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Dislocation core field. II. Screw dislocation in iron
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The dislocation core field, which comes in addition to the Volterra elastic field, is studied for the 〈111〉 screw
dislocation in α-iron. This core field, evidenced and characterized using ab initio calculations, corresponds to a
biaxial dilatation, which we modeled within the anisotropic linear elasticity. We show that this core field needs
to be considered when extracting quantitative information from atomistic simulations, such as dislocation core
energies. Finally, we look at how dislocation properties are modified by this core field by studying the interaction
between two dislocations composing a dipole, as well as the interaction of a screw dislocation with a carbon atom.
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I. INTRODUCTION

Ab initio calculations have revealed that a 〈111〉 screw
dislocation in α-iron creates a core field in addition to the
Volterra elastic field.1 This core field corresponds to a pure
dilatation in the {111} plane perpendicular to the dislocation
line. It is responsible for a non-negligible volume change per
unit length of dislocation line. The core field decays more
rapidly than the Volterra field, as the displacement created
by this core field varies as the inverse of the distance to
the dislocation line, whereas the displacement caused by the
Volterra field varies as the logarithm of this distance. Such
a dislocation core field is not specific to iron: a similar
dilatation induced by the core of the screw dislocation can be
deduced from the analysis of core structures obtained from first
principles in other body-centered-cubic (bcc) metals, such as
Mo and Ta.2,3 Atomistic simulations in other crystal structures
have also led to such a core field.4–8

The purpose of this paper is to characterize this core field for
a 〈111〉 screw dislocation in iron, and to see how it modifies the
dislocation properties. In that purpose, ab initio calculations
have been used to obtain the dislocation core structure.
Then, the dislocation core field has been modeled within
the linear anisotropic elasticity theory, using the approach
initially developed by Hirth and Lothe9 and generalized in the
companion paper10 to incorporate the core-field contribution
into the dislocation elastic energy. This modeling allows
extracting quantitative information from ab initio calculations,
such as the dislocation core energy. Finally, the effect of the
core field on the interaction of a screw dislocation with a
carbon atom has been investigated as well as on the properties
of a screw dislocation dipole.

II. ATOMISTIC SIMULATIONS

A. Dislocation dipole

Fully periodic boundary conditions have been selected
to study the 〈111〉 screw dislocation in α-Fe. A dislocation
dipole is introduced into the simulation box, using three
different periodic distributions of dislocations. Within the
triangular arrangement, initially proposed by Frederiksen and
Jacobsen,3 the dislocations are positioned on a honeycomb
network [Figs. 1(a) and 1(b)] that strictly preserves the
threefold symmetry of the bcc lattice along the [111] direction.

Two different variants, which are linked by a π/3 rotation,
are possible for this periodic arrangement: the twinning (T)
[Fig. 1(a)] and the antitwinning (AT) [Fig. 1(b)] triangular
arrangement. The name of the variant refers to the fact that
the dislocation dipole has been created by shearing a {112}
plane either in the T or AT orientation. The third periodic
arrangement, represented in Fig. 1(c), is equivalent to a
rectangular array of quadrupoles. The periodicity vectors u and
v defining these different arrangements are given in Ref. 11.
For all periodic arrangements, the periodicity vector along the
dislocation line is taken as the minimal allowed vector, i.e., the
Burgers vector b = 1

2a0[111], where a0 is the lattice parameter.
Thus, the number of atoms in the simulation box is directly
proportional to the surface S of the unit cell perpendicular to
the dislocation line.

For each periodic arrangement, the dislocations are posi-
tioned at the center of gravity of three neighboring [111] atomic
columns. Depending on the sign of the Burgers vector, two
types of cores can be obtained.12 In the easy core configuration,
the helicity of the lattice is locally reversed compared to the
helicity of the perfect lattice. This configuration has been
found to be the most stable in all atomistic simulations in
bcc transition metals. In the hard core configuration, the three
central neighboring [111] atomic columns are shifted locally so
that these atoms lie in the same (111) plane. This configuration
actually corresponds to a local maximum of the energy of
the dislocation arrangement. It can be nevertheless stabilized
numerically by symmetry in the atomistic simulations. The
three periodic arrangements sketched in Fig. 1 allow us to
simulate a dipole whose both dislocations are either in their
easy or hard core configuration.11

The dislocation dipole is introduced into the simulation
cell by applying the displacement field of each dislocation,
as given by the anisotropic linear elasticity. A homogeneous
strain is also applied to the periodicity vectors to minimize the
elastic energy contained within the simulation box.1,13–16 This
homogeneous strain corresponds to the plastic strain produced
when the dislocation dipole is introduced into the simulation
unit cell. It is given by

ε0
ij = −biAj + bjAi

2S
.

The orientations of the Burgers vector b and of the dipole cut
vector A are defined in Fig. 1. Then, the atomic positions are
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FIG. 1. Screw dislocation periodic arrangements used for ab
initio calculations: (a) T and (b) AT triangular arrangements,
(c) quadrupolar arrangement. u and v are the unit-cell periodicity
vectors, and A the dipole cut vector. In all cases, the Burgers vector
b = 1

2 a0[111] for easy and − 1
2 a0[111] for hard core configuration.

relaxed so as to minimize the energy of the simulation box
computed by ab initio calculations.11

Two types of simulations have been performed in this work:
simulations at constant volume and at zero stress. One can keep
the periodicity vectors fixed and minimize the energy only with
respect to the atomic positions. Within this constant volume
simulation, the simulation box is subject to a homogeneous
stress. Within the zero stress simulation, the unit cell is
allowed to relax its size and shape, so that the homogeneous
stress vanishes at the end of the relaxation. In both cases, the
dislocation core field can be identified.

B. Ab initio calculations

The present ab initio calculations in bcc iron have been per-
formed in the density functional theory (DFT) framework us-
ing the SIESTA code,17 i.e., the pseudopotential approximation
and localized basis sets, as in Refs. 18 and 11. Comparison with
plane-waves DFT calculations19 has shown that this SIESTA

approach is reliable to study dislocations in bcc iron. The
charge density is represented on a real-space grid with a grid
spacing of 0.06 Å that has been reduced after self-consistency
to 0.03 Å. The Hermite-Gaussian smearing technique with a
0.3-eV width has been used for electronic density of states
broadening. These calculations are spin polarized, and eight
valence electrons are considered for iron. The Perdew-Burke-
Ernzerhof (PBE) generalized gradient approximation (GGA)
scheme is used for exchange and correlation. A 3 × 3 × 16
k-point grid is used for the dislocation calculations with unit
cells containing up to 361 atoms, and a 16 × 16 × 16 grid for
the elastic constants.

The obtained Fe lattice parameter is a0 = 2.88 Å, in good
agreement with the experimental value (2.85 Å). The DFT
elastic constants are deduced from a fit on a fourth-order
polynomial over the energies for different strains ranging from
−2 to 2 %. This leads to the values of 248, 146, and 69 GPa for
the elastic constants C11, C12, and C44, respectively, expressed
in Voigt notation in the cubic axes. These values are close to the
experimental ones C11 = 243 and C12 = 145 GPa, except for
the shear modulus C44, which is found stiffer experimentally
(116 GPa). As a consequence, the elastic anisotropy within
DFT is less pronounced than experimentally: DFT calculations
lead to an anisotropic ratio A = 2C44/(C11 − C12) = 1.35
instead of 2.36.

The three ab initio elastic constants yield to a shear modulus
in {110} planes μ110 = (C11 − C12 + C44)/3 equal to 57 GPa,

which is close to the experimental value μ110 = 71 GPa. This
parameter is of major importance for 〈111〉 dislocations as it
controls their glide in {110} planes. Another important quantity
is the logarithmic prefactor K = μb2/4π controlling the main
contribution to dislocation elastic energy. For a screw 〈111〉
dislocation, the shear modulus appearing in this prefactor is
equal to 56 GPa for ab initio data and 64 GPa for experimental
ones, thus in close agreement. The error between ab initio
and experimental elastic constants should therefore not affect
too much our results. For consistency, all elastic calculations
below are performed using ab initio elastic constants.

III. CORE-FIELD CHARACTERIZATION

The dislocation core field can be modeled by an equilibrium
distribution of line forces20 parallel to the dislocation and
located close to its core.4,9 For the 〈111〉 screw dislocation in
iron, the center of this distribution corresponds exactly to the
position of the dislocation, i.e., to the center of gravity of three
〈111〉 neighboring atomic columns, for symmetry reasons. At
long range, and at a point defined by its cylindrical coordinates
r and θ , this distribution generates an elastic displacement
given by a Laurent series (see companion paper10)

u(r,θ ) =
∞∑

n=1

un

1

rn
.

The main contribution of this series, i.e., the term n = 1, is
completely controlled by the first moments Mij of the line force
distribution. Knowing this second-rank tensor Mij , one can
not only predict the elastic displacement and stress associated
with the core field,9 but also the contribution of the core field
to the elastic energy and to the dislocation interaction with an
external stress field.10 It is thus important to know the value
of the first moment tensor Mij , and we will see how it can be
deduced from ab initio calculations.

A. Simulations with fixed periodicity vectors

A homogeneous stress is observed in the ab initio calcula-
tions, when the periodicity vectors are kept fixed, and when
only the atomic positions are relaxed. The six components
of the corresponding stress tensor are shown in Fig. 2 for
the three periodic dislocation arrangements in the easy core
configuration. The stress components are expressed in the axes
ex = [1̄1̄2], ey = [11̄0], and ez = [111]. The main components
of the stress tensor are σxx and σyy , and the other components
can be neglected. The stress components σxx and σyy vary
roughly linearly with the inverse of the number of atoms, and
so with the inverse of the surface S of the simulation box. For
the two variants of the triangular arrangement, T and AT, the
stress components σxx and σyy are exactly equal [Fig. 2(a)].
Indeed, the threefold symmetry along the [111] direction
obeyed by this dislocation arrangement is also imposed to
the homogeneous stress. On the other hand, the quadrupolar
arrangement breaks this symmetry. As a consequence, σxx and
σyy slightly differ from each other in this case [Fig. 2(b)].

The two core fields of the dislocations composing the dipole
are responsible for this homogeneous stress, as shown in Ref. 1.
If Mij is the first moment tensor of the line force distribution
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FIG. 2. Homogeneous stress observed in ab initio calculations
for the three periodic dislocation arrangements in the easy core
configuration: (a) T and AT triangular; (b) quadrupolar dislocation
arrangements.

representative of the core field, the homogeneous stress in the
simulation box is given by1

σij = −2
Mij

S
. (1)

The factor of 2 in this equation arises from the fact that two
dislocations constituting the dipole are introduced within the
simulation box.

As the stress components other than σxx and σyy can be
neglected, the force moment tensor M will have only two
nonzero components Mxx and Myy , as shown in Eq. (1). These
two components, deduced from the stress computed from DFT
calculations, are represented in Fig. 3(a) for the easy core
configuration and in Fig. 3(b) for the hard core configuration.
Within the two triangular arrangements, the core field is a
pure biaxial dilatation (Mxx = Myy), whereas the core field
has a small distortion component (Mxx − Myy �= 0) within the
quadrupolar arrangement. This distortion is associated with the
broken threefold symmetry within the quadrupolar periodic
arrangement. It may arise from a polarizability21–23 of the
core field: the moments M characterizing the core field may
depend on the stress applied to the dislocation core. Such
a polarizability may also be the reason why the moments
obtained within the T variant of the triangular arrangement
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FIG. 3. Moments Mxx and Myy of the line force dipoles for the
three periodic dislocation arrangements in the (a) easy and (b) hard
core configuration.

slightly differ from the moments obtained within the AT variant
(Fig. 3).

One can also observe a dependence of the moments with the
size of the simulation box. The cell size that can be reached
in DFT does not allow us to obtain well-converged values
for the moments. Nevertheless, the core field of the screw
dislocation in iron can be considered as a pure biaxial dilatation
of amplitude Mxx = Myy = 650 ± 50 GPa Å2. Interestingly,
the easy and the hard core configurations are characterized by
the same moments [Figs. 3(a) and 3(b)], although the atomic
structures of the dislocation cores are completely different
between these two configurations. This probably indicates that
the dislocation core field does not arise from perturbations
due to the atomic nature of the core, but rather from the
anharmonicity of the elastic behavior.

B. Simulations with relaxed periodicity vectors

Ab initio simulations, in which the periodicity vectors are
allowed to relax so as to minimize the energy, have also been
performed. In this case, a homogeneous strain ε0

ij can be
computed. This strain is related to the core field of the two
dislocations within the simulation box through the relation1

ε0
ij = 2Sijkl

Mkl

S
,
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TABLE I. Formation volumes δV⊥ perpendicular and δV‖ parallel to the dislocation line per unit of dislocation line computed in DFT
for the three dislocation arrangements. N is the number of atoms contained within the simulation box. Mxx and Myy are the moments of the
dislocation core field deduced from the components ε0

xx and ε0
yy of the homogeneous strain.

(a) Easy core configuration
N δV⊥ (Å2) δV‖ (Å2) δV⊥/δV‖ Mxx (GPa Å2) Myy (GPa Å2)

T triangular 169 4.0 –1.5 –2.7 551 545
AT triangular 121 3.4 –1.2 –2.8 463 463
AT triangular 196 3.9 –1.2 –3.1 530 545
Quadrupolar 135 3.9 –1.4 –2.8 527 541

(b) Hard core configuration
N δV⊥ (Å2) δV‖ (Å2) δV⊥/δV‖ Mxx (GPa Å2) Myy (GPa Å2)

T triangular 169 3.5 –1.3 –2.6 488 465
AT triangular 121 3.9 –1.3 –3.0 531 531
AT triangular 196 4.6 –1.6 –2.9 646 619
Quadrupolar 135 3.7 –1.3 –2.7 518 493

where the elastic compliances Sijkl are the inverse of the elastic
constants.24 If the dislocation core field is assumed to be an
elliptical line source of expansion characterized by the two
nonzero moments Mxx and Myy , the six components of the
homogeneous strain are given by

ε0
xx = C

′
33

C
′
33(C

′
11 + C

′
12) − 2C

′
13

2

Mxx + Myy

S

+ C
′
44

C
′
44(C

′
11 − C

′
12) − 2C

′
15

2

Mxx − Myy

S
,

ε0
yy = C

′
33

C
′
33(C

′
11 + C

′
12) − 2C

′
13

2

Mxx + Myy

S

− C
′
44

C
′
44(C

′
11 − C

′
12) − 2C

′
15

2

Mxx − Myy

S
, (2)

ε0
zz = − 2C

′
13

C
′
33(C

′
11 + C

′
12) − 2C

′
13

2

Mxx + Myy

S
,

ε0
yz = 0,

ε0
xz = − C

′
15

C
′
44(C

′
11 − C

′
12) − 2C

′
15

2

Mxx − Myy

S
,

ε0
xy = 0,

where the elastic constants C
′
nm are expressed in Voigt notation

in the axes ex = [1̄1̄2], ey = [11̄0], and ez = [111]. This
shows that, for positive moments Mxx and Myy , a dilatation
perpendicular to the dislocation and a contraction parallel to
the dislocation line are produced. This exactly corresponds
to what we observe in the ab initio calculations. Thus, one
can define a dislocation formation volume perpendicular to
the dislocation line δV⊥ = (ε0

xx + ε0
yy)S/2 and a formation

volume parallel to the dislocation line δV‖ = ε0
zzS/2, where

the values of the formation volume are defined per unit of
dislocation line. The DFT results are given in Table I. The
expressions of the homogeneous strain [Eq. (2)] also lead

to a ratio between the two dislocation formation volumes
depending only on the elastic constants as

δV⊥
δV‖

= −C
′
33

C
′
13

.

By using the values of the elastic constants calculated in
DFT, we predict δV⊥/δV‖ = −2.0. This is in reasonably good
agreement with the values obtained from the homogeneous
strain computed in ab initio calculations (Table I).

The moments Mxx and Myy characterizing the dislocation
core field can be deduced from the homogeneous strain
computed in DFT, using the system of equations (2). We
choose to derive Mxx and Myy from the components εxx and
εyy of the strain, and the resulting values are given in Table I for
the three arrangements. These values are in good agreement
with those derived from atomistic simulations with fixed
periodicity vectors (Sec. III A). For all periodic arrangements
of dislocations, the dislocation core field can be considered as
a pure biaxial dilatation, and we neglect the difference between
Mxx and Myy .

IV. CORE FIELD IN ATOMISTIC SIMULATIONS

Now that the dislocation core field has been characterized,
we examine its influence on atomistic simulations. First,
we look at the atomic displacements observed in ab initio
calculations: part of this displacement arises from the core
field. Then, we show that the dislocation core energies can
be extracted from these calculations when the core-field
contribution is considered in the elastic energy.

A. Atomic displacement

Relaxation of atomic positions in ab initio calculations
leads to the definition of atomic displacements induced by
the periodic array of dislocation dipole. The displacement
along the [111] direction, i.e., along the dislocation line, also
called the screw component, is very close to the anisotropic
elastic solution corresponding to the Volterra field. There is no
substantial contribution of the core field on this displacement
component.
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FIG. 4. Planar displacement map of a periodic unit cell containing a screw dislocation dipole in the easy core configuration as obtained
from ab initio calculations (left) and after subtraction of the Volterra and the core elastic fields (right). Vectors correspond to the (111) in-plane
displacement and have been magnified by a factor of 50. Displacements smaller than 0.01 Å are omitted. For clarity, displacements of the six
atoms belonging to the dislocation cores are not shown on the right panel.

A displacement perpendicular to the dislocation line can
also be evidenced in atomistic simulations, i.e., an edge
component (Fig. 4). Part of this displacement component
corresponds to the dislocation Volterra field and arises from
elastic anisotropy. The dislocation core field also contributes

to the edge component. The Volterra contribution is more
long ranged than the core-field contribution, as the former
varies with the logarithm of the distance to the dislocation,
whereas the latter varies with the inverse of this distance.
Nevertheless, both contributions evidence a similar amplitude
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in the simulations because of the reduced cell size used in DFT
calculations.

We can subtract from the atomic displacement given by
ab initio calculations the displacement corresponding to the
superposition of the Volterra and the dislocation core fields,
as predicted by the anisotropic linear elasticity, taking full
account of the periodic boundary conditions.15 The resulting
map, represented in Fig. 4, shows that the elastic modeling
manages to reproduce the ab initio displacements for all
periodic arrangements even close to the dislocation core.
The anisotropic linear elasticity fails to reproduce the ab
initio atomic displacement only on the atoms within the core:
displacements in the core are too large for applying a small
perturbation theory such as elasticity.

B. Dislocation core energy

The screw dislocation core energy is deduced from DFT
simulations by subtracting the elastic energy to the excess
energy of the unit cell computed by ab initio techniques. The
elastic energy is calculated by taking into account the elastic
anisotropy and the periodic boundary conditions.15

If only the Volterra contribution is considered in the elastic
energy, the resulting core energies strongly depend on the
periodic arrangement (Fig. 5). As shown in Ref. 1, one can not
conclude on the relative stability of the two different core
configurations of the screw dislocation. The AT triangular
geometry and the quadrupolar geometry predict that the easy
core is the most stable configuration, whereas the T triangular
arrangement leads to the opposite conclusion. Then, if both the
Volterra and the core fields are considered in the elastic energy,
the core energies do not depend anymore on the periodic
arrangement. A cell-size dependence has been evidenced
(Fig. 5), and in all geometries the easy core is more stable
than the hard core configuration. The convergence is reached
for a reasonable number of atoms: Ecore = 219 ± 1 meV Å−1

for the easy core configuration and 227 ± 1 meV Å−1 for the
hard core configuration. These core energies are given for a
core radius rc = 3 Å, as this value of rc has been found to lead
to a reasonable convergence of the core energy with respect to
the cell size (cf. Appendix A).

To better understand how the core energy converges,
one can decompose the elastic energy into the different
contributions and look how these contributions vary with the
length scale. If one neglects the dislocation core field, the
elastic energy of the simulation box containing a dislocation
dipole is given by

Eelas
V = 2Eelas

c + biK
0
ij bj ln (A/rc) + Einter

V−V, (3)

where K0 is a second-rank tensor, which depends only on the
elastic constants, and rc is the dislocation core cutoff. The two
first terms on the right-hand side define the elastic energy of
the dipole contained in the simulation box: Eelas

c is the core
traction contribution25 and the second term corresponds to the
cut contribution. Einter

V−V corresponds to the interaction of the
dislocation dipole with its periodic images.15 If the core field
is taken into account,10 the elastic energy becomes

Eelas = Eelas
V + MijK

2
ijklMkl

1

rc
2

+ 2Einter
V−c + Einter

c−c , (4)
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FIG. 5. Core energy of the screw dislocation in the (a) easy and
the (b) hard core configuration. Solid symbols correspond to the core
energies obtained when only the Volterra field is considered, and
open symbols to the core energies when both the Volterra and the
core fields are taken into account (rc = 3 Å).

where the fourth-rank tensor K2, which only depends on
the elastic constants, enables one to calculate the core-field
contribution to the dislocation self-energy. Einter

V−c and Einter
c−c

correspond to the interaction of the dislocation core field with,
respectively, the Volterra field and the core field of the other
dislocations, i.e., the second dislocation composing the dipole,
as well as the image dislocations due to the periodic boundary
conditions. When the periodicity vectors u and v and the dipole
cut A are scaled by the same factor λ, Einter

V−c varies as 1/λ, and
Einter

c−c as 1/λ2. The number N of atoms in the simulation box
is proportional to λ2. The comparison of equations (3) and
(4) shows then that the neglect of the core field leads to a
core energy that converges as N−1/2. In the case of dislocation
periodic arrangements, which are centrosymmetric like the
quadrupolar arrangement of Fig. 1(c), Einter

V−c vanishes in Eq. (4).
The core energy converges thus as N−1 when the core field is
neglected. In all cases, this convergence is too slow to extract a
meaningful core energy from ab initio calculations. Moreover,
the obtained value does not really correspond to the core energy
Ecore: it results from the summation of Ecore and the core-field
self-elastic energy MijK

2
ijklMkl1/rc

2.
Another interesting feature comes from the linear de-

pendency of Einter
V−c with the Burgers vector. Going from
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the easy to the hard core configuration of the dislocation
dipole, i.e., inverting the sign of the Burgers vector, one only
changes the sign of Einter

V−c, whereas all other contributions to
the elastic energy remain constant. The easy and the hard
core configurations have indeed a core field with the same
amplitude (Fig. 3). The contribution Einter

V−c is positive for a
dislocation dipole in its easy core configuration within the T
triangular arrangement [Fig. 1(a)]. Therefore, when the core-
field contribution is not included into the elastic energy, one
underestimates the stability of the easy core configuration with
respect to the hard core configuration within this geometry. The
AT triangular arrangement leads to the opposite conclusion
[Fig. 1(b)] since Einter

V−c becomes negative for the easy core
configuration.

The underestimation or overestimation of the stability of the
easy core illustrates the importance of considering the disloca-
tion core field in the elastic energy when extracting quantitative
properties from atomistic simulations. This is especially true
for ab initio calculations in which the small cell size makes it
difficult to obtain converged values. Such a conclusion is not
restricted to the calculation of dislocation core energies. For
instance, extraction from atomistic simulations of the Peierls
energy barriers, and of the associated Peierls stresses, will also
require the complete modeling of the dislocation core field.

C. Dislocation line energy and line tension

It is interesting to evaluate the different contributions to the
dislocation line energy. Using the developed elastic model, the
energy26 of a straight screw dislocation contained in a cylinder
of radius R∞ is

E = Ecore + Eelas
c + 1

2
biK

0
ij bj ln

(
R∞
rc

)

+ 1

2
MijK

2
ijklMkl

1

rc
2
. (5)

The core energy has been found to be Ecore = 219 ±
1 meV Å−1 for the easy core configuration and 227 ±
1 meV Å−1 for the hard core configuration, with rc = 3 Å.
The Volterra elastic field leads to two energy contributions:
the contribution of the core traction25 is Eelas

c = 1 meV Å−1

for a dislocation cut corresponding to a {110} glide plane,
and the cut contribution, which corresponds to the third
term in Eq. (5), is equal to 1.60 eV Å−1, where we have
assumed the ratio R∞/rc = 104, which corresponds to a
characteristic dislocation density of 1011 m−2. Finally, the
core-field contribution to the elastic energy, which corresponds
to the last term in Eq. (5), is equal to 42 meV Å−1. It is clear
that most of the dislocation energy arises from the Volterra
elastic field and is associated with the cut contribution. Other
contributions, which are all associated with the dislocation
core, account for about 14 % of the dislocation energy. In
particular, the contribution of the core field is less than 3%.

The dislocation line tension is actually more important than
the line energy as it controls the shape of dislocation loops and
curved dislocations.27 It is defined as

T (θ ) = E(θ ) + d2E(θ )

dθ2
,

 0

 1

 2

−90  0  90

E
( θ

) 
 (

eV
 Å

−
1 )

θ º

(a)

bi K
0
ij bj / 2 ln(R∞/rc)

Ec
elas

Mij K
2
ijkl Mkl / 2 1/rc

2

 0

 1

 2

 3

 4

−90  0  90

T
( θ

) 
 (

eV
 Å

−
1 )

θ º

(b)

FIG. 6. Elastic contributions [Eq. (5)] to the dislocation (a) line
energy E(θ ) and (b) line tension T (θ ) = E(θ ) + d2E(θ )/dθ2 as a
function of the dislocation character θ in the {110} glide plane. θ = 0
for the screw orientation.

if E(θ ) is the dislocation line energy [Eq. (5)] written as a
function of the dislocation character θ , i.e., the dislocation
orientation. We can evaluate this line tension by considering
all elastic contributions entering in the dislocation line energy
and neglecting the dependence of the dislocation core energy
with θ , which we do not know. For the dislocation core field,
we assume that the dipole tensor Mij does not depend on
the dislocation orientation as we do not have any informa-
tion on such a variation: the variation with the dislocation
orientation of the associated line energy only arises from
elastic anisotropy. The different elastic contributions to the
dislocation line energy E(θ ) and the associated line tension
T (θ ) are shown in Fig. 6 for a dislocation character going from
an edge orientation (θ = ±90◦) to a screw orientation (θ = 0).
The most important contribution to the line tension arises, once
again, from the cut contribution of the Volterra elastic field. In
view of the values obtained, it looks reasonable to neglect other
elastic contributions, as usually done in line tension models.27

Nevertheless, some other studies have obtained higher relative
contributions of the core field,4,5 which may therefore have a
more important effect on the line tension.

V. DISLOCATION INTERACTION WITH
A CARBON ATOM

We examine in this part how the dislocation core field
influences the dislocation properties by modifying the way
a dislocation can interact with its environment. First, we study
the interaction between a 〈111〉 screw dislocation and a carbon
atom in α-iron.

In Ref. 28, the binding energy between a carbon atom
and a screw dislocation in iron as predicted by the linear
anisotropic elasticity has been compared to the one calculated
by atomistic simulations based on an empirical potential
approach.29 A quantitative agreement between both modeling
techniques was obtained as long as the C atom was located
at a distance greater than 2 Å from the dislocation core. This
result evidences the ability of linear elasticity to predict this
interaction. The empirical potential for iron30,31 used in Ref. 28
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does not lead to any core field for the screw dislocation, at
variance with the present ab initio results. It is interesting to
include now the core-field contribution into the elastic field
of the screw dislocation to investigate its influence on the
interaction between a carbon atom and a screw dislocation.
Such a contribution to the interaction energy between a solute
atom and a dislocation has already been considered in the case
of a substitutional impurity by Fleischer,32 who showed that it
partly contributes to the solid solution hardening.

A. Carbon atom description

First, we need to deduce from ab initio calculations a
quantitative representation of a carbon atom embedded in an
iron matrix. A solute atom is modeled in elasticity theory by
its dipolar tensor Pij , which corresponds to the first moments
of the equilibrated point force distribution equivalent to the
impurity. This tensor is deduced from atomistic simulations of
one solute atom embedded in the solvent (cf. Appendix B).

Carbon atoms are found in the octahedral interstitial sites
of the bcc lattice. The dipolar tensor Pij , expressed in the
cubic axes, is diagonal with only two independent components
because of the tetragonal symmetry of the octahedral site.
Three variants can be obtained, depending on the orientation
of the tetragonal symmetry axis. For the [001] variant of the
C atom, ab initio calculations lead to Pxx = Pyy = 8.9 and
Pzz = 17.5 eV (cf. Appendix B).

B. Binding energy

Linear elasticity theory predicts that the binding energy
between the carbon atom characterized by its dipolar tensor
Pij and the screw dislocation is given by

Ebind = Pij ε
d
ij , (6)

where εd
ij is the elastic strain created by the dislocation. We

use the linear anisotropic elasticity to calculate εd
ij by taking

into account only the Volterra field, or both the Volterra and
the core fields created by the dislocation. We consider that the
core field is created by the line force moments Mxx = Myy =
650 GPa Å2 previously deduced. In Fig. 7, we represent the
variation of the binding energy when the dislocation glides
in a {110} plane, while the carbon atom remains at a fixed
distance h from the glide plane. The first derivative of the
plotted function gives the force exerted by the C atom on
the gliding dislocation. When the C atom is close enough to
the dislocation, the core field modifies the binding energy. In
particular, the binding of the C atom is stronger in the attractive
region when the dislocation core field is considered. Thus, the
pinning of the screw dislocation by the C atom is enhanced by
its core field. Conversely, the dislocation core field leads to a
stronger repulsion in the repulsive region.

When the separation distance between the C atom and the
screw dislocation is high enough (�20 Å), the dislocation
core field does not affect anymore the binding energy. One can
consider that the C atom interacts only with the dislocation
Volterra field.
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FIG. 7. Binding energy between a 1/2[111](11̄0) screw disloca-
tion and a carbon atom for different positions x of the dislocation in
its (11̄0) glide plane. The C atom lies in a [100] octahedral site in the
plane h = d110 ≈ 2.04 Å above the glide plane. The binding energy
is calculated using the anisotropic elasticity theory considering only
the Volterra field, or both the Volterra and the core fields of the
dislocation.

VI. PASSING PROPERTIES OF A SCREW
DISLOCATION DIPOLE

We look in this part at how the dislocation core field
modifies the equilibrium properties of a screw dislocation
dipole. Dislocation dipoles play a significant role in single
slip straining, where they can control the material flow stress.
Such a situation arises, for instance, in fatigued metals, where
dislocations are constrained to glide in the channels between
dislocation walls.33,34 The saturation stress of the persistent
slip bands is then partly controlled by the critical stress needed
to destroy the dislocation dipoles.

We consider a screw dislocation dipole in bcc iron. The
dipole is characterized by the height between each dislocation
glide plane h and by the projection of the dipole vector on
the glide plane x, as sketched in Fig. 8. Then, we calculate the
variation of the interaction energy between the two dislocations
composing the dipole 	E when dislocations glide, i.e., h

is kept fixed while x varies. This dislocation interaction
energy is computed using the linear anisotropic elasticity10

and considering that the two dislocations composing the dipole
interact only through the Volterra field or through both the
Volterra and the core fields. This variation of energy 	E

is represented in Fig. 9 for a dipole height h = 10 Å. The

x
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[110]
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b

F
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[111] [112]

[110]
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FIG. 8. Screw dislocation dipole. F is the force exerted by one
dislocation on the other.
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FIG. 9. Variation of the elastic energy 	E and of the x component
of the force F acting on the dislocations Fx , with the distance between
both dislocations x for a screw dipole of height h = 10 Å.

dipole equilibrium angle corresponds to the minimum of 	E,
i.e., θ = 0. This value predicted by the anisotropic elasticity
is equal to the one given by the isotropic elasticity. This
contrasts with what is found in fcc metals, where the dipole
equilibrium angle strongly depends on elastic anisotropy for
a screw dislocation dipole.35 The dislocation core field does
not modify the dipole equilibrium angle (Fig. 9). Nevertheless,
when both the Volterra and the core fields are included into
the computation of the dipole elastic energy, the energy that
defines the dipole equilibrium becomes steeper than when the
dislocation core field is omitted. Thus, the attraction between
both dislocations is stronger when the core field is taken into
account. This is obvious when looking at the glide component
of the force exerted by one dislocation on the other one Fx

(Fig. 9). This force is the first derivative of 	E with respect to
x. When the dislocation core field is included in the dislocation
interaction, this force goes to a higher maximum value than
when only the Volterra elastic field is considered. To destroy
the dislocation dipole, one needs to exert on a dislocation a
force that is higher than the force arising from the interaction
with the other dislocation. This shows that the dislocation core
field leads to a more stable dipole.

If a homogeneous stress is applied, the gliding force on
each dislocation is simply the Peach-Koehler force bσyz. As
the applied stress is homogeneous, no force originates from the
dislocation core field.10 Therefore, the dipole passing stress,
i.e., the applied stress needed to destroy the dislocation dipole,
is given by the maximum of the glide component Fx of the
Peach-Koehler force divided by the norm of the Burgers vector.
This passing stress depends on the dipole height h, as shown
in Fig. 10. The inclusion of the core field into the dislocation
interaction leads to a higher passing stress, especially for small
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FIG. 10. Variation of the passing stress σyz and of the passing
angle θmax, with the dislocation dipole height h.

dipole heights. But, the effect is relevant at a spacing where
the dipole would certainly have cross slipped to annihilation.
For large dipole heights (h � 20 Å), the dislocation core field
does not influence too much the passing stress, and one can
consider that dislocations interact only through the Volterra
elastic field to calculate the passing stress.

Without the dislocation core field, the dipole passing angle
θmax does not depend on the dipole height (Fig. 10). The value
given by the anisotropic elasticity is close to the π/4 value
predicted by the isotropic elasticity. The core field leads to a
passing angle, which depends on the dipole height, and which
strongly deviates from π/4 for small dipole heights. Such a
dependence of the passing angle with the dipole height has also
been obtained by Henager and Hoagland for edge dislocation
dipoles in fcc metals.7,8 They obtained a stronger influence of
the core field on the dislocation interaction than in the present
study. In their case, the core-field contribution can be neglected
only when the two dislocations are separated by more than 50b,
i.e., more than 10 nm.

VII. CONCLUSIONS

The approach developed in the companion paper to the
model dislocation core field10 has been applied here to
the 〈111〉 screw dislocation in α-iron. By using ab initio
calculations, we have shown that a screw dislocation creates
a core field corresponding to a dilatation perpendicular to the
dislocation line. The core-field modeling within the anisotropic
linear elasticity perfectly reproduces the atomic displacements
observed in ab initio calculations. It also allows us to
derive from atomistic simulations converged values of the
dislocation core energies. The developed approach illustrates
the necessity to consider the dislocation core field when
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extracting quantitative information from atomistic simulations
of dislocations.

Then, the elastic modeling of the screw dislocation has been
used to study the interaction energy between the dislocation
and a carbon atom. The dislocation core field increases the
binding of the C atom when both defects are close enough
(less than ∼20 Å). At larger separation distances, the C atom
interacts only with the dislocation Volterra elastic field.

Equilibrium properties of a screw dislocation dipole are
also affected by the dislocation core field. This additional
elastic field increases the stability of the dipole: a higher stress
is needed to destroy the dipole. Nevertheless, when the two
dislocations composing the dipole are sufficiently separated,
one can consider that they only interact through their Volterra
field.

The amplitude of the dilatation corresponding to the
dislocation core field does not depend on the dislocation core
configuration, i.e., either easy or hard core structure. This
indicates that the core field does not arise from the atomic
structure of the dislocation core, but may be induced by
anharmonicity. Our work, like previous similar studies,4,5,7–9,36

shows that such an anharmonic effect can be fully considered
within linear elasticity theory with the help of a localized core
field. One could have also used nonlinear elasticity theory
to incorporate anharmonic contributions, either following the
approach of Seeger and Haasen37 based on a Grüneisen model
for an isotropic crystal or the iterative scheme proposed by
Willis38,39 for an anisotropic crystal.
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APPENDIX A: CORE ENERGIES AND CORE RADIUS

The core energy depends on the choice of the core radius
rc. This core radius defines the cylindrical region around the
dislocation line, where the strain is so high that elasticity theory
does not apply. It therefore partitions the dislocation excess
energy into two contributions, the core energy corresponding
to the energy stored in this core cylinder and the elastic energy
in the remaining space. Changing the value of rc modifies this
partition between core and elastic energy without modifying
the total excess energy [Eq. (5)]. In this work, the choice of
rc affects the convergence of the core energy with the size
of the simulation box and the geometry of the dislocation
periodic array. This arises from the dislocation core field. The
dislocation line energy created by this core field depends on rc

through the contribution 1/2 MijKijklMkl 1/rc
2 [Eq. (5)]. As

the dipole moments Mij have been found to depend on the size
of the simulation cell (Fig. 3), changing the value of rc leads
to a shift of the core energy, which also depends on this size.
Figure 11 shows the core energies obtained for different core
radii. One sees that the value rc = 3 Å leads to a core energy,
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FIG. 11. Core energy of the screw dislocation in the easy core
configuration for different core radii: (a) rc = 10 Å, (b) rc = 3 Å,
and (c) rc = 1 Å. Both the Volterra and the core fields have been
considered in the elastic energy.

which does not depend on the geometry of the dislocation
periodic array and which converges reasonably with the size
of the simulation cell. Moreover, it is close to the norm of the
Burgers vector (b = 2.5 Å) as theoretically expected.40

APPENDIX B: CARBON DIPOLAR TENSOR

A solute C atom embedded in an Fe matrix is modeled
within elasticity theory by a dipolar tensor41 Pij . As shown
in Ref. 28, the value of this tensor can be simply deduced
from the stress tensor measured in atomistic simulations where
one solute atom is embedded in the solvent using periodic
boundary conditions. One predicts that the homogeneous stress
measured in these simulations varies linearly with the inverse
of the volume V of the unit cell

σij = −Pij

V
.

Because of the small size of the unit cell used in ab initio
calculations, one has to take into account the polarizability21–23

of the C atom, i.e., the fact that the tensor Pij depends of the
strain εC

kl locally applied on the C atom. One can write to first
order

Pij

(
εC
kl

) = P 0
ij + P 1

ijklε
C
kl,
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to Eqs. (B1) and (B2).

where P 0
ij is the C dipolar tensor in an unstrained crystal and

P 1
ijkl its first derivative with respect to the applied strain. In

our atomistic simulations, this applied strain εC
kl arises from

the periodic images of the C atom. The strain created by a
point defect varies linearly with the inverse of the cube of the
separation distance, and we use for our atomistic simulations
homothetic unit cells with the same cubic shape. The dipolar
tensor Pij should therefore vary linearly with the inverse of
the volume of the unit cell

Pij = P 0
ij + δPij

V
, (B1)

where δPij is a constant depending only on the shape of the
unit cell and not on its volume. As a consequence, the stress
measured in the atomistic simulations should vary like

σij = −P 0
ij

V
− δPij

V 2
. (B2)

We performed ab initio calculations to obtain the values
of the dipolar tensor, characterizing one carbon atom in the
iron matrix. We chose a cubic unit cell that contains one C
atom in an octahedral interstitial site. The simulation boxes
contain 128, 250, or 432 Fe atoms. The SIESTA calculation
details are the same as for dislocation calculations, and 13
numerical pseudoatomic orbitals per carbon atom are used to
represent the valence electrons as described in Ref. 42. The
k-point grids used for the calculations are 4 × 4 × 4 for the
128 and 250 atom cells and 3 × 3 × 3 for the 432 atom cells.

Because of the tetragonal symmetry of the octahedral
interstitial site, the dipolar tensor characterizing the C atom
is diagonal with only two independent components. This
agrees with the symmetry of the stress tensor given by ab
initio calculations. The variations of this stress tensor with the

TABLE II. Variations of the iron lattice parameter with carbon
atomic fraction δx and δz, and formation volume of carbon δ
.

δx δz δ
 (Å3)

Ab initio −0.086 1.04 10.4
Empirical potential (Ref. 29) −0.088 0.56 4.47
Experiment (Ref. 44) −0.052 0.76 7.63
Experiment (Ref. 45) −0.0977 0.862 7.76
Experiment (Ref. 46) −0.09 0.85 7.80

volume of the unit cell are in perfect agreement with Eq. (B2)
(Fig. 12). This allows us to deduce the elastic dipole Pij ,
which is characterized by the values Pxx = Pyy = 8.9 and
Pzz = 17.5 eV for the [100] variant of the C atom in the dilute
limit [V → ∞ in Eq. (B1)].

Previous ab initio calculations performed in smaller sim-
ulation cells have led to the C atom dipolar tensor deduced
from Kanzaki forces.43 These values are consistent with the
ones we have deduced from the homogeneous stress.

The elastic dipole Pij can be simply related to the
parameters δx and δz of the Vegard law,28 which assumes a
linear relation between the variations of the lattice parameters
a and c and the atomic fraction of carbon atoms xC. If all
carbon atoms are located on the [001] variant of the octahedral
site,

a(xC) = a0(1 + δxxC) along the [100] or [010]x axis,

c(xC) = a0(1 + δzxC) along the [001] axis,

where a0 is the pure Fe lattice parameter. The parameters δx

and δz deduced from our DFT calculations are compared to
experimental data44–46 in Table II. The ab initio calculations
lead to a formation volume of carbon larger than the experi-
mental value, and to a larger tetragonal distortion expressed as
(δz − δx).

One can also deduce from the elastic dipole the variation of
the solution enthalpy of C in bcc Fe with a volume expansion

V0
∂H exc

∂V

∣∣∣∣
V =V0

= −1

3
Pii,

where H exc is the excess enthalpy of a Fe crystal of equilibrium
volume V0 containing one C atom. The value corresponding
to the elastic dipoles calculated above, −11.8 eV, is in
good agreement with the value obtained by Hristova et al.,47

−12.3 eV, using an ab initio approach based on GGA-
DFT with a plane-waves basis set and the Blöchl projector-
augmented wave method (PAW) as implemented in the Vienna
ab initio simulation package (VASP). This validates our SIESTA

approach for characterizing the C atom embedded in an iron
bcc matrix.
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