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Quantum transport of two-dimensional Dirac fermions in SrMnBi2
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We report two-dimensional quantum transport in SrMnBi2 single crystals. The linear energy dispersion leads
to unusual nonsaturated linear magnetoresistance since all Dirac fermions occupy the lowest Landau level in the
quantum limit. The transverse magnetoresistance exhibits a crossover at a critical field B∗ from semiclassical
weak-field B2 dependence to the high-field linear-field dependence. With an increase in temperature, the critical
field B∗ increases and the temperature dependence of B∗ satisfies the quadratic behavior which is attributed
to the Landau-level splitting of the linear energy dispersion. The effective magnetoresistant mobility μMR ∼
3400 cm2/V s is derived. Angular-dependent magnetoresistance and quantum oscillations suggest dominant
two-dimensional (2D) Fermi surfaces. Our results illustrate the dominant 2D Dirac fermion states in SrMnBi2

and imply that bulk crystals with Bi square nets can be used to study low-dimensional electronic transport
commonly found in 2D materials such as graphene.
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Dirac fermions have raised great interest in condensed-
matter physics, as seen by the examples of materials such
as graphene1 and topological insulators (TIs).2 The linear
dispersion between momentum and energy of Dirac fermions
brings forth some interesting properties, such as zero effective
mass and large transport mobility.1,2 In addition to the surface
and interface states in TIs and graphene, Dirac states in
bulk materials were discussed in organic conductors3 and
iron-based superconductors such as BaFe2As2.4,5 Recently,
highly anisotropic Dirac states were observed in SrMnBi2,6,7

where linear energy dispersion originates from the crossing of
two Bi 6px,y bands in double-sized Bi square nets. SrMnBi2
has a crystal structure similar to that of the superconducting
Fe pnictides and is a bad metal.7,8 The Fermi velocity along
the �-M symmetry line is ν

‖
F ≈ 1.51 × 106 m/s, whereas the

Fermi velocity in the orthogonal direction experiences a nearly
one order of magnitude decrease.7,8

One of the interesting properties of Dirac materials is
quantum transport phenomena.9,10 Unlike the conventional
electron gas with parabolic energy dispersion, where Landau
levels (LLs) are equidistant,11 the distance between the lowest
and first LLs of Dirac fermions in a magnetic field is very
large, and the quantum limit where all of the carriers occupy
only the lowest LL is easily realized under moderate fields.12,13

Consequently some quantum transport phenomena such as the
quantum Hall effect and large linear magnetoresistance (MR)
could be observed by conventional experimental methods in a
Dirac fermion system.14–17

Here we show two-dimensional (2D) quantum transport in
bulk SrMnBi2 single crystals. The linear energy dispersion
leads to unusual nonsaturated linear MR since all Dirac
fermions occupy the lowest LL in the quantum limit. The
transverse MR exhibits a crossover at a critical field B∗
from the semiclassical weak-field MR ∼ B2 to the high-
field MR ∼ B dependence. The critical field B∗ increases
with an increase in temperature, and its temperature depen-
dence satisfies quadratic behavior which is attributed to the
Landau-level splitting of the linear energy dispersion. Angular-
dependent MR and oscillation indicates quasi-2D Fermi sur-
faces (FSs). We derive the effective magnetoresistant mobility

μMR ∼ 3400 cm2/V s. Our results illustrate the dominant 2D
Dirac fermion states in SrMnBi2.

Single crystals of SrMnBi2 were grown using a self-
flux method.18 Stoichiometric mixtures of Sr (99.99%), Mn
(99.9%), and excess Bi (99.99%) with a ratio of Sr : Mn :
Bi = 1 : 1 : 9 were sealed in a quartz tube, heated to 1050 ◦C,
and cooled to 450 ◦C, where the crystals were decanted.
X-ray diffraction (XRD) data were taken with Cu Kα

(λ = 0.15418 nm) radiation of a Rigaku Miniflex powder
diffractometer. Transport measurements were conducted in
a Quantum Design Physical Property Measurement System
(PPMS-9) with a conventional four-wire method. The crystal
was cleaved to a rectangular shape with dimensions of 4 ×
1 mm2 in the ab plane and 0.2-mm thickness along the c axis.
For in-plane resistivity ρab(T ), the current path was in the
ab plane, whereas the magnetic field was perpendicular to
the current and parallel to the c axis, except in the rotator
experiments. The c-axis resistivity ρc(T ) was measured by
attaching current and voltage wires to opposite sides of the
platelike crystals.19 High-field MR oscillation was performed
at the National High Magnetic Field Laboratory in the same
configuration as the in-plane MR.

All powder and single-crystal XRD reflections can be
indexed in the I4/mmm space group by RIETICA software
[Fig. 1(a)].20 The determined lattice parameters are a = b =
0.4561(8) nm and c = 2.309(6) nm, in agreement with the
published data.6 The in-plane resistivity ρab(T ) shown in
Fig. 1(b) exhibits a metallic behavior. An external magnetic
field enhances the resistivity. As the temperature is increased,
MR is gradually suppressed and is rather small above ∼60 K.
Resistivity along the c axis [ρc(T )] is nearly two orders of
magnitude larger than ρab(T ) and exhibits a weak crossover
at high temperature. In what follows we will discuss in-plane
MR.

Angular-dependent MR ρ(B,θ ) at T ∼ 2 K is shown in
Figs. 2(a) and 2(b). The crystal was mounted on a rotating
stage such that the tilt angle θ between the sample surface (ab

plane) and the magnetic field can be continuously changed,
with currents flowing in the ab plane perpendicular to the
magnetic field [the inset in Fig. 2(a)]. The magnetoresistance of
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FIG. 1. (Color online) (a) Powder XRD patterns and structural
refinement results. The data were shown by (+), and the fit is given
by the red (gray) solid line. The difference curve (the green/light
gray solid line) is offset. The inset shows the single-crystal XRD
pattern indicating the c-axis orientation of crystal. (b) Temperature
dependence of the in-plane resistivity ρab(T ) (open symbols) and
c-axis resistivity ρc(T ) (filled symbols) in B = 0 T (squares) and
B = 9 T (circles) magnetic fields, respectively.

SrMnBi2 exhibits a significant angular dependence [Figs. 2(a)
and 2(b)]. When B is parallel to the c axis (θ = 0◦), the
MR is maximized and is linear above a characteristic field
(∼1 T). With an increase in the tilt angle θ , MR gradually
decreases and becomes nearly negligible for B in the ab plane
(θ = 90◦).

The response of the carriers to the applied magnetic field
and the magnitude of MR is determined by the mobility in
the plane perpendicular to the magnetic field.11 For nearly
isotropic three-dimensional (3D) FSs, there should be no sig-
nificant angle-dependent MR (AMR). In (quasi-)2D systems,
2D states will only respond to a perpendicular component of
the magnetic field B| cos(θ )|, and consequently longitudinal
AMR and AMR oscillation were observed in some quasi-2D
conductors [such as Sr2RuO4 and β-(BEDT-TTF)2I3] and the
surface states of TIs.14,15,21,22 For example, the MR of the
bulk state in a topological insulator has only ∼10% angular
dependence while the angular dependence of MR in the surface
state is approximately ten times larger.15 Significant AMR was
also observed in some materials with highly anisotropic 3D
FSs such as Bi and Cu, but the period of AMR is determined
by the shape of the Fermi surface and is very different from
the one in 2D systems. In Bi, electrons exhibit a threefold
valley degeneracy and in-plane mass anisotropy, so the AMR
peaks each time when the magnetic field is oriented along the
bisectrix axis and has a 60◦ period.23 In Cu the AMR is more
complex due to the complex FSs and peaks approximately
every 25◦.24

The electronic structure calculations in SrMnBi2 show that
the states near the Fermi energy EF are dominated by the
Bi states in the Bi square nets. Consequently the dominant
FS should be quasi-2D. Angular-dependent resistivity in B =
9 T and T = 2 K shows wide maximum when the field is
parallel to the c axis (θ = 0◦,180◦), and a sharper minimum at
approximately θ = 90◦,270◦ [Fig. 2(a)]. The whole curve of

FIG. 2. (Color online) (a) In-plane resistivity ρ vs the tilt angle
θ from 0◦ to 360◦ at B = 3, 6, and 9 T and T = 2 K. The red
line is the fitting curve using | cos(θ )| (see text). The inset shows
the configuration of the measurement. (b) In-plane resistivity ρ vs
magnetic field B with different tilt angles θ at 2 K. (c) MR SdH
oscillations 	R = Rxx − 〈R〉 as a function of field B below 35 T
with tilt angles θ from 0◦ to 35◦ at 2 K. The dashed lines indicate
the SdH dips at a Landau filling factor of v = 5 and 6. The different
curves are offset for clarification. (d) Position of dips with v = 5 and
6, as well as the position of peaks with v = 5, plotted against the tilt
angle θ . The data are consistent with the 1/| cos(θ )| dependence (red
lines). The inset shows the Fourier transform of the SdH oscillation,
which gives a single frequency of F = 138(7) T.

AMR in SrMnBi2 follows the function of | cos(θ )| very well
with a 180◦ period [red line in Fig. 2(a)]. Moreover, the larger
ρc than ρab in Fig. 1(b) implies that the transfer integral and the
coupling between layers along the c axis is very small. All this
implies that the FSs in SrMnBi2 should be highly anisotropic
and that the mobility of carriers along kz is much smaller than
the value in the kxky plane.

Angular-dependent MR quantum oscillations are directly
related to the cross section of FS. In Fig. 2(c), the in-plane
	R = R − 〈R〉 measured using the same configuration as
shown in the inset of Fig. 2(a) exhibits clear Shubnikov–de
Haas (SdH) oscillations with tilt angles θ from 0◦ to 35◦. In
metals, SdH oscillations correspond to successive emptying
of LLs by the magnetic field and the LL index n is related to
the cross section of FS SF by 2π (n + γ ) = SF

h̄
eB

.14,15,25 For a
2D FS (a cylinder), the cross section has SF (θ ) = S0/| cos(θ )|
angular dependence and the LL positions should be inversely
proportional to | cos(θ )|.14,25 The peak (dip) positions in
SrMnBi2 rapidly shift toward a higher-field direction with an
increase in θ [as indicated by the dashed lines in Fig. 2(c)]. In
Fig. 2(d), the dip positions corresponding to LLs n = 5,6 and
the peak position with n = 5 were plotted against the tilt angle

220401-2



RAPID COMMUNICATIONS

QUANTUM TRANSPORT OF TWO-DIMENSIONAL DIRAC . . . PHYSICAL REVIEW B 84, 220401(R) (2011)

θ and can be described very well by 1/| cos(θ )| [the red lines in
Fig. 2(d)]. Similar behavior was observed in the surface states
of TIs14,15 and some other layered structures.25,26 The Fourier
transform of the SdH oscillation [the inset of Fig. 2(d)] revealed
that the oscillation component shows a periodic behavior in
1/B with a single frequency F = 138(7) T. The small value of
frequency is consistent with the previous value given in Ref. 7
and demonstrates that the dominant FSs are very small since
the Onsager relation is F = (�0/2π2)Ak , where �0 is the flux
quantum and Ak is the cross-sectional area of the FS.25 This
clearly shows that the dominant two-dimensional FSs found
in Fig. 2(b) are indeed the small FSs between the � and M

points, rather than the large FSs at the � point in the Brillouin
zone. Above SdH oscillation combined with the angular MR
clearly suggests that the dominant FSs of SrMnBi2 are small
quasi-2D cylinders along kz, originating from Bi square nets.
In addition, there are still conventional parabolic bands with
three-dimensional characteristics close to the Fermi level,7

causing a small deviation from quasi-2D transport.
Now we turn to the linear nonsaturated in-plane magne-

toresistance in SrMnBi2 [Fig. 3(a)]. The MR is linear over a
wide field range up to 50 K. This behavior extends to very
low fields where the MR naturally reduces to a weak-field
semiclassical quadratic dependence. The crossover from the
weak-field B2 dependence to the high-field linear dependence
can best be seen by considering the field derivative of the
MR, dMR/dB [Fig. 3(b)]. In the low-field range (B < 1 T
at 2 K), dMR/dB is proportional to B (as shown by the
lines in the low-field regions), indicating the semiclassical
MR ∼ A2B

2. But above a characteristic field B∗, dMR/dB

deviates from the semiclassical behavior and saturates to a
much reduced slope (as shown by the lines in the high-field
region). This indicates that the MR for B > B∗ is dominated
by a linear field dependence plus a very small quadratic term
[MR = A1B + O(B2)].

The linear MR deviates from the semiclassical B2 depen-
dence of MR in the low-field region and a saturating MR

FIG. 3. (Color online) (a) The magnetic field (B) dependence
of the in-plane magnetoresistance (MR = [ρ(B) − ρ(0)]/ρ(0)) at
different temperatures. (b) The field derivative of in-plane MR at
different temperatures, respectively. The lines in the high-field regions
were fitting results using MR = A1B + O(B2) and the lines in
low-field regions using MR = A2B

2.

in high fields.11 The unusual nonsaturating linear magne-
toresistance has been reported in the gapless semiconductor
Ag2−δ(Te/Se) (Refs. 27 and 28) with a linear energy spectrum
in the quantum limit.10,28 Recent first-principle calculations
confirmed that these materials have a gapless Dirac-type
surface state.29 Linear magnetoresistance is also observed in
topological insulators14,15 and BaFe2As2 (Ref. 16) with Dirac
fermion states. Another possible origin of the large linear
magnetoresistance is the mobility fluctuations in a strongly
inhomogeneous system.30 This does not apply in SrMnBi2
since our sample is a stoichiometric crystal without doping
and/or disorder. Below we show that the nonsaturating linear
magnetoresistance and the deviation from the semiclassical
transport in SrMnBi2 is due to the linear energy dispersion.

The application of a strong perpendicular external magnetic
field (B) would lead to a complete quantization of the orbital
motion of carriers with linear energy dispersion, resulting
in quantized LLs En = sgn(n)vF

√
2eh̄B|n|, where n = 0,

± 1, ± 2, . . . is the LL index and vF is the Fermi velocity.12,13

Then the energy splitting between the lowest and first LLs
is described by 	LL = ±vF

√
2eh̄B.12,13 In the quantum limit

at a specific temperature and field, 	LL becomes larger than
both the Fermi energy EF and the thermal fluctuations kBT

at a finite temperature. Consequently all carriers occupy the
lowest Landau level and eventually the quantum transport
with linear magnetoresistance shows up. The critical field
B∗ above which the quantum limit is satisfied at a specific
temperature T is B∗ = 1

2eh̄v2
F

(EF + kBT )2.16 The splitting of

LLs in conventional parabolic bands is 	LL = eh̄B
m∗ . Hence

the evolution of 	LL with field for parabolic bands is much
slower than that for Dirac fermion states, and it is difficult to
observe a quantum limit behavior in the moderate-field range.
The temperature dependence of critical field B∗ in SrMnBi2

FIG. 4. (Color online) (a) Temperature dependence of the critical
field B∗ (black squares) and the high-field MR linear coefficient A1

(blue circles) up to 50 K. The red solid line is the fitting results
using B∗ = 1

2eh̄v2
F

(EF + kBT )2. (b) Temperature dependence of the

effective MR mobility μMR extracted from the weak-field MR.
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clearly deviates from the linear relationship and can be well
fitted by B∗ = 1

2eh̄v2
F

(EF + kBT )2, as shown in Fig. 4(a). The

fitting gives the Fermi velocity vF ∼ 5.13 × 105 ms−1 and
	1 ∼ 4.97 meV. This confirms the existence of Dirac fermion
states in SrMnBi2.

In a multiband system with both Dirac and conventional
parabolic-band carriers (including electrons and holes) the
magnetoresistance in the semiclassical transport can be de-
scribed as MR = σeσh(μe+μh)2

(σe+σh)2 B2, where σe,σh,μe,μh are the
effective electron and hole conductivity and mobility in zero
field, respectively, when the Dirac carriers are dominant
in transport.16,17 Then the coefficient of the low-field B2

quadratic term A2 is related to the effective MR mobility√
A2 =

√
σeσh

σe+σh
(μe + μh) = μMR, which is smaller than the

average mobility of carriers μave = μe+μh

2 and gives an
estimate of the lower bound. Figure 4(b) shows the dependence
of μMR on the temperature. At 2 K, the value of μMR is
∼3400 cm2/V s. The large effective MR mobility also implies
that Dirac fermions dominate the transport behavior. With an
increase in temperature, the value of μMR and the coefficient of
the high-field linear term A1 [Fig. 4(a)] decrease sharply. This
is due to thermal fluctuation smearing out the LL splitting.

In summary, we demonstrate quantum transport of 2D Dirac
fermion states in bulk SrMnBi2 single crystals. The bands
with linear energy dispersion lead to a large nonsaturated

linear magnetoresistance since all Dirac fermions occupy the
lowest Landau level in the quantum limit. The transverse
magnetoresistance exhibits a crossover at a critical field B∗
from a semiclassical weak-field B2 dependence to a high-field
linear-field dependence. With an increase in temperature,
the critical field B∗ increases and the temperature dependence
of B∗ satisfies quadratic behavior which is attributed to
the Landau-level splitting of the linear energy dispersion.
The effective magnetoresistant mobility μMR ∼ 3400
cm2/V s, comparable to values observed in graphene, is
observed. The angle dependence of magnetoresistance shows
a | cos(θ )| dependence while the LL positions in SdH os-
cillations are inversely proportional to | cos(θ )|, indicating
dominant quasi-2D Fermi surfaces. Our results show that the
crystals with Bi square nets can host phenomena commonly
observed so far in 2D structures and materials such as
graphene.
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