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Accurate determination of the Gaussian transition in spin-1 chains with single-ion anisotropy
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The Gaussian transition in the spin-1 Heisenberg chain with single-ion anisotropy is extremely difficult to treat,
both analytically and numerically. We introduce an improved density-matrix renormalization group procedure
with strict error control, which we use to access very large systems. By considering the bulk entropy, we determine
the Gaussian transition point to four-digit accuracy, Dc/J = 0.968 45(8), resolving a long-standing debate in
quantum magnetism. With this value, we obtain high-precision data for the critical behavior of quantities,
including the ground-state energy, gap, and transverse string-order parameter, and for the critical exponent
ν = 1.472(2). Applying our improved technique at Jz = 0.5 highlights essential differences in critical behavior
along the Gaussian transition line.
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The Gaussian transition appears in several fields of quantum
physics and statistical mechanics. The equivalence between
surface-roughening transitions in classical two-dimensional
(2D) models and quantum phase transitions in spin chains
was introduced in Ref. 1, and their rich phase diagrams were
investigated at length in Ref. 2. Characterized by continuously
variable exponents, the Gaussian transition differs signifi-
cantly both from regular phase transitions and from those of
Kosterlitz-Thouless (KT) type. These differences complicate
both analytical and numerical approaches to a complete and
accurate description of rough surfaces and quantum spin
chains.

The S = 1 Heisenberg chain is one of the fundamental
models in quantum magnetism. It formed the basis of
Haldane’s conjecture3 for a finite gap in antiferromagnetic
chains with integer spin, as opposed to the gapless spectrum
of half-odd-integer cases. Numerically, quantum spin chains
are important test cases for any computational technique,
and Haldane’s prediction has been verified by a range of
methods with increasing accuracy.4,5 Experimentally, while
the “Haldane gap” has been found in the excitation spectra
of many systems,6 most known S = 1 chains, including
Ni(C2H8N2)2NO2(ClO4) (NENP),7 Ni(C3H10N2)2N3(ClO4)
(NINAZ),8 and Ni(C5H14N2)2N3(PF6) (NDMAP),9 are or-
ganic Ni materials with significant single-ion anisotropies.
Analytical approaches to the Gaussian transition driven by this
term are complicated by the lack of a suitable effective field
theory,10 and its broad nature makes all numerical techniques
difficult to apply. Many authors have considered this transition,
producing occasionally contradictory results.11–19

In this Rapid Communication we resolve the problem of
the Gaussian transition in the S = 1 chain with single-ion
anisotropy. We exploit the fact that this transition is a gapless
point between two gapped phases, whence the entropy exhibits
a sharp peak. We introduce an improved density-matrix
renormalization group (DMRG) approach with systematic
error control, allowing high-precision calculations at system
sizes up to L = 20 000, which automatically eliminate the end-
spin entropy. We determine the critical point with very high
accuracy, and thereby deduce the critical behavior of several
quantities at different points on the Gaussian transition line.

The general form of the model is
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where Jz interpolates between XY and Ising spins, D is the
single-ion anisotropy, and L the length of the chain. The full
parameter space of (D,Jz) contains Néel, Haldane, large-D,
ferromagnetic, and two XY phases. In classical planar surface,
or “solid-on-solid,” models, the Néel and large-D phases are
different “flat” phases, the Haldane phase is “rough,” and the
Gaussian transition is of “preroughening” type. These are the
three phases of the S = 1 Heisenberg chain (Jz = 1) as D is
varied. While the Néel phase possesses Z2 symmetry and the
Haldane phase an incomplete Z2 × Z2 symmetry, the large-D
phase has no remaining symmetries. The Gaussian transition is
a line in the (D,Jz) plane, on which the excitations are gapless.
This line is well described by a conformal field theory (CFT),20

and has been analyzed in a number of studies,15–18 but, none
has achieved the numerical precision required for a consistent
discussion of the critical behavior across the transition.

DMRG is the most efficient and accurate numerical
technique for one-dimensional (1D) systems.5 Anticipating
the need for both large system sizes and extreme precision,
we begin by introducing an improved DMRG technique. In
the conventional scheme, the absolute (coupled round-off and
truncation) error increases systematically with L, and this
accumulated error has a strong effect on the reliability of the
computation, possibly even disguising the critical behavior in
a quantum many-body system. We fix the round-off error by
renormalizing the lowest eigenvalue of Hamiltonian to remain
of order 1, thereby obtaining a very significant reduction in the
truncation error for large systems. In the DMRG iteration, we
replace the original Hamiltonian matrix H (m,L), for chains of
L sites with m kept states, by H (m,L) − [ε1(m,L − 2) − δ],
where ε1(m,L − 2) is the lowest eigenvalue of H (m,L − 2)
and δ is a constant chosen such that ε1(m,L) ∼ O(1). Here
we use δ/J = 1 throughout. While the (extensive) total
energy of the ground state, Eg(m,L), can be reconstructed by
summation, its (intensive) average value per site is determined
directly and self-consistently as eg(m,L) = [ε1(m,L) − δ]/2.

220402-11098-0121/2011/84(22)/220402(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.220402


RAPID COMMUNICATIONS

SHIJIE HU, B. NORMAND, XIAOQUN WANG, AND LU YU PHYSICAL REVIEW B 84, 220402(R) (2011)

0.84 0.9 0.96 1.02
D

1

2

3
L=10
L=6000
L=4000
L=2000
L=1000
L=750
L=500
L=2500 L

1

2

0.964 0.968 0.972
D

1.70

1.95

2.20

m=10
3

  800
  600
  500
  400
  350
  300

0 1/m
-28

0

28

0
-10

-3

   0

 10
-3

0.84 0.9 0.96 1.02
D

1

2

3
L=10

4

6000
4000
2000
1000
 750
 500
 250

D=0.92

AL,1

AR,1

Dc -Dc

10
4

10
-2

(a) (b)

fit

FIG. 1. (Color online) Entropy S as a function of D for Jz =
1. (a) Calculations with m = 1000. Open symbols are obtained for
the lowest-energy level in Hilbert space S tot

z = 0 with a range of L

values, and solid symbols for S tot
z = 1. Inset: ln 2 drop in S(L) for

D = 0.92. (b) Bulk entropy S(D) close to the Gaussian critical point,
computed with L = 10 000 for a range of m values. Insets: Fitting
slopes AL,1 and AR,1 (left axis) and transition Dfit

c (right axis) obtained
as functions of m.

Similarly, for the first excited state ef (m,L) = [ε2(m,L) −
ε2(m,L − 2)]/2 + eg(m,L), where ε2(m,L) is the second-
lowest eigenvalue of H (m,L).

The gap in our method is given simply by �(m,L) =
ε2(m,L) − ε1(m,L). Its general expression is

�(m,L) = [ef (m) − eg(m)]L + �(m) +
∞∑

n=1

αn(m)

Ln
, (2)

where eg(m) and ef (m) are the intensive energies of the ground
and first excited states for infinite L, and become equal for
infinite m. In the polynomial expansion of contributions at
higher order in 1/L, the n = 1 term arises from truncation
errors and open-boundary conditions (OBCs), while the n = 2
term has contributions from fluctuations at the quadratic band
minimum. Here we calculate the energies in the linear term
independently by extrapolation. Subtracting these gives a gap
function �(m,L) that decreases monotonically with increasing
L. A second polynomial fit of �(m) allows its extrapolation
to infinite m to obtain the true gap.

Sharing its foundations with quantum information theory,
the DMRG method is ideally suited to discussions of entropy
and entanglement. The von Neumann entropy S(m,L) =
−Tr ρ(m,L) ln ρ(m,L) is readily computed from the reduced
density matrix, which we obtain to high accuracy throughout
our calculations with the renormalized Hamiltonian. The
entropy obeys an area law except in critical regimes, where
it depends logarithmically on L.21 This extremum in entropy
is an excellent indicator of a (gapless) critical point between
two gapped phases.

Before analyzing the entropy, we discuss the unconven-
tional feature of the S = 1 Heisenberg chain, that free S = 1/2
entities are found at a chain end, both in theory and in
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FIG. 2. (Color online) (a) Gap as a function of L, computed for
D/J = 0.95 with several values of m. Solid symbols for L → ∞
are extrapolated to m → ∞ (inset), giving �(0.95) = 0.001 30(4).
(b) Extrapolated gaps as a function of |D − Dc|.

experiment.22 In the Haldane phase with OBCs, the two free
end spins can be described by Ĥeff = Jeff �SL · �SR ,5 where the
effective coupling Jeff > 0 falls exponentially with L. In the
Hilbert space S tot

z = 0, the two spins are maximally entangled
with entropy ln 2, while for S tot

z = 1 they are unentangled.
The additional truncation error due to this edge-entropy
contribution causes significant computational difficulties. In
Fig. 1(a) we find a ln 2 drop in the ground-state entropy
S(L) in the Hilbert space S tot

z = 0 when the chain reaches
a certain length at fixed D. For D = 0.92 and m = 1000,
this occurs at L = 4500 [Fig. 1(a) inset]. When L becomes
sufficiently large, Jeff falls below the machine precision and the
end-spin contribution vanishes. The remaining “bulk” entropy
contains the essential physics of the spin chain. Different
but conceptually similar approaches have considered both
the two-site entropy and S(L) in a chain with no end-spin
effects.23

Figure 1(a) contrasts the total and the bulk entropy.
Calculations with small L cannot access the unentangled
regime, and for larger L we find a ln 2 jump when D approaches
Dc. For L = 10 000, the end spins remain entangled for
0.94 < D < Dc. The maximum in the total entropy moves
strongly with L, showing no direct indication of criticality.17

By contrast, in the Hilbert space S tot
z = 1, the end spins are

unentangled in the lowest-energy state and this data reproduces
exactly the bulk entropy. The location of the maximum in S,
shown in detail in Fig. 1(b), is clearly invariant with m. A
linear fit to the bulk entropy on both sides of the transition
in Fig. 1(b) gives our primary result, Dc/J = 0.968 45 with
a minuscule error bar of 0.000 08. The increasing slopes of
the bulk entropy lines as m → ∞ [Fig. 1(b) inset] indicate the
onset of critical behavior.

Having determined this extremely precise value of Dc, we
may now discuss the critical behavior of the Gaussian transi-
tion with similar accuracy. We consider the physical quantities
used in previous analyses of the transition,11–19 beginning with
the gap. To avoid effects in the gap extrapolation related to
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FIG. 3. (a) Finite-size extrapolation of the lowest two gaps
at Dc. Fitting lines from CFT give �(S tot

z = 0) = 2πv/L with
v = 2.564(2)J and �(S tot

z = 1) = 2πJα/L with α = 0.485 16(1).
(b) Extrapolated ground-state energy eg at Dc, with CFT fit
−0.868 566 50(4)J − βJ/L2 and β = 1.3429(4). (c) Second deriva-
tive of extrapolated energy. (d) Extrapolated transverse string-
order parameter (see text) of the Haldane phase, with fitting line
0.6036(4)|D − Dc|0.353(1). Calculations for (a) and (b) performed with
PBCs and m = 2000, and for (c) and (d) with OBCs and m = 1000.

the disappearance of edge states, we use the lowest-energy
levels in the Hilbert spaces S tot

z = 1 and S tot
z = 2. Figure 2(a)

illustrates our two-step extrapolation approach to compute the
gap for the extremely numerically challenging point D = 0.95,
which lies very close to Dc. By following this procedure for
all values of D, we show in Fig. 2(b) the approach of the gap
to zero at Dc from both the Haldane and large-D sides. The
closest four points, D = 0.925, 0.95, 1.0, and 1.025, reveal
a very narrow critical region |D − Dc| < 0.1, with critical
exponent ν = 1.472(4).

In a CFT for the Gaussian critical line,20 the gap �

varies linearly and the energy eg varies quadratically with
1/L. For the CFT analysis, we perform DMRG calculations
with periodic BCs (PBCs) using L = 200 and m = 2000
[Figs. 3(a) and 3(b)]. We obtain the ground-state energy eg =
−0.868 566 50(4)J , velocity v = 2.564(2)J , central charge
c = 6β/πv = 1.0006(8), Luttinger parameter K = v/4α =
1.321(1), and critical exponent ν = 1/(2 − K) = 1.472(2).
This last agrees exactly with our gap data in Fig. 2(b),
confirming the consistency and accuracy of our calculations.
Our computed central charge is very close to the expected
value c = 1.15,16 Even data at the precision we attain can-
not determine whether the second derivative of eg has a
discontinuity [Fig. 3(c)], but the data set a very low upper
bound. A continuous function with a point of inflection at Dc

is consistent with the CFT expectation17 that the Gaussian
transition be third order for Jz = 1.

The transverse string-order parameter is defined as

O (l) =
〈
Ŝx

0 exp

(
iπ

l−1∑
p=1

Ŝx
p

)
Ŝx

l

〉
, (3)

and encapsulates the incomplete Z2 × Z2 symmetry of the
Haldane phase.1 To reduce the complexities inherent in
calculating this quantity, we compute correlation functions
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FIG. 4. (Color online) S(D) as in Fig. 1 for Jz = 0.5. (a) Values
of L as indicated. Inset: ln 2 drop in S(L) for D = 0.4. (b) Values of
m as indicated.

only far from the system boundaries,24 in the left-central
block [L/4 − 1000,L/4] of the chain. We take the S tot

z = 1
sector as the ground state. Figure 3(d) shows the results of our
extrapolations to infinite L and m. The string-order parameter
clearly shows excellent scaling behavior in the critical regime.
The scaling exponent ν ′ = 0.353(1) is very close to the value
1/

√
8 predicted in the 2D classical model,1 demonstrating

the common physics of the Gaussian, or preroughening,
transition.

We illustrate with one example the utility of our improved
DMRG calculations for investigating the entire Gaussian
transition line. The point Jz = 0.5 has been considered by
several authors.15–18 Our results (Fig. 4) provide highly
accurate information for this transition: Dc/J = 0.6355(6).
The values of L required to approach criticality are very much
larger than for Jz = 1 [Fig. 4(a)], and the accuracy is lower
because S(D) is a significantly flatter function [Fig. 4(b)]. Our
calculations with PBCs give eg = −0.915 108 89(1)J , v =
2.185(2)J , c = 1.000(1), K = 1.581(1), and ν = 2.387(5) at
Dc, allowing a complete characterization of the physics of
continuously varying exponents.

We have considered the entropy S(m,L) at finite m and
L. In fact, our results in Fig. 1 for m = 1000 and L =
10 000 are fully converged for all values of D outside the
very narrow region 0.94 < D < 1.00. We can deduce the
critical behavior of S around Dc from a massive quantum
field theory,21 in which S = (c/6) ln ξ + A, with ξ = v/�

the correlation length and � ∝ |D − Dc|ν . The convergent
behavior of our data near Dc gives exactly the critical form
S = S0 − (cν/6) ln |D − Dc|, which is shown as the solid
lines diverging at Dc in Figs. 1 and 4.

The Gaussian transition in the S = 1 chain is topological,
in that the parity of the ground state changes from negative
in the Haldane phase to positive in the large-D phase. The
transition is thus associated with a change in the topological
spin Berry phase from π to 0,25 and can be followed by a
method of crossing energy levels (of states in the appropriate
parity sectors). Our high-precision results demonstrate that this
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is indeed a very sensitive indicator of a topological transition.
Among all previous studies,11–19 we find that the only accurate
estimate of Dc was obtained, despite being limited to 16-site
systems, by employing this approach.15

We have demonstrated that the entropy is very valuable
for discussing continuous phase transitions between gapped
states. Many other types of strongly interacting quantum
systems fall in this category, one good example with electronic
degrees of freedom being the ionic Hubbard model (IHM).26

The numerically challenging transition in this case is of
KT type. Continuous gapped-to-gapped transitions for both
bosonic and fermionic systems exist in ultracold atomic
condensates on optical lattices. The Gaussian transition has
not yet been observed in experiment, due to difficulties in
controlling the ratio D/J in condensed-matter systems, and
cold-atom experiments may offer a clean solution to this
problem.

To summarize, we calculate the critical point of the
spin-1 Heisenberg chain with single-ion anisotropy, Dc/J =
0.968 45(8), to very high accuracy. To achieve this we
introduce an improved DMRG scheme, which controls the
absolute error of a large system and allows the elimination of
end-spin effects. We exploit this accuracy to deduce the critical
properties of many quantities at the Gaussian transition. The
energy, entropy, and gap all show good scaling behavior with a
single critical exponent ν = 1.472(2). We apply our technique
also at Jz = 0.5 to illustrate the continuous variability of
exponents on the Gaussian transition line.
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