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Dislocation core field. I. Modeling in anisotropic linear elasticity theory
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Aside from the Volterra field, dislocations create a core field, which can be modeled in linear anisotropic
elasticity theory with force and dislocation dipoles. We derive an expression of the elastic energy of a dislocation
taking full account of its core field and show that no cross term exists between the Volterra and the core fields.
We also obtain the contribution of the core field to the dislocation interaction energy with an external stress,
thus showing that dislocation can interact with a pressure. The additional force that derives from this core-field
contribution is proportional to the gradient of the applied stress. Such a supplementary force on dislocations may
be important in high-stress-gradient regions, such as close to a crack tip or in a dislocation pileup.
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I. INTRODUCTION

Far from a dislocation, the elastic field is well described
by the Volterra solution:1 this predicts that the displacement
and the stress are, respectively, varying proportionally to the
logarithm and the inverse of the distance to the dislocation. But,
the elastic field may deviate from this ideal solution close to
the dislocation. Such a deviation corresponds to the dislocation
core field. It arises from anharmonicities in the crystal elastic
behavior, especially in the high-strained region of the core, as
well as from perturbations caused by the atomic nature of the
core. It is, in part, responsible for the dislocation formation
volume, which manifests itself experimentally2 through an
increase of the lattice parameter with the dislocation density.
This leads to an interaction of the dislocation with an external
pressure.3 Although the core field decays more rapidly than
the Volterra field, it can modify the elastic interaction of
dislocations with other defects.4–6 For instance, equilibrium
distances in a dislocation pileup are affected by this core
field.7 As a consequence, the stress concentration at the tip
of the pileup is enhanced. This can favor fracture initiation or
yielding for an edge or mixed dislocation pileup, or cross slip
for a screw pileup.7 The stress produced by this core field also
tends to open the crack in front of the dislocation pileup on the
glide plane.8 This explains the nucleation of a crack in a mixed
mode I-II or I-III sometimes observed experimentally in the
glide plane of the pileup. Without the core field, only modes
II and III would be possible. The core field can also alter
dislocation properties such as their elastic energy6,9 or their
dissociation distance in fcc metals.4,5 Finally, it contributes
to the elastic interaction between dislocations and impurities,
and thus may explain part of the solid solution hardening.10

One can use atomistic simulations, either based on em-
pirical potentials or on ab initio calculations, so as to take
full account of the core field when studying dislocations.
On the other hand, the core field can be modeled within
linear elasticity theory, using an equilibrated distribution of
line forces parallel to the dislocation and located close to its
core.9,11–13 A multipole expansion of the distribution leads then
to an expression of the core field in terms of a series. Usually,
only the leading term of this series is considered. The core
field is then equivalent to an elliptical line source expansion
and is fully characterized by the first moments of the line
force distribution. Comparison with atomistic simulations has

shown that this approach correctly describes the dislocation
core field.4,5,9,12,14

Until now, only few studies4,5,7,9 have included this core
field in the calculation of the elastic energy of dislocations or
of their interaction with an external stress field. Most of the
time, dislocation elastic energies are obtained by considering
only the Volterra elastic field. Such an approximated approach
may lead to some errors. Notably, simulation boxes used within
ab initio calculations are usually too small to neglect the core
field. A recent study of the screw dislocation in iron6 has
shown, indeed, that it is necessary to include this core field
in the computation of the elastic energy when deriving core
energies from ab initio calculations. The purpose of this paper
is to extend the modeling approach11 of the core field within
anisotropic linear elasticity so as to include its contribution in
energy calculations. Previous studies, which have considered
this core-field contribution, either assumed that the elastic
behavior is isotropic4,5,7,9 or that the elastic constants obey
a given symmetry5,11 incompatible, for instance, with a 〈111〉
screw dislocation in a cubic crystal.

In this paper, we first review how the elastic field of
a line defect, including the core field, is modeled within
linear anisotropic elasticity theory. The approach of Hirth and
Lothe11 is generalized so as to describe the core field not only
through a distribution of line forces, but also a distribution
of dislocations. The elastic energy of the line defect is then
computed, thus showing the extra contribution arising from
the core field. Finally, we determine the influence of the core
field on the interaction of the line defect with an external stress.

II. ELASTIC FIELD OF A LINE DEFECT

We consider a static line defect, the line direction of which
is denoted e3. Such a defect can be either a dislocation, a line
force, or the combination of both. Eshelby et al.15 have shown
that the elastic displacement and the stress created at a point
of coordinates x can be, respectively, written as

uk(x) = 1

2

6∑
α=1

Aα
k fα[zα], (1a)

σij (x) = 1

2

6∑
α=1

Bα
ijkA

α
k

∂fα[zα]

∂zα

, (1b)
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where the variable zα is related to Cartesian coordinates by
zα = x1 + pαx2. The matrix Bα

ijk is obtained from elastic
constants Cijkl by

Bα
ijk = Cijk1 + pαCijk2.

The six roots pα are the imaginary numbers, for which the
following determinant is null:∣∣{Bα

i1k + pαBα
i2k

}∣∣ = 0. (2)

The vectors Aα
k , associated to each root pα , are the non-null

vectors that verify the relation(
Bα

i1k + pαBα
i2k

)
Aα

k = 0. (3)

In all the above expressions and in the following, we use the
Einstein summation convention on repeated indexes, except
for Greek indexes α that design the different roots pα . Such
summations on α will always be explicitly indicated as in
Eq. (1).

The six roots pα are necessarily complex. If pα is a solution
of Eq. (2), then its complex conjugate p∗

α is also a solution.
We sort the roots pα according to the following usual rule:

Im(pα) > 0 and pα+3 = p∗
α, ∀α ∈ [1 : 3], (4)

where Im(pα) is the imaginary part of pα . With such a
convention, the matrices Bα

ijk verify the relation

Bα+3
ijk = Bα∗

ijk, (5)

and the vectors Aα
k can be chosen so that

Aα+3
k = Aα

k
∗
. (6)

As the elastic displacement has to be real, the functions fα

have also the property

fα+3(z∗) = fα(z)∗. (7)

The general form of the function fα defining the elastic
displacement and the stress [Eq. (1)] is a Laurent series.15 If
we restrict ourselves to a line defect in an infinite crystal, the
series is limited to the following terms:

fα(z) = ∓ 1

2πi

(
Dα ln (z) +

1∑
k=−∞

Ck
αzk

)
, (8)

with i = √−1. The sign ∓ in this equation has to be taken
as − for 1 � α � 3 (roots having a positive imaginary part)
and + for 4 � α � 6 (roots having a negative imaginary part).
ln(z) is the principal determination of the complex logarithm,
the imaginary part of which belongs to [−π : π [, thus showing
a discontinuity in R−.

Far from the line defect, the main contribution to the
function fα , and thus to the elastic displacement, arises from
the logarithm term. This corresponds to the Volterra elastic
field created by a dislocation and to the two-dimensional (2D)
elastic Green’s function for a line force. Close to the line
defect, the other terms in Eq. (8) may also lead to a relevant
contribution. For a dislocation, these additional terms describe
the core field. In the following, we only consider the main
contribution to the core field corresponding to the term k = 1
in the Laurent series. This correctly describes the core field far

enough from the line defect. The superposition of the Volterra
and of the core fields, which gives the total elastic field created
by a line defect, is then obtained from the following truncated
series:

fα(z) ∼
r→∞ ∓ 1

2πi

(
Dα ln (z) + C−1

α

1

z

)
.

A. Volterra elastic field

The Volterra elastic field is given by the logarithm in Eq. (8).
This leads to the following displacement and stress fields:

uV
k (x) = 1

2

6∑
α=1

∓ 1

2πi
Aα

k Dα ln (zα), (9a)

σ V
ij (x) = 1

2

6∑
α=1

∓ 1

2πi
Bα

ijkA
α
k Dα

1

zα

. (9b)

This corresponds to the long-range elastic field of a dislocation
of Burgers vector b or a line force of amplitude F if the
coefficients Dα verify the system of equations15

1

2

6∑
α=1

Aα
k Dα = −bk,

1

2

6∑
α=1

Bα
i2kA

α
k Dα = −Fi. (10)

Stroh16,17 proposed a simple solution to this system of
equations. In that purpose, he defined a new vector

Lα
i = Bα

i2kA
α
k = − 1

pα

Bα
i1kA

α
k . (11)

As the vectors Aα
i are defined through the equation (3), their

norm is not fixed. One can therefore choose their norm so that

2Aα
i Lα

i = 1, ∀α. (12)

Stroh showed that such a definition of the vectors Aα
i and Lα

i

leads to the orthogonality property

Aα
i L

β

i + A
β

i Lα
i = δαβ,

where δαβ is the Kronecker symbol. These vectors also verify
the following relations:17,18

6∑
α=1

Aα
i Aα

j = 0,

6∑
α=1

Lα
i Lα

j = 0, and
6∑

α=1

Aα
i Lα

j = δij .

These orthogonality properties lead to the expression of the
coefficient Dα:

Dα = −2
(
Lα

i bi + Aα
i Fi

)
. (13)

B. Core field

The Volterra solution models the elastic field created by
a dislocation far enough from the dislocation core. Close to
the core, the dislocation core field may be relevant too. We
model this additional elastic field by considering the term 1/z

in Eq. (8). Gehlen et al.9 have shown that this term may be
obtained from dipoles of line forces. It is also possible to
consider dipoles of dislocations, which may be more natural
to model the core field of a dissociated dislocation. Therefore,
we assume that the core field can be modeled by an equilibrated
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distribution of dislocations and line forces of force amplitude
Fq and of Burgers vector bq located at aq . All line force and
dislocation directions are assumed to be collinear to e3. As the
distribution is equilibrated, the resultant of the forces and the
total Burgers vector have to vanish:∑

q

Fq = 0 and
∑

q

bq = 0. (14)

The elastic displacement and the stress of this distribution is
given by the superposition of the Volterra elastic field created
by each line defect

uc
k(x) =

∑
q

u
V(q)
k (x − aq), σ c

ij (x) =
∑

q

σ V(q)

ij (x − aq).

We then assume that the norm of x is large compared to
the norm of the vectors aq . One can thus make a limited
expansion,9,11,18,19 leading to

uc
k(x) = −

∑
q

∂uV(q)

k (x)

∂xm

aq
m + O(‖aq‖2),

σ c
ij (x) = −

∑
q

∂σ V(q)

ij (x)

∂xm

aq
m + O(‖aq‖2),

where we have used Eq. (14) to eliminate the first term of the
expansion. Using Eq. (9) and taking the limit aq → 0, one
finally obtains the expression of the core field:

uc
k(x) = 1

2

6∑
α=1

∓ 1

2πi
Aα

k C−1
α

1

x1 + pαx2
, (15a)

σ c
ij (x) = 1

2

6∑
α=1

± 1

2πi
Bα

ijkA
α
k C−1

α

1

(x1 + pαx2)2
, (15b)

with

C−1
α = 2Aα

i (Mi1 + pαMi2) + 2Lα
i (Pi1 + pαPi2),

where M and P are, respectively, the first moment tensors of
the line force and of the dislocation distribution

Mij =
∑

q

F
q

i a
q

j and Pij =
∑

q

b
q

i a
q

j .

As we assume that the distribution of line defects representa-
tive of the core field is equilibrated, it does not produce any
torque. This implies that the tensor Mij is symmetric.18 The
first moment tensors M and P can be simply deduced from
the homogeneous stress computed in atomistic simulations
using periodic boundary conditions.6 Another method based
on path-independent interaction integrals computed through
the field observed in atomistic simulations has also been
proposed.20,21

III. ELASTIC ENERGY OF AN ISOLATED LINE DEFECT

We now calculate the elastic energy of a line defect, such
as a dislocation, taking into account its core field. The elastic
field created by the line defect is thus the superposition of
the Volterra solution given by Eq. (9) and of the core field
given by Eq. (15). We define the elastic energy of the line
defect as the integral of the elastic energy density over the

volume in-between two cylinders centered on the line defect.
The inner cylinder of radius rc isolates the line-defect core:
elastic fields are diverging at the line-defect position and one
needs to exclude the core region, where elasticity breaks down.
The external cylinder of radius R∞ is introduced to prevent the
elastic energy from diverging. Then, Gauss theorem allows us
to obtain the elastic energy

E = 1

2

∮
S

(
σ V

ij + σ c
ij

)(
uV

i + uc
i

)
dSj , (16)

where the integration surface S is composed of both cylinder
surfaces and the branch cut, which isolates the displacement
discontinuity. We consider cylinders of unit height so as to
express the elastic energy per unit length of line defect.

This elastic energy can be decomposed into three different
contributions: the contribution of the Volterra solution, the
contribution of the core field, and the cross interaction between
both elastic fields.

A. Volterra contribution

The Volterra contribution corresponds to the product σ V
ij uV

i

in Eq. (16). It is given by the well-known result16,17,22

EV = 1

2

(
biK

0
ij bj + FiK

′0
ij Fj

)
ln

(
R∞
rc

)
, (17)

where we have defined the second-rank tensors

K0
ij =

6∑
α=1

± 1

2πi
Lα

i Lα
j and K ′0

ij =
6∑

α=1

∓ 1

2πi
Aα

i Aα
j . (18)

B. Core-field contribution

The contribution of the core field to the elastic energy
corresponds to the product σ c

ij u
c
i in Eq. (16). As the core field

does not create any displacement discontinuity, the integration
surface is simply composed of the inner and the external
cylinders. This leads to the contribution

Ec = −1

8

6∑
α=1

∓ 1

2πi
Aα

i C−1
α

6∑
β=1

± 1

2πi

[
B

β

i1kI
3
x (pα,pβ)

+B
β

i2kI
3
y (pα,pβ)

]
A

β

k C−1
β

(
1

rc
2

− 1

R∞2

)
.

The integrals I 3
x (p,q) and I 3

y (p,q) are defined in the Appendix
[Eq. (A1)]. We use the fact that I 3

x (p,q) = −pI 3
y (p,q) as well

as the property verified by the vectors Aα
k [Eq. (3)] and the

definition of the vectors Lα
i [Eq. (11)] to obtain

Ec = − 1

32π2

6∑
α=1

±
6∑

β=1

±C−1
α Aα

i L
β

i C−1
β [pαpβ + 1]

× I 3
y (pα,pβ)

(
1

rc
2

− 1

R∞2

)
.
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Finally, the expression of the integral I 3
y (p,q) given in the

Appendix allows us to write

Ec = 1

4π
Im

⎛
⎝ 3∑

α=1

3∑
β=1

1 + pαpβ
∗

(pα − pβ
∗)2

C−1
α Aα

i L
β

i

∗
C−1

β

∗
⎞
⎠

×
(

1

rc
2

− 1

R∞2

)
. (19)

The dependence of this expression with R∞ shows that the
elastic energy of the core field is concentrated close to the
line defect. It is possible to take the limit R∞ → ∞, and thus
to define an elastic energy associated with the core field in
the whole volume excluding the core region, where elasticity
breaks down.

C. Volterra–core-field interaction

Then, we calculate the interaction energy between both
elastic fields created by the line defect. Two different integrals
can be used to obtain this interaction energy:18

EV−c =
∮

S

σ V
ij uc

i dSj =
∮

S

σ c
ij u

V
i dSj .

We rather use the first definition to evaluate EV−c: as the
core-field displacement uc does not show any discontinuity
except at the origin, the integration surface of the first integral
is simply composed of the inner and external cylinders. This
leads to the following interaction energy:

EV−c = 1

4

6∑
α=1

∓ 1

2πi
Aα

i C−1
α

6∑
β=1

∓ 1

2πi

[
B

β

i1kI
2
x (pα,pβ)

+B
β

i2kI
2
y (pα,pβ)

]
A

β

k Dβ

(
1

rc
− 1

R∞

)
.

The integrals I 2
x (p,q) and I 2

y (p,q) are defined in the Appendix
[Eq. (A2)]. As these integrals vanish for any values of p and
q, this leads to EV−c = 0. As a result, there is no interaction
energy between the Volterra elastic field and the core field
of the line defect, and the elastic energy of a line defect is
simply the sum of the elastic energies of the Volterra field
and of the core field. Of course, this is true only when the
Volterra and the core fields are centered at the same point.
This may be imposed by symmetry, as for the 〈111〉 screw
dislocation in a cubic crystal.6,23 When the Volterra and the
core fields have different centers,4,5,9,12 an interaction energy
between both elastic fields exists. Such a cross term can be
simply calculated by considering the interaction of the core
field with the stress created by the Volterra field, as described
in the next section.

IV. INTERACTION WITH A STRESS FIELD

We now consider the interaction energy between an external
stress field σ ext

ij and a line defect. The external stress can be
an applied stress or the stress originating from another defect.
The line defect is located at the origin and its line direction
is e3. It is characterized by its Burgers vector b, its force
resultant F, and the first moments tensors Mij and Pij . The
interaction energy can be decomposed into two contributions:

the interaction with the Volterra elastic field and the interaction
with the core field. The first contribution is well known.1,18 For
a dislocation, it is given by the integral of σ ext

ij bi dSj along the
dislocation cut, where dSj is an infinitesimal surface vector.
For a line force, it is given by the scalar product Fiu

ext
i , where

uext
i is the displacement associated to the external stress field.

We now determine the contribution of the core field to the
interaction energy Einter

c .

A. Core-field contribution

The interaction energy of the core field with the stress field
σ ext

ij can be obtained by considering the line-defect distribution
responsible for the core field, thus using the same approach as
used by Siems18,24 for a point defect. The interaction energy
is then given by

Einter
c =

∑
q

∫ 1

0
σ ext

ij (λaq)bq

i εjk3a
q

k dλ − F
q

i uext
i (aq),

where εjkl is the permutation tensor. The first term represents
the interaction with the different dislocations of the distri-
bution (εjk3a

q

k dλ is the infinitesimal surface vector along the
dislocation cut), and the second term represents the interaction
with the line forces. A limited expansion of σ ext

ij and of uext
i at

the origin leads to

Einter
c =

∑
q

σ ext
ij (0)bq

i εjk3a
q

k − F
q

i

∂uext
i (0)

∂xj

a
q

j

+O(‖aq‖2).

We finally use the fact that the tensor Mij is symmetric and
take the limit aq → 0 to obtain the interaction energy

Einter
c = σ ext

ij (0)(εjk3Pik − SijklMkl), (20)

where the elastic compliances Sijkl are the inverse of the elastic
constants [SijklCklmn = 1

2 (δimδjn + δinδjm)].
Thus, Eq. (20) shows that an additional contribution needs

to be considered in the interaction energy of a line defect
with a stress when a core field is present. In particular, this
contribution of the core field leads to a dislocation-pressure
interaction, which can modify the kink formation energy
and the dislocation line tension at high pressures.3 Such a
dependence of the dislocation energy with the pressure has
been observed in atomistic simulations.25–27 Eq. (20) should
allow us to model this dependence, or at least the first-order
variation.

B. Force acting on a line defect

The external stress field σ ext
ij creates on the line defect a

force that derives from the interaction energy. Without the core
field, this force would be simply given by the Peach-Koehler
formula for a pure dislocation and by the product −Sijklσ

ext
kl Fj

for a pure line force. Because of the core field, there is an
additional force fc acting on the line defect. This force derives
from the interaction energy given by Eq. (20):

f c
n = −∂σ ext

ij (0)

∂xn

(εjk3Pik − SijklMkl). (21)
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Because of the core field, there is a force acting on the line
defect, which is proportional to the gradient of the applied
stress.

C. Elastic energy of an isolated dipole

The calculation of the elastic energy of an isolated disloca-
tion dipole is one important application, where one needs to
calculate the interaction energy of a line defect with a stress
field. In that case, the external stress field is created by the
other line defect composing the dipole. Here, we determine
the elastic energy of a dislocation dipole that is assumed to be
isolated from any other defect. This elastic energy is defined
as the integral of the energy density on the whole volume
except two cylinders of radius rc, excluding the regions around
the dislocation core. As the elastic energy is now converging,
we do not need to introduce an external cylinder as we did
for an isolated dislocation. The dipole is composed of two
line defects of opposite Burgers vector b and opposite force
resultant F having the same core field characterized by the
moment tensors Mij and Pij . We assume that e3 corresponds
to the line direction of the dislocations. The dipole is then
defined by the distance d between the two dislocations and
by the angle φ between the dipole direction and a reference
vector e1.

If the elastic field created by each dislocation composing
the dipole is only of the Volterra type [Eq. (9)], the elastic
energy of the dipole is

EV
dipole = (

biK
0
ij bj + FiK

′0
ij Fj

)
ln

(
d

rc

)
+ 2EV

c (φ), (22)

where the tensors K0
ij and K ′0

ij are given by Eq. (18). EV
c is the

contribution from core tractions to the elastic energy. Such a
contribution arises from the work done by the tractions of the
Volterra elastic field exerted on the cylinders that isolate the
dislocation cores. It exists even when the core field is neglected
and it is given by28

EV
c (φ) = 1

8

6∑
α=1

ln (i ± pα)
6∑

β=1

± 1

2πi
Dα

(
Aα

i L
β

i − Lα
i A

β

i

)
Dβ

+ 1

8πi

3∑
α=1

6∑
β=4

Dα

(
Aα

i L
β

i − Lα
i A

β

i

)
Dβ ln (pα − pβ)

+ 1

2

6∑
α=1

± 1

2πi

(
biL

α
i Lα

j bj − FiA
α
i Aα

j Fj

)
× ln (cos φ + pα sin φ).

Considering now that a core field as described by Eq. (15)
is also created by each dislocation, one has to add to the elastic
energy of the dipole [Eq. (22)] the contribution from the core
field of each dislocation, 2Ec, as given by Eq. (19) in the limit
R∞ → ∞.

Another contribution also needs to be taken into account in
the elastic energy when dislocations create both a Volterra and
a core field. It arises from the interaction of the total stress field
created by the first dislocation with the core field of the second

one, and vice versa. This interaction energy can be calculated
using Eq. (20), which leads to the result

EV−c
dipole = [

2σ V
ij (d) + σ c

ij (d)
]
(εjk3Pik − SijklMkl), (23)

where the vector d is defined by the coordinates
d(cos φ, sin φ,0). Equation (23) shows that the elastic energy
of the dipole now contains a contribution varying with the
inverse of the distance d and another contribution varying
with the square of the inverse of d.

D. Dislocation dipole in periodic boundary conditions

When studying dislocations in atomistic simulations, one
can use periodic boundary conditions. A dipole is introduced
to ensure that the total Burgers vector of the simulation box is
null. Atomic simulations allow obtaining the excess energy
associated with the defects present in the simulation box.
One can deduce from this quantity dislocation intrinsic energy
properties such as their core energy. To do so, one needs to
calculate the elastic energy contained in the simulation box.
This elastic energy includes the elastic energy of the primary
dipole as well as half the interaction energy with all its periodic
images. When the simulation box is small, as in ab initio
calculations, one needs to consider not only the Volterra field,
but also the core field of the dislocations when computing the
elastic energy.6

The elastic energy of the primary dipole is given in the
preceding section. The interaction energy between two dipoles
can be obtained by decomposing it into the contributions
arising from the different constituents of the elastic field. The
interaction energy arising from the Volterra field of each dipole
is obtained thanks to the expression given by Stroh16 for the
interaction energy between two dislocations. If the coordinates
of the vectors joining the two dislocations are (x1,x2,x3), this
part of the interaction energy is given by

EV−V
inter = −

6∑
α=1

± 1

2πi
b

(1)
i Lα

i Lα
j b

(2)
j ln (x1 + pαx2),

where b(1) and b(2) are the respective Burgers vectors of each
dislocation.29

The part of the interaction energy arising from the core
field is obtained thanks to Eq. (20). The external stress σ ext

ij

appearing in this equation corresponds to the stress created by
the other dislocations, where both the Volterra and the core
fields are considered.

When summing all contributions from the different periodic
images, one should be aware that the sums are only condi-
tionally convergent. This convergence problem can be easily
resolved using the regularization method of Cai et al.30

V. CONCLUSIONS

We have extended in this paper the approach of Hirth
and Lothe11 to model dislocation core fields within linear
anisotropic elasticity theory by deriving the elastic energy of a
straight dislocation while taking full account of its core field.
The obtained expression shows that this elastic energy is the
sum of the energies corresponding to the Volterra field and
to the core field, and that no cross interaction exists between
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these two elastic fields. We have also shown that the core field
leads to an additional contribution to the interaction energy
between a dislocation and an external stress. Through this
contribution, the energy of a dislocation can depend on the
applied pressure. This interaction with the core field is also
responsible for an additional force acting on the dislocation,
which is proportional to the gradient of the applied stress.
Dislocation properties may therefore be affected in regions
where a high-stress gradient is present as in a dislocation
pileup7,8 or close to a crack tip.

The interaction of the dislocations caused by their core
field is shorter range than their interaction through their
Volterra field. It will therefore affect the interaction between
dislocations when they get close enough. Such a situation may
arise in atomistic simulations, where the size of the simulation
box may be too small to neglect the influence of the core field.6

One should then take account of the dislocation core field
when calculating elastic energies, which can be done using the
different expressions of this paper. An example is given in the
companion paper,23 where the developed formalism is applied
to the 〈111〉 screw dislocation in α-iron.
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APPENDIX: INTEGRALS

The elastic energy of the core field (cf. Sec. III B) makes
the two following integrals appear:

I 3
x (p,q) =

∫ π

−π

cos θ

(cos θ + p sin θ )(cos θ + q sin θ )2
dθ,

(A1)

I 3
y (p,q) =

∫ π

−π

sin θ

(cos θ + p sin θ )(cos θ + q sin θ )2
dθ.

These integrals of a rational function of cos (θ ) and sin (θ ) can
be evaluated using the residues theorem.31 This leads to the
result

I 3
x (p,q) = 0 if Im(p) > 0 and Im(q) > 0

= 4πip

(p − q)2
if Im(p) > 0 and Im(q) < 0

= −4πip

(p − q)2
if Im(p) < 0 and Im(q) > 0

= 0 if Im(p) < 0 and Im(q) < 0,

I 3
y (p,q) = 0 if Im(p) > 0 and Im(q) > 0

= −4πi

(p − q)2
if Im(p) > 0 and Im(q) < 0

= 4πi

(p − q)2
if Im(p) < 0 and Im(q) > 0

= 0 if Im(p) < 0 and Im(q) < 0.

The two integrals appearing in the interaction energy
between the Volterra and the core fields of a line defect (cf.
Sec. III C) are

I 2
x (p,q) =

∫ π

−π

cos θ

(cos θ + p sin θ )(cos θ + q sin θ )
dθ,

(A2)

I 2
y (p,q) =

∫ π

−π

sin θ

(cos θ + p sin θ )(cos θ + q sin θ )
dθ.

The residues theorem leads to the result I 2
x (p,q) =

I 2
y (p,q) = 0.
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