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One-dimensional models and thermomechanical properties of solids
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We use open-ended chains of oscillators, like those introduced by Fermi, Pasta, and Ulam, to mimic
thermomechanical properties of crystalline solids, such as thermal expansion and the change of elasticity and
quality factors with temperature. We employ molecular dynamics and theoretical arguments, separately. Features
of real solids are reproduced, such as the positiveness of the coefficient of thermal expansion and the decrease
of the modulus of elasticity and of the quality factor with temperature. The results depend strongly on the
interparticle potential at energy levels much higher than the average energy of the chain, with the Lennard-Jones
potential yielding the most realistic cases.
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I. INTRODUCTION

Fermi-Pasta-Ulam (FPU) models1 are linear chains of
interacting particles providing a minimal framework for
studies of ergodicity, dynamical relaxation, and diffusion
laws with given interparticle potentials, initial conditions,
and boundary conditions.2–4 In contrast, three-dimensional
models,5 sometimes complemented by secondary relations of
either thermodynamic origin or derived by ensemble theory
of large systems,6,7 were developed to evaluate structural and
dynamical properties of specific solids from the interparticle
potential. Here we investigate whether the conceptually simple
FPU framework suffices in modeling the qualitative behavior
of thermomechanical properties of solids, such as elastic
modulus, thermal expansion, and mechanical losses. We also
study how this behavior is related to the interparticle potential,
gaining considerable insight into thermally induced softening
of materials.

We consider a chain of oscillators with one free end to study
the variations of its length in response to an external force or
to temperature changes, both from theoretical considerations
and by direct access to the quantities of interest in simulations.
We consider different asymmetric potentials and require that
the atoms make only small vibrations around their equilibrium
positions. Note that the use of an open-ended chain prevents
mechanical internal stress induced by the thermal expansion
and mimics the most common experimental conditions. This
choice of boundary condition has been considered before only
in a few works on heat conduction2 and FPU’s recurrence
effects.8

When subjected to a temperature increase, most solids
expand with a characteristic rate expressed by a (usually
positive) coefficient of thermal expansion.9 Concurrently small
stresses and strains are proportional (Hooke’s law). The
proportionality constants are termed collectively modulus of
elasticity; most commonly one refers to the Young’s elasticity
modulus E, which is the ratio of tensile stress to tensile strain.
In most cases, Young’s modulus decreases with increasing
temperature, often linearly over an extended range.10–12 Ex-
periments and qualitative theoretical arguments have led to a

formula for Young’s modulus of many crystalline solids,13–15

which has recently been related to bonding energetics,16 of the
form

E = E0 − bT exp (−T0/T ). (1)

In the large-T limit, a linear decrease of E with T can thus be
observed. Equation (1) and the thermodynamical arguments of
Ref. 17 agree on the experimental finding that E approaches
E0 from below with a vanishing slope in the T → 0 limit. This
quantum mechanical effect is not reproduced by our classical
models. Conversely, our theory is consistent with the observed
behavior at higher temperatures.

II. THE MODEL

Our model consists of N identical particles in one line
interacting with each other’s nearest neighbors and obeying
Newtonian dynamics. Particle number 1 interacts with particle
2 on one side, and with a wall on the opposite side. The N th
particle of the chain is the furthest from the origin at all times,
defining its coordinate as the total length. If the interaction
potential is a perturbed harmonic potential, we have a low-
energy FPU-like model with asymmetric boundary conditions.

We perform our analysis with three interaction potentials
(see inset of Fig. 1): the Lennard-Jones (LJ) potential

VLJ(x) = ε(x−12 − 2x−6) (2)

and the truncated series expansion Vt

Vt (x) = h[(x − 1)2 − λ(x − 1)3 + μ(x − 1)4], (3)

with two distinct sets of parameters λ and μ � 0. Differently
from most FPU models, we consider the odd power of x to
have a negative sign to mimic an asymmetric potential with
short-range repulsion and long-range attraction. The series
expansion of the LJ potential around the minimum R0 has
indeed alternating signs. We take x = r

R0
, where r is the

distance between any two (nearest-neighbor) interacting atoms
and r = R0 at T = 0; h is an energy parameter, stemming
from a reference microscopic harmonic constant of 2h/R2

0 .
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FIG. 1. (Color online) Thermal expansion data for Vt1 (♦), Vt2

(�), and VLJ (�). The temperature is expressed in units of the
energy ε. The solid lines are evaluated according to Eq. (6). Inset: LJ
interaction potential VLJ (thick solid line), Vt1 (dashed line), and Vt2

(thin solid line, red online).

Our values for λ and μ imply that Vt (x) has one minimum
at x = r/R0 = 1. All these potentials are asymmetric; that is,
the restoring force toward R0 is stronger at short distances
(r < R0) than at large distances (r > R0). Because the chain
is open at one end, the effect of the asymmetry at temperatures
T > 0 is a lengthening with respect to the T = 0 length
(L0 = NR0) obtained for all particles in the minima of the
potential. These potentials are defined as functions of the
distance r between two particles which are nearest neighbors,
differently from typical FPU models where they are defined
in terms of the coordinate difference between two particles
which start as nearest neighbors.

The confining potential of Eq. (3) prevents the breaking
of the chain, while for a V (x) that vanishes in the x → ∞
limit, such as VLJ, a rare fluctuation of local relative velocities
(in opposite directions) may lead the chain to break at one or
more points. As we shall discuss, this effect is inevitable in
the large N , t → ∞ limit, but is not observed in practice if
the temperature is very low. Whenever the LJ system becomes
unstable, at high energies, we apply strategies like the one
detailed further below. In most FPU-type models, the two
ends are held in their positions at a distance L0 = NR0.
This avoids breaking of the chain but rules out thermal
expansion.

In order to have the harmonic coefficients of the series
expansions coincide, we set h = 36ε all throughout. We begin
with λ = μ = 1, similarly to common cases in the literature,
where |λ| and |μ| are of order unity. In the second case, we
compared with the LJ model. A truncated expansion around
x = 1 (r � R0) of VLJ leads to Eq. (3) with λ = 7, μ =
53λ/12. In the following, we shall call Vt1 and Vt2 the potential
described by the truncated expression (3) with parameters
λ = μ = 1 and with λ = 7, μ = 53λ/12, respectively.

In simulations, to represent a system at constant tempera-
ture, we supplemented the Hamiltonian equations of motion
with a Nosé-Hoover thermostat. To compute the resonance
frequency and the quality factor, we opted for simulations at

constant energy. The corresponding equations of motion read:

mr̈i = −∂W (|ri − ri+1|)
∂ri

− ∂W (|ri − ri−1|)
∂ri

− χṙi,

(4)

χ̇ = m

τ 2

(
K

kBT
− 1

)
, K(t) = m

N

N∑
j=1

ṙj (t)2,

where i = 1, . . . ,N , rN+1 ≡ rN + R0, and we mainly used
N = 128. W (r) = V (xR0). χ (t) is the dynamical variable
driving the energy exchanges with the thermal bath, τ is a
characteristic time of the bath, which we set to 10 times
the simulation time stepof 10−14 s. m is the mass of each
particle and K(t) is the instantaneous average kinetic energy,
which the bath forces to fluctuate around the chosen value
kBT . If we take m = 1 u and R0 = 1 Å as a reference,
then ε = 1.37 × 10−21 J. Here we express both the energy
and K (hence the “kinetic” temperature kBT ) in units of
the LJ potential energy depth ε. Often, in one-dimensional
FPU simulations, m and R0 are rather set to be dimensionless
and equal to unity. This would translate into ε = 82.78 and
h = 2980. In various instances, we explored sizes up to
N = 512, finding no quantitative differences with the case
N = 128 for the correctly normalized quantities, except for
finite-size effects consistent with physical principles. The
agreement with the theory, where we can make comparisons,
suggests that this small number is largely sufficient.

III. RESULTS AND DISCUSSION

In the regions we studied, the average kinetic energy is
low enough that, on average, the particles populate the three
potential wells up to a level where they differ by less than
20%, and as low as less than 2.2% for VLJ and Vt2. We also
note that our energy range is low compared to standard FPU
simulations.2,3

After the initial transient, the time average length of the
chain is computed and denoted by L. The thermal expansion of
the chains with VLJ, Vt1, and Vt2 are compared in Fig. 1, where
log (L/L0) is plotted against kBT . The interaction potentials
have the proper asymmetry around R0, so the average length of
the chain grows with increasing temperature. The slope αT =
(1/L)dL/dT identifies the coefficient of thermal expansion.
Only VLJ leads to an increase at high temperatures.

So far, L is also the length at which the average force
exerted by the second-to-last particle on the N th particle
vanishes, on average. If we fix the total length L′ to
be slightly smaller (larger) than L, the second-to-last particle
reacts by exerting a cumulative positive (negative) average
force on the last particle. We monitor this force. For small
elongations and contractions, our simulations reveal a linear
regime expressed by F = E�L/L, relating the force exerted
on the chain’s edge by an external force to the elongation
�L = L′ − L. E is the modulus of elasticity. The estimation
of the slope allows us to extrapolate E consistently from
the purely mechanical behavior of the chain: this approach
differs from taking advantage of thermodynamic relations and
ensemble theory.6,7

To estimate E, we performed averages over samples of five
elements each, with varying random initial conditions, for any
given pair (T ,�L). We observed linear responses as shown in
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FIG. 2. (Color online) Modulus of elasticity as a function of
temperature with Nosé-Hoover thermostat for Vt1, Vt2, and VLJ (the
symbols are as in Fig. 1). The solid lines are evaluated according
to Eq. (7). The curvature change for VLJ theory marks the onset of
unstable effects. The dashed line refers to a chain of purely harmonic
oscillators. The points (a), (b), and (c) for the case Vt2 are referred to
in Fig. 3. Inset: Example of the calculated Hooke’s law constant.

the inset of Fig. 2. One data point for E entails 55 simulations
in excess of 109 time steps.

Figure 2 shows the linear and monotonically decreasing
behavior of E with increasing temperature, in qualitative
agreement with most solids,10,16 obtained with the LJ potential.
Therefore, a realistic potential of interaction, with proper short-
ranged infinite repulsion and long-ranged finite attraction, is
crucial but also sufficient to reproduce general properties of
solids, even in one dimension [the high-T trend expressed by
Eq. (1)]. There is also a point at which linearity ceases, with a
net decrease in the rate of change of E. This feature has been
observed in polycrystalline ceramics,18–20 where it is attributed
to grain boundaries softening and sliding. As mentioned
earlier, the chain becomes unstable if the temperature rises
above some value. When this happens, we pinpoint the rest
length of the chain, recursively locating the coordinate of zero
average force. This extends our results. In the case of Vt1, E

is almost constant at low temperatures and slightly increasing
at high temperatures (see Fig. 2). In the case of Vt2, an initial
decrease is followed by an inversion. These behaviors differ
from what predicted by Eq. (1). Notably, E for Vt2 and VLJ

starts to separate when, on average, the particles populate the
two potential wells where they differ by less than 0.2%. Thus,
the observed differences in the thermomechanical properties
are due to seldom-sampled energy levels.

Assuming that the system is canonically distributed, the
behavior in Figs. 1 and 2 can be derived exactly for any
confining potential such as Vt1 and Vt2. The method for the
calculation echoes one that leads to the estimation of the
isobaric-isothermal partition function in related models, as
can be found, for example, in [Ref. 21], with the force here
replacing the role of the pressure. Thus, for a fixed lengthL and
dropping the N -dependent kinetic contribution, the number
of available microstates is proportional to ZN (L,T ) = ψ ∗
ψ ∗ · · · ∗ ψ(L), where the ∗ denotes the Laplace convolution
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FIG. 3. (Color online) Main plot: Ratio (ωr/ω0)2 with varying
temperatures for the LJ model, for constant energy simulations (i.e.,
no thermostat). ω0 is the extrapolated resonance frequency of zero
temperature. The straight line is an interpolation. The plotted range
corresponds to the linear behavior of E shown in Fig. 2. Inset:
Main peak in the frequency spectra of Vt2 canonical simulations,
corresponding to the points marked (a), (b), and (c) in Fig. 2. The
inversion seen in Fig. 2 is reproduced, with the resonance frequency
being measurably larger when Young’s modulus is larger. Spectra are
normalized with arbitrary constants for comparison.

product (iterated N times) and ψ(r) = exp [−W (r)/(kBT )].
Conversely, a constant force F applied on the right edge
equates to adding a potential term −FL, the number of
microstates becoming proportional to

PN (F,T ) =
∫ ∞

0
e−FL/(kBT )ZN (L,T )dL = j0(F/(kBT ))N,

jk(z) = ∫ ∞
0 rke−zrψ(r)dr . Hence the average length is

L(F ) = [PN (F,T )]−1
∫ ∞

0
Le−FL/(kBT )ZN (L,T )dL. (5)

Thus, L(F ) = −Nj ′
0(z)/j0(z)|z=F/(kBT ), and

L = L(0) = Nj1(0)/j0(0). (6)

This, with L0 = NR0 and via numerical integration, leads to
the results for the thermal expansion reproduced in Fig. 1.
For small F , L(F ) � L(0) − L(0)F/E and therefore L(0) =
−E∂L/∂F |F=0. Thus,

E = kBTj0(0)j1(0)

j2(0)j0(0) − j1(0)2
, (7)

with the results in Fig. 2.22

For the case of the LJ potential, all jk(0) diverge. Indeed,
L is infinite in the thermodynamic limit for the open chain,
behaving like a gas of clustered particles if t → ∞. This
reflects the absence of a pure crystal phase in short-ranged
one-dimensional models. Unlike in three dimensions, the
bulk fluctuations are of the same order as those at the
boundary. Nonetheless, the metastable order is long lived
at low temperatures, as confirmed by our simulations, and
an approximate solution can be attempted using the same
calculations as before, taking jk(0) = ∫ R

0 rkψ(r)dr , with
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FIG. 4. (Color online) Main plot: Quality factor Q with varying
temperatures for the LJ model, for constant energy simulations. Inset:
Sample frequency spectrum around the main resonance, in linear
scale, used to compute Q from the full width at half maximum.

R0 	 R 	 R0e
ε/(kBT ). This mimics a hard barrier preventing

any two neighboring particles from exceeding separation R, in
those rare instances when they otherwise would. In Figs. 1 and
2, the results agree with this theoretical analysis. The region
in which E becomes sensitive to R is also visible.

We then analyzed the frequency spectrum of the position
of the free end (the spectrum of the length fluctuations). We
performed simulations with no bath, hence at constant energy,
as in an isolated system. In the LJ case, the square of the
resonance frequency ωr decreases approximately linearly with
T , in a range in which E also decreases linearly (Fig. 3,
main plot). The inset of Fig. 3 shows the change of resonance
frequency with T , in the Vt2 case: this variation is enslaved
to the change of the elastic modulus shown in Fig. 2. This
indicates that simulations with and without a thermostat are
consistent as far as elastic responses are concerned.

With the LJ interaction, we investigated what we shall call
the Q factor of the chain, a quantity of experimental relevance
but seldom investigated in FPU models. We compute the Q

from the full width at half maximum (FWHM) of the first
resonance of the power spectrum of the chain length computed
via constant-energy simulations. Q is thus the ratio between ωr

and the FWHM. Figure 4 shows the behavior of Q as a function
of the kinetic temperature kBT (here an averaged quantity).
The observed decrease with T is in qualitative agreement with
experimental data for many solids. Note that here the change
in Q is not the reflection of dissipation toward a bath, because
the system is isolated, but is an intrinsic property of the chain
due to the distribution of the energy between the fundamental
mode of vibration and the other modes.

IV. CONCLUSIONS

To summarize, the thermomechanical properties of our
models have been compared with those of crystalline solids via
theory and simulations. The shape of the interparticle potential
in the high-energy range determines the thermomechanical
properties evaluated at lower average energies. Thus, the
case of Vt1 and Vt2 systematically lead to an improper
thermomechanical response of the chain. Realistic interaction
potentials guarantee better qualitative agreement with solids’
mechanical behavior. Whether these considerations are also
relevant to the issue of dynamical relaxation and ergodicity is
an open question.
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