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Concise relation of substitution energy to macroscopic deformation in a deformed system
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An ab initio study of the effect of macroscopic deformation on energetics of twelve alloying elements in
bcc Fe has been performed under three specially designed strain modes. A concise relation of the macroscopic
deformation effect on the substitution energy of alloying elements with linear dependences on defect formation
volume and relative volume change was found. Based on this concise relationship, the following behaviors can
be predicted by comparing defect formation volumes: the strain-induced solubility change of alloying atoms and
then the degree or possibility of redistribution and segregation of alloying atoms, the stability transition between
monovacancy and divacancy, and self-interstitial atom reorientation under heavy loading.
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I. INTRODUCTION

Fe-based alloys are among the most widely used materials,
among which ferritic-martensitic (FM) steels represent a
technologically important class with many applications in
heavy loading and high-temperature conditions, such as in
fission and fusion energy facilities. Since alloying solutes
in Fe-based alloys are very important for modifying physical
properties1—and particularly their contents strongly govern
mechanical performances such as resistance to hardening and
embrittlement induced by neutron and proton irradiation—
their local structures, migrations, and interactions with other
atoms or defects have been intensively studied in recent
years.2,3 It was found that an optimal Cr content of 2% to 6%
reduces irradiation swelling compared with pure Fe, whereas
9% Cr reduces the ductile brittle transition temperature. Most
previous investigations of alloying elements in FM steels have
been performed in macroscopically undeformed crystals, free
of any macroscopic strains except those induced by the solutes
or defects themselves. Nonetheless, in fact most materials
usually undergo macroscopic deformations due to externally
applied loads or in special in-service conditions. So, recently,
attention has been paid to the properties of point defects
under macroscopic deformations based on electronic structure
calculations. Gavini found that the volumetric strain associated
with a deformation largely governs the formation energies
of monovacancies and divacancies in Al, and concluded
that the nucleation of these defects is increasingly favorable
under volumetric expansion.4 Chen et al. reported that the
strain has remarkable influence on the stability, reorientation,
and migration of self-interstitial atoms (SIAs) in bcc Fe:
for instance, uniaxial expansion induces a SIA spontaneous
reorientation from 〈111〉 to 〈100〉.5 Zhu et al. found in
zinc-blende GaP that the impurity formation energy changes
monotonically in a linear fashion with the applied external
strain, and thus they proposed that the strain-induced change
in impurity formation energy can effectively enhance dopant
solubility in a wide range of semiconductors.6 Therefore it is
reasonable that the substitution energy (Esub) of the alloying
elements in Fe-based materials may be also heavily influ-
enced by macroscopic deformation, which would cause the
redistribution and segregation of the alloying elements under
heavy loading in long-term service, and would contribute a

great deal to the phenomena of stress-induced erosion and
abnormal fracture. Therefore, a comprehensive understanding
of the macroscopic deformation effect on Esub of alloying
atoms in bcc Fe is significant for the design of new types of
high-performance Fe-based alloys and for the optimization
of steel process technology. Moreover, it is interesting to
explore whether or not there exists a concisely universal
description of the macroscopic deformation effect on the
energetics of point defects in strained systems, as mentioned
above.

In this paper, the effect of macroscopic deformation on Esub

by twelve alloying elements7 (Al, Co, Cr, Cu, Mo, Nb, Ni, Si,
Ta, Ti, V, and W) in bcc Fe in three different strain modes
was investigated systematically using an ab initio method.
Hydrostatic strain mode was used to explore the pure volume
change effect, and a set of submodes in both normal strain
and shear strain modes were used to explore the system shape
distortion (or nonhydrostatic strain) effect. It was found that
for all studied alloying elements the macroscopic deformation
effect on Esub can be described concisely and universally by
a linear function of volume change with a slope completely
determined by the defect formation volume for a single solute
and by the system shape factor.

II. COMPUTATIONAL METHOD

The present calculations were performed within spin-
polarized density-functional theory as implemented in the
Vienna ab initio simulation package.8 The interaction between
ions and electrons was described by the projector augmented
wave method.9 Exchange and correlation functions were
taken in a form proposed by Perdew and Wang10 within the
generalized gradient approximation. The supercell approach
with periodic boundary conditions was used, where the
supercell contains 127 Fe atoms and one alloying atom. The
energy cutoff for the plane-wave expansion of wave functions
was 350 eV and a 3 × 3 × 3 k-point mesh was adopted for
Brillouin-zone sampling according to the Monkhorst-Pack
scheme. All atomic relaxation calculations were performed
at constant volume and shape using the conjugate gradient
algorithm. For simplicity the side length of the aforementioned
bcc cubic supercell in equilibrium was set to be four times the

224101-11098-0121/2011/84(22)/224101(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.224101


LIU, WANG, FANG, LIU, HUANG, AND WU PHYSICAL REVIEW B 84, 224101 (2011)

TABLE I. Strain components (%) in NS and SS modes.

e11, e22, e33 (NS1–4)/e11, e33, e12 (SS89–85)

Vol. contracted by 3.0% Vol. unchanged Vol. expanded by 3.0%

NS1 −1.98, −1.0, −0.01 −0.99,0,1.0 0,1.0,2.01
NS2 −2.94, −1.0, 0.98 −1.96,0,2.0 −0.98,1.0,3.02
NS3 −3.88, −1.0, 1.97 −2.91,0,3.0 −1.94,1.0,4.03
NS4 −4.81, −1.0, 2.96 −3.85,0,4.0 −2.88,1.0,5.04
SS89 −0.996, −1.0, 0.864 0.004,0,0.873 1.004,1.0,0.881
SS88 −0.985, −1.0, 1.73 0.015,0,1.75 1.02,1.0,1.76
SS87 −0.966, −1.0, 2.59 0.034,0,2.62 1.03,1.0,2.65
SS85 −0.906, −1.0, 4.33 0.096,0,4.37 1.10,1.0,4.41

optimized lattice constant of bcc Fe (2.833 Å). Esub can be
calculated using the following formula:

Esub = EnFe+1M − n

n + 1
E(n+1)Fe − EM, (1)

where EnFe+1M is the total energy of a bcc cubic supercell
containing n Fe atoms and one alloying atom M , E(n+1)Fe is
the total energy of the same bcc cubic supercell filled with only
Fe atoms under the same deformation, and EM is the energy
per atom of pure crystal M with most stable phase.

In this work, the macroscopic deformation is described
by the macroscopic strain tensor with the coordinate axes
1, 2, and 3 being chosen along the [100], [010], and [001]
directions, respectively, of a perfect bcc crystal. Because the
strain tensor belongs to a six-dimensional space, a complete
characterization of the deformation effect on the energetics
of alloying atoms is beyond reach. Here only three different
modes of strain are considered: hydrostatic strain (HS), normal
strain (NS), and shear strain (SS) within a relative volume
variation from −3.0% to 3.0%. This variation is used for
exploring the relation between the Esub of the solute alloying
elements and the volume change, although such a large
volume variation rarely occurs in service conditions. Both
the NS and SS modes include four submodes: NS1–NS4
and SS89–SS85, as listed in Table I, where the nonzero
strain components are presented. For all submodes of SS the
following equations exist: e11 = e22, e23 = e31 = 0. Here, for
example, SS89 denotes that the included angle between two
adjoining surfaces changes from 90◦ to 89◦. Note that when
any two strains in each submode of NS or SS are applied on
the perfect cubic system and its isometric replica, respectively,
their volumes will be different but the shapes will be similar.
For example, in any strain of NS1 the system maintains a
rectangular parallelepiped shape with the ratio of the three
different edges fixed at 0.99:1.0:1.01. From NS4 to NS1 or
from SS85 to SS89 the shape distortion from a perfect cube
reduces gradually. For each NS and SS submode the degree
of strain-induced system shape distortion can be scaled by the
strain components e33 and e12, respectively, in strained systems
with equilibrium volume.

III. RESULTS AND DISCUSSION

Figure 1 displays Esub as a function of volume ranging
from 0.97V0 to 1.03V0 in the HS mode, where V0 is the

equilibrium volume of the system. It can be seen that Esub of all
alloying elements except Si depends linearly on the volume,
with a negative slope. The Esub of Si is almost insensitive
to hydrostatic deformation (with a very small positive slope).
The absolute slope for elements Al, Co, Cr, Cu, Ni, and V is
smaller than that for elements Mo, Nb, Ta, Ti, and W. These
results suggest that Esub of the alloying atoms studied except
Si can be considerably influenced by hydrostatic deformation,
which may in turn change the solubility of these alloying
atoms in bcc Fe and cause segregation of these elements if
the strain in the system is not homogenous. The observed
linear volume dependence of Esub in bcc Fe is similar to the
reported linear behavior of doping energy in GaP in the HS
mode by Zhu et al.6 Interestingly, a similar linear volume
dependence of Esub was also found in submodes of NS and
SS with volumes of 0.97V0, V0, and 1.03V0. The linearity has
been further checked via the added calculations for Al, Cr,
and W in NS1, NS4, SS89, and SS85 modes with volumes
of 0.982V0, 0.994V0 and 1.018V0. Here the results of W in
NS4 and SS85 modes are displayed in Fig. 2 as examples. In
the studied volumetric range the change range of Esub in any
submode of NS or SS is smaller than that in the HS mode. For
example, in the HS mode the volumetric increase from 0.97V0

to 1.03V0 leads to an Esub decrease of 0.234 eV for Cr and
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FIG. 1. (Color online) Substitution energy versus volume for
twelve different alloying elements in the HS mode. Symbols represent
the calculated results and solid lines are the corresponding linear fits.
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FIG. 2. (Color online) Substitution energy (Esub) of W versus
volume for HS, NS4, and SS85. Lines are linear fits to the data.

0.575 eV for W, while in NS4 and SS85 modes the decrease of
Esub is about 0.162 and 0.116 eV for Cr and 0.486 and 0.442 eV
for W. Since �Esub (=Esub|V =1.03V0 − Esub|V =0.97V0 ) divided
by 0.06V0 is identical to the slope of the linear function, the
aforementioned larger decrease of Esub means a larger absolute
slope. It was also reported that the doping energy change range
of Be in GaP under biaxial strain is smaller than that under
hydrostatic strain.6 Thus, nonhydrostatic strains can modulate
to some extent the volume dependence of Esub compared to
pure isotropic volumetric change in the HS mode.

The above results reveal for every studied alloying atom
the existence of a linear volume dependence of Esub as the
system is under macroscopic deformation in any strain mode.
Such linear volume dependence of Esub in the HS mode can be
explained by the simple strain model proposed by Zhu et al.6

According to the strain model, the slope of the linear relation
of Esub versus V in the HS mode should be proportional to
the defect formation volume (Vf ) (in Ref. 6 it is called as the
effective size difference). Vf , originating from the intrinsic size
difference and the change in the electronic environment, can
be calculated by subtracting the equilibrium system volume of
pure Fe from the equilibrium volume of the system with one
solute.11 In addition, the solute size factor �M

sf is also usually
used in metallurgy to describe the resulting size difference of
solutes from the host.3 There is a simple relationship between
Vf and �M

sf : �M
sf = Vf /�Fe (here �Fe is the atomic volume

of bcc Fe). So the slope of the linear relation of Esub versus V

in the HS mode should also be proportional to �M
sf . If the Vf

(or �M
sf ) of the alloying atom correctly describe the intrinsic

size difference and the change in atomic interaction due to
the substitution of Fe by alloying atom, then there may be a
universal law of the macroscopic deformation effect on Esub.
So the substitution energy changes �Esub of twelve alloying
elements were plotted as a function of Vf , and the results
for HS, NS4, and SS85 are displayed in Fig. 3. As expected,
in each mode or submode whose system maintains a similar
shape, �Esub exhibits a universal linear dependence on Vf :
for all studied alloying elements, �Esub (i.e., the slope of
linear volume dependence of Esub if divided by 0.06V0) is
proportional to Vf with a negative slope that is dependent on
the strain mode or submode. According to the relation between
Vf and �M

sf , no doubt �Esub also exhibits a universal linear
dependence on �M

sf . Further analysis unveils that this universal
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FIG. 3. (Color online) Substitution energy change (�Esub) versus
defect formation volume (Vf ) for HS, NS4, and SS85 with volume
change from 0.97V0 to 1.03V0 for twelve alloying elements. Lines
are linear fits to the data.

linear dependence on Vf for all solutes can be expressed by
the following relation:

Esub|V = −fssB(V/V0 − 1)Vf + Esub|V = V0. (2)

Here, B is the bulk modulus of the system and fss is the
system shape factor, a unitless parameter that describes
the system shape change under strained conditions (fss = 1
in the HS mode). Does this relation well describe the above
observed dependence of Esub on the volume and on Vf ? And
how can fss be measured or estimated?

To answer these two questions, we first use our present data,
and the published data about the doping energy difference
resulting from strain changes between −2% and 2% in the
HS mode in GaP (from Ref. 6), to test Eq. (2) as shown in
Fig. 4. Here fss = 1 due to the system shape being unchanged.
Figure 4 clearly shows that the two sets of data are located
on a single line, indicating that Eq. (2) well characterizes the
volume and Vf dependence of Esub. Using Eq. (2) to fit the
calculated data for the NS1–NS4 and SS85–SS89 submodes,
one can obtain the values of fss in the different submodes
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TABLE II. The system shape factor (fss) of each NS and SS
submode. The system shape factor in HS mode is 1.

NS4 NS3 NS2 NS1 SS85 SS87 SS88 SS89

fss 0.920 0.948 0.956 0.988 0.952 0.966 0.976 0.988

listed in Table II. As expected, from NS4 to NS1 and from
SS85 to SS89, when the system shape distortion is weakened
fss increases monotonically and approaches the value for the
HS modes, suggesting that fss correctly describes the degree
of system shape distortion. The inset of Fig. 4 shows fss in NS
(SS) modes as a function of e33 (e12) of the strained system
with the equilibrium volume. fss decreases monotonically with
the increase of e33 or e12, suggesting that in presently studied
NS and SS modes fss can be measured with e33 or e12 of the
strained system at equilibrium volume.

Now the question arises: What is the significance of the
obtained concise relation of Esub? First, this relationship
could be naturally extended to the deformation effect on
the formation energy of the vacancy and the interstitial. The
result of a single vacancy in bcc Fe under HS is presented
in Fig. 4, indicating that this relation is indeed suitable for
the vacancy. However, it should be stressed that the defect
formation volume is the volume change due to the relaxation
of introducing a vacancy rather than that generally used as
in Ref. 12, where it is defined as the volume change plus
the equilibrium atomic volume of the host. Second, using
this relation and the defect formation volume, which can be
obtained from first-principles calculations, one can explicitly
predict the strain-induced solubility change of alloying atoms
on the basis of the concentration equation as a function
of temperature: c = c0 exp[−(Esub − T Sf)/(kBT )]; herein c0,
Sf , and kB are the coefficient, defect formation entropy, and
Boltzmann’s constant respectively. For example, the increase
(decrease) of Esub by 96 meV for 1% compressive (expansive)
hydrostatic strain in bcc Fe leads to reduction (enhancement)
of W solubility by 6.4 times at 600 K (the change of formation
entropy is not considered here). This plays a key role in
evaluating the degree or possibility of redistribution and

segregation of alloying atoms under heavy loading. Third,
using this relation along with the change in entropy one could
predict the thermodynamically favorable stability transition
between monovacancy and divacancy under deformation (e.g.,
as reported in Ref. 4) and similarly predict the strain-induced
reorientation of self-interstitial atoms via comparison with Vf .
These predictions could greatly help us to understand defect
nucleating and clustering and the defect-induced degradation
of mechanical properties under heavy loading in long-term
service, and could help us to design new types of high
performance alloys.

IV. CONCLUSIONS

In summary, we find a concise and universal relation of
the substitution energy of alloying elements in a strained
system: Esub|V = −fssB(V/V0 − 1)Vf + Esub|V =V0 . fss is in
fact a simplified description of the nonhydrostatic strain
effect on Esub and can be estimated from e33 or e12 of
the strained system with the equilibrium volume in our
cases. Although this universal relation is a simple formation
enthalpy expression, it concisely expresses the deformation
effect on the formation energy using the bulk modulus and the
defect formation volume along with the system shape factor.
Thus it may have broad applications, such as in predicting
strain-induced solubility change and strain-induced stability
transitions of vacancies and interstitials via comparison with
defect formation volume.
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