) = 90◦, which indicates that

the plane wave is a transverse wave in the �X direction. For

the �M direction ϕ = 45◦, �11 = (ceff
11 +ceff

44 )
2 , �22 = (ceff

11 +ceff
44 )

2 ,

and �12 = (ceff
44 −ceff

11 )
2 . Thus, Eq. (5) becomes(

ceff
11 − ceff

44

)
2

u0
1x +

(
ceff

44 − ceff
11

)
2

u0
1y = 0,

(16)(
ceff

44 − ceff
11

)
2

u0
1x +

(
ceff

11 − ceff
44

)
2

u0
1y = 0.

Thus, it can be seen that tan β1(�M) = u0
1y

u0
1x

= 1, and β1(�M) =
45◦, which indicates that the plane wave is a longitudinal wave
in the �M direction.

At the Dirac point frequency, both eigenvalues γ1 and γ2

are allowed simultaneously, thus super-anisotropy vanishes.
Considering all these cases above, we can see that, near the
Diarc point frequency, the velocities of the in-plane modes of

the PCs only depend on the modulus Ceff
44 for any propagation

direction ϕ, and thus the equifrequency surface is circular.
Furthermore, the super-anisotropy of the PC near the Dirac
point frequency can be proved analytically using the effective
medium parameters obtained.

In Fig. 3(c), the reciprocal of effective modulus, 1/Ceff
44 ,

is plotted as a function of frequency. It can be seen that
1/Ceff

44 also approaches zero at the Dirac point frequency. The
dispersion curves near the Dirac point of our system can be
obtained using ρeff and Ceff

44 and the relation k = ω
√

ρeff/C
eff
44 .

The result is plotted in Fig. 1(c), where the result obtained
using numerical methods is also shown. The good agreement
between the numerically calculated (blue/medium gray circle)
and the effective medium (magenta/light gray dot) results
indicates that our effective medium theory is good near the
Dirac point. Both ρeff and 1/Ceff

44 , which approach zero at the
Dirac point frequency ω0 simultaneously, are proportional to
�ω. Since k = ω

√
ρeff/C

eff
44 , and ω can be considered constant

as it is approximately equals ω0, k is also proportional to �ω,
which indicates that the dispersion curves are linear. The fact
that the equifrequency contours of our system near the Dirac
point are circular gives numerical support to the analysis above.

E. Transmission properties of the system

Figure 4 shows the results of numerical simulations which
demonstrate the unusual wave propagation properties of the
PC. Panels (a), (b), (f), and (g) illustrate the super-anisotropic
properties. To avoid the influence of the flat band (as shown in
Fig. 1), we set the working frequency to ω = 0.745(2πvt 0/a),
slightly above the Dirac point frequency. For incidence along
the �X direction, panel (a) shows that transverse waves
can pass through the PC slab, while panel (b) shows that
longitudinal waves are rejected. In the �M incidence direction,
panel (f) shows that transverse waves are rejected, while panel
(g) shows that longitudinal waves can pass through the slab.

T

T

T

T

L

L

L

L

1.0

0.5

0.0

(a)

(f) (g) (h) (i) (j)

(b) (c) (d) (e)

FIG. 4. (Color online) In the �X incidence direction: panel (a) shows that transverse waves can pass through the PC slab, while panel (b)
shows that longitudinal waves are rejected; (c) the geometry of a steel object embedded in the epoxy host surrounded by the PC; panel (d)
shows that transverse waves can go around an obstacle, while panel (e) shows that longitudinal waves are again rejected. In the �M incidence
direction: (h) the geometry of a steel object embedded in the epoxy host surrounded by the PC; (f), (g), (i), and (j) show that in the �M direction,
longitudinal waves can pass through, but transverse waves are rejected. The working frequency is ω = 0.745(2πvt 0/a), slightly above the Dirac
point; T and L denote transverse and longitudinal incident waves, respectively.
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0.5

0.5

0.5

0.5

2.0

2.0 2.0

2.0

3.5 3.5

3.5 3.5

FIG. 5. (Color online) The numerically simulated displacement
field distributions for a homogeneous anisotropic medium with the
effective medium parameters (ρeff , Ceff

11 ,Ceff
12 , and Ceff

44 ) at the fre-
quency above the Dirac point frequency. Panel (a) shows that, in the
�X direction, transverse waves can pass through the homogeneous
medium, even going around an obstacle, but panel (b) shows that
longitudinal waves are rejected. (c) and (d) show that, in the �M

direction, longitudinal waves can pass, and transverse waves are
rejected. For all the cases, plane waves are incident from the left.

Since ρeff and 1/Ceff
44 go through zero simultaneously and

linearly as the frequency passes through the Dirac point,
the effective refractive index approaches zero, but the group
velocity remains finite at the Dirac point. So, the PC should
have the interesting wave propagation characteristics of a
zero-index material.

Figure 4(c) [Fig. 4(h)] shows the schematic of a structure
with a steel object embedded in the epoxy host and surrounded
by the PC for the �X (�M) incidence direction. In Fig. 4(d),
a transverse plane-wave impinges on the structure (�X

incidence), and the displacement field distributions show that
the incidence wave can pass through the PC, and the wave is not
obstructed by the steel obstacle. The transverse wave is able to
pass through, preserving its plane-wave characteristic in the
presence of the steel object. If the wave that impinges on the
same structure [Fig. 4(e)] is longitudinal instead of transverse,
it is strongly reflected. By contrast, Figs. 4(i) and 4(j) show

that as the incidence direction is changed to the �M direction,
longitudinal waves instead of transverse waves pass through
the structure and preserve their plane-wave characteristic. All
these cases show that the PC near the Dirac point frequency
can guide transverse (longitudinal) waves around an obstacle
along the �X (�M) incidence direction. These simulation
results can be expected from the effective medium description
of the system and highlight the super-anisotropy as well as
the effective zero index of the PC near the Dirac point. In
addition, in Fig. 5, we also show that numerical simulations
(with the COMSOL MULTIPHYSICS) of such effects can
be observed in a homogenous anisotropic medium. All the
effective medium parameters (ρeff , Ceff

11 ,Ceff
12 , and Ceff

44 ) can
be obtained from Fig. 3 at the frequency above the Dirac
point frequency. We also note that such effects, sometimes
referred to as cloaking effects, are well established for
electromagnetic wave zero-refractive index materials,41 but
the physics is more complex here due to the super-anisotropic
effect.

IV. SUMMARY

In summary, 2D elastic wave crystals consisting of a square
lattice of cylinders can be designed to exhibit Dirac cone
dispersion at �k = 0 by exploiting dipolar and quadrupolar
accidental degeneracy. They are very unusual systems in
which the Dirac cone modes have equifrequency contours that
are almost circular (i.e. the system appears to be isotropic),
but the eigenmodes are super-anisotropic as only transverse
modes are allowed to propagate along the �X direction,
while only longitudinal modes along the �M direction. Such
solid-like in one direction and liquid-like in other direction42

propagation properties cannot be found in electromagnetic or
acoustic counterparts with Dirac cone at �k = 0. Furthermore,
we showed that such PCs behave like elastic wave materials
with an effectively zero refractive index.
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