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Within a gauge approach to the t-J model, we propose a non-BCS mechanism of superconductivity (SC)
for underdoped cuprates. We implement the no-double-occupancy constraint with a (semionic) slave-particle
formalism. The dopant in the t-J model description generates a vortexlike quantum distortion of the
antiferromagnetic (AF) background centered on the empty sites, with opposite chirality for cores on the two Néel
sublattices. Empty sites are described in terms of spinless fermionic holons and the long-range attraction between
spin vortices on two opposite Néel sublattices serves as the holon pairing force, leading eventually to SC. The
spin fluctuations are described by bosonic spinons with a gap generated by scattering on spin vortices. Due to the
no-double occupation constraint, there is a gauge attraction between holon and spinon, binding them into a physical
hole. Through gauge interaction the spin-vortex attraction induces the formation of spin-singlet [resonance valence
bond (RVB)] spin pairs by lowering the spinon gap, due to the appearance of spin-vortex dipoles. Lowering the
temperature, the proposed approach anticipates two crossover temperatures as precursors of the SC transition: at
the higher crossover a finite density of incoherent holon pairs are formed, leading to reduction of the hole spectral
weight, while at the lower crossover a finite density of incoherent spinon RVB pairs is also formed, giving rise
to a gas of incoherent preformed hole pairs with magnetic vortices appearing in the plasma phase, supporting a
Nernst signal. Finally, at an even lower temperature the hole pairs become coherent, the magnetic vortices become
dilute, and SC appears beyond a critical doping. The proposed SC mechanism is not of the BCS type, because
it involves a gain in kinetic energy, due to the lowering of the spinon gap, and it is “almost” of the classical
three-dimensional XY type. Since both the spinon gap describing short-range antiferromagnetism order, and the
holon pairing generating SC, originate from the same term in the slave-particle representation of the t-J model, the
proposed approach incorporates a strong interplay between antiferromagnetism and SC, giving rise to a universal
relation between Tc and the energy of the resonance mode, as observed in neutron-scattering experiments.
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I. INTRODUCTION

The high-temperature superconductivity (SC) in cuprates,
discovered 25 years ago,1 still remains a major challenge in
condensed-matter physics. In spite of the enormous progress
made in materials synthesis, crystal growth, experimental
studies of physical properties, and theoretical interpretation,
there is still no consensus yet regarding the anomalous
normal-state properties and SC mechanisms in these cuprate
compounds. There is a recent review article2 on various
approaches attacking this extremely difficult problem, in-
cluding resonance valence bond (RVB) slave-particle gauge
approaches, spin fluctuation models, stripe models, phonons,
three-band scenario, etc. We share many viewpoints expressed
there, and to save space, we refer the readers to that review
article, not repeating those comments here.

In this paper we propose a mechanism of SC in hole-
underdoped high-T c cuprates via the spin-charge gauge ap-
proach to the two-dimensional (2D) t-J model which describes

the Cu-O planes.3 In this approach the t-J model (with t/J

as the main parameter) satisfying the no-double-occupancy
constraint, is treated systematically within the same set of
approximations, to study both normal-state and SC properties.
The exchange J term giving rise to antiferromagnetism is
also serving as the “glue” leading to SC, thus implementing
the interplay of antiferromagnetism and SC in an explicit
form. The proposed SC mechanism is not of the BCS
type, and is an implementation of the basic ideas advocated
by P. W. Anderson, where SC is attributed to the strong
correlation effects in doped Mott insulators.4–6 Unlike most
of the slave-particle approaches to underdoped cuprates, it
involves a gain in kinetic energy by lowering the spinon
gap due to the formation of spin-vortex dipoles. The main
features of this non-BCS description of SC are consistent with
the experimental results in underdoped cuprates, including
a natural d-wave SC pairing parameter, and especially the
contour plot of the Nernst signal.7,8 We can also derive the SC
transition as “almost” of the classical three-dimensional (3D)
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XY type, while the calculated transition temperature shows
a universal ratio to the resonance mode energy observed in
neutron experiments.9

Our formalism basically belongs to the “strong correlation–
slave-particle tent,’ where a U(1) field is introduced to gauge
the global charge, while a SU(2) field is introduced to gauge
the global spin. Through the gauge field, a vortexlike quantum
distortion of the AF background is generated around the empty
site (described in terms of fermionic spinless holon) with
opposite chirality for cores on two Néel sublattices. In the
presence of these vortices the spin excitations (bosonic spin-
1/2 spinon), originally gapless without doping, corresponding
to the long-range AF order, acquire a finite gap due to
scattering on these vortices (similar to the wave localization of
light propagating in random media), and the long-range (LR)
antiferromagnetic order (AFO) is converted to a short-range
(SR) order. Within this approach the physical hole is a bound
state of holon and spinon with a glue (binding force) coming
from an emergent U(1) slave-particle gauge field. Here the
spinon and holon are neither confined (as in the ordinary Fermi
liquid), nor decoupled [as in the one-dimensional (1D) t-J
model in the small J limit], but rather forming a “composite
particle”–physical hole in a strongly correlated system. It is
no longer a “neat” quasiparticle, but rather has a strongly
temperature-dependent lifetime due to the gauge field (coupled
to holons with a finite Fermi surface). Similarly, the magnon
is a composite particle made of spinon and antispinon, again
with the “gauge glue.” In fact, the composite characteristics
are responsible for all exotic properties in the “pseudogap
phase” (PG). In particular, the interplay of the SR AFO
(exhibited as a finite magnon mass gap) with the dissipative
motion of charge carriers, showing up as the lifetime effect
of the physical hole, results in a metal-insulator crossover,
a pronounced phenomenon in the underdoped cuprates. A
number of peculiar features of cuprates in the normal state
can be well explained within this scheme.3 Here this approach
is generalized to consider the SC state.

The gluing force of the SC mechanism is an attraction
between holons generated by spin vortices on two opposite
Néel sublattices, centered around the empty sites (holes). This
attraction which shares the same origin of spin-exchange J

term leading to AFO, was neglected as a subleading term in
considering the normal-state properties. Physically, the hole
is assigned an additional “pseudospin” index marking the
belonging Néel sublattice in a range characterized typically
by the AF correlation length, as long as the SR AFO persists.
This attraction describes the tendency toward vortex-antivortex
binding, or reduction of the AF exchange energy loss. In fact,
the formation of the vortex dipoles effectively reduces the
density of free vortices scattering off the spin waves, and as a
consequence the kinetic energy of spinon increases and the AF
correlation is thus enhanced. To materialize the SC transition
we propose the following three-step scenario.

At the highest crossover temperature denoted as Tph, a
finite density of incoherent holon pairs is formed. We propose
to identify that temperature with the experimentally observed
(upper) PG temperature, where the in-plane resistivity deviates
from the linear behavior. A BCS-like d-wave pairing of holons
is derived by “superposing” two p-wave-like pairings in a
reduced Brillouin zone. However, the holon pairing alone is

not enough for SC to appear. Again, through the “gauge glue”
coming from the U(1) slave-particle gauge field, which is so
crucial for the interpretation of the exotic properties for the
PG phase, the spin-vortex attraction induces the formation of
spin-singlet (RVB) spinon pairs with a reduction of the spinon
gap. Physically, the spinons will feel “less disturbance” due to
the formation of vortex-antivortex pairs (dipoles).

At the intermediate crossover temperature, denoted as Tps ,
a finite density of incoherent spinon RVB pairs is formed,
which being combined with the holon pairs, gives rise to a gas
of incoherent preformed hole pairs. We propose to identify this
temperature with the experimental crossover corresponding to
the appearance of the Nernst signal. The calculated contour
plot of the spinon pairing parameter is compared with that of
the Nernst signal,8 showing a good agreement.

Finally, at an even lower temperature, i.e., the SC transition
temperature Tc, both holon pairs and RVB spinon pairs, hence
also the hole pairs, become coherent. It will be shown that
the phase coherence is established via a phase transition of
a planar gauged quantum XY type, almost identical to that
of the classical 3D XY model. The SC transition temperature
is calculated as a function of doping concentration, and is
compared with the scaled value of the resonance mode energy
observed in neutron experiments9 to show the universal ratio
between these two quantities anticipated from our theoretical
treatment.

The rest of the paper is organized as follows. Section II
is a brief introduction to our semionic spin-charge gauge
approach, to make the paper more self-contained. Section III
is devoted to the holon pairing mechanism. In Section IV we
discuss the spinon pairing, while in Sec. V the SC transition is
considered. Discussions and conclusions are given in Sec. VI.
Several technical derivations are outlined in the Appendixes.
A preliminary report of the present work has already appeared
in Ref. 10.

II. THE SPIN-CHARGE GAUGE APPROACH

A. Slave semions

In this section we present an outline of our slave-particle
approach using the “semionic” spin-charge decomposition,
applicable only in 2D (and 1D) systems. We assume that the
main features of the low-energy physics of the hole-doped
cuprates can be captured by the t-J model

Ĥt-J = PG

[
− t
∑

〈i,j〉,σ
ĉ
†
i,σ ĉj,σ + H.c. − μ

∑
j

n̂j

+J
∑
〈i,j〉

(
�Si · �Sj + 1

4
n̂i n̂j

)]
PG, (1)

where PG is the Gutzwiller projection imposing no-double-
occupation condition and the lattice sites correspond to those
of the Cu atoms in the CuO2 planes of the cuprates. The particle
number and spin operators are defined as

n̂i =
∑

σ

ĉ
†
iσ ĉiσ , �Si =

∑
αβ

ĉ
†
iα

�σαβ

2
ĉiβ . (2)
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t , J , and μ in Eq. (1) are the hopping amplitude, spin
exchange, and chemical potential, respectively. The hole
operator carries both charge and spin degrees of freedom,
with no-double-occupation constraint. Formally they can be
treated separately by the standard slave-particle approach,
ĉiσ = b̂iσ ĥ

†
i , where ĥi is a fermionic holon operator, and b̂iσ is a

bosonic spinon operator. The no-double-occupation condition
is automatically ensured by the spinless fermion, while the
correct counting of degrees of freedom is imposed by the
constraint

∑
σ b̂

†
iσ b̂iσ = 1 on the b̂ field, so that n̂i = ĥi ĥ

†
i =

1 − ĥ
†
i ĥi . At half filling the charge degree of freedom is frozen,

then the slave-particle transformation reduces to the standard
Schwinger-boson approach.

In 2 + 1-dimensional systems, one can bind statistical
fluxes to particle excitations, resulting only in a change of
the statistics. This is achieved in the Hamiltonian formalism
by minimally coupling the matter fields to suitable composite
“statistical gauge-field operators.” The introduction of these
fluxes in the Lagrangian formalism is materialized via sta-
tistical Chern-Simons gauge fields. In our case, holes carry
both charge and spin degrees of freedom, so we associate two
statistical gauge fields with hole operators, one of which is a
U(1) gauge field B coupled to the holon ĥ field and related to
the charge, while the other is an SU(2) field V coupled to the
spinon b̂ fields and related to the spin. By carefully choosing
the coupling constants of the corresponding Chern-Simons
terms, we can keep the original hole field fermionic. In the
Hamiltonian formalism, the statistical gauge field operators
can be chosen as follows:

Bμ(�x) = 1

2

∑
�l

n̂�l∂μ arg(�x − �l),
(3)

V a
μ (�x)σa = 1

i
e−i
∑

l Ŝ
b
l σ b arg(�x−�l)∂μei

∑
l Ŝ

b
l σ b arg(�x−�l),

where the sums are carried over lattice sites �l, while the sum
over the spin indices (a,b = x,y,z) is understood hereinafter
and the function arg(�x) is the angle of the vector �x. The
corresponding U(1) and SU(2) fluxes, �h and �s , bound to
the hole at site �j are given by

ei�h( �j ) = e
i
∫∞

�j dxμ Bμ(�x) = ei
∑

�l n̂�l arg( �j−�l),

(ei�s ( �j ))αβ = (Pe
i
∫∞

�j dxμ Vμ(�x))αβ

= (ei
∑

�l Ŝ
b
�l σ b arg( �j−�l))αβ, (4)

where α,β = 1,2 are the SU(2) spin indices. The integration
runs over a path joining �j to infinity and P denotes the path
ordering. Binding the holon to the U(1) flux generated by
B and the spinon to the SU(2) flux generated by V chosen
as in Eq. (3) one obtains U(1)- and SU(2)-invariant fields,
respectively, both obeying semionic statistics,11,12 i.e., their
interchange produces a ±i factor, intermediate between the
bosonic +1 and the fermionic −1 case, whence the name
“semion.”13

This semionic approach is quite suitable to study the physics
of holes dressed by a spin vortex as described in the Intro-
duction because the SU(2)-gauge field naturally incorporates
the spin vortices. To show that V a

μ is indeed the gauge field
associated with spin vortices, let us consider the simplest case

of one hole located at �l with spin Ŝa . Then V a
μ (�x) simplifies

to Ŝa∂μ arg(�x − �l) and using εμν∂μ∂ν arg(�x − �y) = δ(�x − �y)
we get

εμν
[
∂μV a

ν (�x)
] = Ŝaδ(�x − �l). (5)

Equation (5) is a spin analog of the charged vortex introduced
by Laughlin in the fractional quantum Hall effect and, in
fact, a semionic representation of the electron was advocated
originally by him in the early days of high-temperature SC
boom.14

B. Improved mean-field approximation

In this section we sketch the key approximations in-
volved in our approach to the “normal” state; one of these
approximations (the optimization procedure) appears rather
unconventional in slave-particle approaches.

Being too difficult to be solved exactly, the gauge-field
approach outlined above provides a reasonable base of an
improved mean-field analysis12 that, dimensionally reduced,
works quite well for a one-dimensional t-J model,15 also
correctly reproducing the nontrivial critical exponents of its
correlation functions (the spin vortices become kink strings
in 1D). In two dimensions, this mean-field theory involves
an optimization of the spin configuration around holons
dressed by vortices, although it can be carried out only
approximately, not rigorously as in the one-dimensional case.
In the improved semionic mean-field approximation (MFA),
the spinon configurations around holons are optimized leading
to a new bosonic spinon on the optimized spinon background,
denoted by ẑ, which is therefore different from the b̂ field in
the standard slave fermion approach, but still satisfying the
constraint ẑ

†
iαẑiα = 1. From now on it is this spinon that we

refer to. In the adopted MFA we neglect the holon fluctuations
in B and the spinon fluctuations in V. This leads to a much
simpler form of the two statistical gauge fields denoted by B̄
and V̄, respectively, to distinguish them from the exact values.
The B̄ field is actually a static one, without dynamics,

B̄μ ≈ 1

2

∑
l

∂μ arg(�x − �l), (6)

and it provides a π -flux phase factor eiB̄ij per plaquette for
the holon field because

∫
� B̄ij = π , where � denotes the

boundary of the plaquette. For the SU(2) gauge field only
the σz component survives:

V̄ z
μ(x) ≈ −

∑
l

ĥ
†
l ĥl

(−1)|l|

2
∂μ arg(�x − �l), (7)

with a pure-gauge static term being gauged away. Note that
there is the holon number operator in the right-hand side of
Eq. (7), which means that the spin vortex is always centered on
the hole, and its topological charge (named chirality) is (−1)|l|
depending on the parity of the site index, where |l| = lx + ly .
The effect of the optimal spin flux is then to attach a spin
vortex to the holon, with opposite chirality on the two Néel
sublattices, with the rigidity holding up a vortex being provided
by the AF background. These vortices take into account the
long-range quantum distortion of the AF background caused
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by the insertion of a dopant hole, as first discussed in Ref. 16.
As in the one-dimensional case the optimization also involves
a spin flip associated to every holon jump between different
Néel sublattices, hence in the t term the spinons appear
in the “ferromagnetic” Affleck-Marston (AM)17 form χ̂ s

ij =
(ẑ†i e

iV N
ij σz ẑj )#(i), where #(i) denotes complex conjugation if i

belongs to the “odd” sublattice, with a phase ambiguity left by
the optimization, whereas in the J term it appears in the “AF”
RVB form �̂s

ij = εαβ ẑiα(eiV N
ij σz ẑj )β , where

V N
ij =

∫ j

i

dxμ V̄
z

μ(�x) ≈ V̄ z
μ

(�i + �j
2

)
. (8)

The above AM/RVB dichotomy is peculiar to the semion
approach involving the SU(2) spin rotation group even in 1D,
where it can be rigorously derived. It does not appear in the
standard U(1) slave fermion or boson approaches.

In the above MFA the hole field operator can be decomposed
as a product of the holon and spinon operators along with
fluxes:

ĉiσ = ĥ
†
i e

i�h
i (ei�s

i ẑi)σ . (9)

The resulting MFA of the t-J model Eq. (1) is written in
terms of holon fields ĥi and spinon field ẑi as

Ĥt-J ≈ t
∑
〈i,j〉

ĥ
†
j e

iB̄ij ĥi χ̂
s
ij + H.c. − μ

∑
i

ĥ
†
i ĥi

+ J

2

∑
〈i,j〉

[
(1−ĥ

†
i ĥi−ĥ

†
j ĥj )�̂s†

ij �̂s
ij+ĥ

†
i ĥi ĥ

†
j ĥj �̂

s†
ij �̂s

ij

]
.

(10)

The Euclidean Lagrangian used in the path-integral for-
malism is then obtained by replacing the field operators ĥ,ĥ†

and ẑ,ẑ† with Grassmann (h,h∗) and complex number (z,z∗),
respectively, and adding the time-derivative terms∑

i

h∗
i ∂0hi + (1 − h∗

i hi)(−1)|i|z∗
i ∂0zi . (11)

The Hamiltonian equation (10) is our starting point for
describing the high-Tc cuprate SC. At the mean-field level,
the first two terms describe the motion of the holons, which
are coupled to the spinons through the AM factor whose
modulus we treat as a constant, giving a small correction to
the hopping amplitude t of holons that we neglect. Its phase
factor ∼eiθij instead cannot be neglected, and it provides a
gluing force between the spinon and holon. Then the mean-
field Hamiltonian of holon reads

Ĥ 0
h = t

∑
〈i,j〉

ĥ
†
j e

i(B̄ij +θij )ĥi + H.c. − μ
∑

i

ĥ
†
i ĥi . (12)

In two-dimensional bipartite lattices for fermions in a
magnetic field the optimal flux per plaquette is π at half-filling
(Lieb theorem18) and numerically it is also true for fillings
close to 1/2 at low temperatures, whereas it is zero sufficiently
far away from half-filling. Therefore the optimal flux in a
plaquette for (B̄ij + θij ) is arguably π for small doping and
low temperatures, and 0 for sufficiently high dopings and/or
high temperatures. We conjectured that this corresponds to
the crossover between the pseudogap phase (PG) and the

“strange metal phase” (SM) as varying the doping or tem-
perature in the cuprates, where PG is the “lower pseudogap”
in the literature identified with the inflection point in resistivity
and the broad peak in the specific-heat coefficient γ . This con-
jecture is supported by the comparison of the behavior of the
theoretically derived crossover temperature T ∗ ≈ t

9π
| ln δ|,3

with experimental data, where the appearance of | ln δ| is due
to the long-range tail of spin-vortex interactions. Therefore we
fix the phase ambiguity left by the optimization in the AM
term by choosing this phase zero for PG since B̄ already has
π flux and is opposite to B̄ for SM to effectively cancel B̄.

If we replace the holon density by its average in MFA, the
third term in Eq. (10) describes the motion of z spinons with
J renormalized to J̃ ≡ J (1 − 2δ). Without doping, using the
identity

∣∣�̂s
ij

∣∣2 + ∣∣χ̂ s
ij

∣∣2 = 1, (13)

holding for bosonic spinons, together with Eq. (11) in the
continuum limit it leads to a standard nonlinear σ model
describing the low-energy physics of the AF background. With
doping the spinons are scattered by holons dressed by spin
vortices and that leads to a short-range AF correlation. Such a
process is revealed by expanding the SU(2) phase factor inside
the RVB factor in the third term of Eq. (10) to the second order,
obtaining in the continuum limit, self-consistently in the region
with unbroken SU(2) spin symmetry

J̃

∫
d2x V̄

z2
μ (�x)z∗

α(x)zα(x). (14)

In MFA we replace V̄ z2
μ , positive definite by definition, by a

statistical average. The spatial average of V̄ z2
μ (�x) at fixed holon

position �xi by using Eq. (7) reads∑
�xi , �xj

(−1)|i|+|j |
−1(�xi − �xj ), (15)

where |i| ≡ |�xi | and 
 is the two-dimensional lattice
Laplacian.12 Equation (15) appears as the energy of a two-
dimensional Coulomb gas with the lattice spacing as an
ultraviolet cutoff, which can be evaluated at fixed density δ

by a quenched approximation leading to a doping-dependent
mass term for spinon, which in the low doping limit is given by

m2
s (δ) = 〈V̄ z2

μ

〉 ≈ 1
2 |δ ln δ|, (16)

consistent with AF correlation length [ξAF ∼ (ms)−1] at small
δ extracted from the neutron experiments.19 In ξAF the factor
δ−1/2 is just the mean distance between holes, while the factor
| ln δ| comes from the long-range tail of the vortex interactions
and turns out to be a key feature in many physical quantities
in our approach. The spinon gap is also crucial for eliminating
the overcounting of low-energy degrees of freedom often en-
countered in slave-particle approaches, giving rise to problems
in the computation of thermodynamic quantities.20 In fact,
because of the spinon gap, the low-T thermodynamics in our
approach is essentially dominated by the gapless holons, while
the contributions of the transverse and scalar gauge fluctuations
to the free energy almost cancel each other.21 In the Lagrangian
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form, our massive σ model derived from Eqs. (11), (14), and
(16) can be conveniently written as

Ls = 1

g

∫
d3x
[|(∂0 − iA0)zα|2 − v2

s |(∂μ − iAμ)zα|2

+m2
s (δ)z∗

αzα

]
(x), (17)

where an implicit momentum cutoff is implied inside the
magnetic Brillouin zone (MBZ), g = 8J̃ a2 with a lattice
spacing, vs = J̃ a, and the emergent gauge field Aμ is
generated by the fluctuations of spinons:

Aμ ≈ ei �Q·�x 1

i
z†α(x)∂μzα(x) + · · · , (18)

with �Q the AF wave vector, and it corresponds to the long
wavelength limit of θij , the phase factor of AM factor χij .
Note that in the massive σ model Eq. (17), the constraint
z†z = 1 on the z field is relaxed. Holons and spinons are
coupled by the gauge field Aμ, giving rise to overdamped
resonances for holes and magnons with strongly T -dependent
lifetimes.3 This dependence originates from the dynamics of
the transverse mode of the gauge field that is dominated by
the contribution of the gapless holons. Their Fermi surface
generates an anomalous skin effect, with momentum scale

Q ≈ (T k2
F

)1/3
, (19)

known as the Reizer momentum,22,23 where kF is the holon
Fermi momentum measured from the Dirac point in the
π -flux phase. For the appearance of the Reizer skin effect
the presence of a gap for spinons is crucial, because gapless
spinons would Bose condense at low T thus gapping the
gauge field through the Anderson-Higgs mechanism and
destroying the T -dependent skin effect that reduces the
coherence of the hole and magnon. The transport physics of
PG is dominated by the interplay between the short-range AF
order due to spinons and the thermal diffusion induced by
the gauge fluctuations triggered by the Reizer momentum,
producing in turn the metal-insulator crossover.3

More generally, the above semionic mean-field treatment
based upon a spin-charge gauge approach to the t-J model
provides an adequate description of many transport and
thermodynamic properties of high−Tc cuprates in a PG
region3,12,21,24–26 whose doping-temperature behavior is in
qualitative, and sometimes even semiquantitative, agreement
with experimental data. In the following, we present details
of the non-BCS mechanism for high-Tc SC outlined in the
Introduction. Here we just rewrite the SC order parameter in
the approximation adopted above:

�̂c
ij = εαβ ĉiαĉjβ ∼ ĥ

†
i ĥ

†
j �̂

s
ij e

iB̄ij , (20)

which can be obtained by Hubbard-Stratonovich transforma-
tion in the path-integral formalism. In the next section we
discuss the holon pairing 〈ĥ†

i ĥ
†
j 〉, while in Sec. IV we discuss

the spinon pairing 〈�̂s
ij 〉.

III. HOLON PAIRING

A. Holon Hamiltonian with attractive interaction

The Hamiltonian equation (12) in PG describes the motion
of holons which are subjected to a staggered π -flux field

Right FS
III

I

IV

II

Left FS

(a)

(b)

III

III IV

FIG. 1. The Brillouin zone and Fermi surface of a free holon with
π flux. The folded MBZ with dashed lines as a boundary in (a) is
equivalent to the rectangular in (b).

and the gauge field θij , coupling them to spinons. To get
the low-energy physics of holons, we first neglect the gauge
field θij generated by spinons, and it will be reinserted (in
an approximate form) by Peierls substitution. The remaining
terms can be solved exactly. We find that the holon spectrum
involves two Dirac cones due to the presence of the π flux
(Hofstadter mechanism).27 The Fermi surface of a holon is
a small one with Fermi wave vector kF ≈ πδ.24 Due to
the staggered π flux, we divide the square lattice into two
sublattices, A (even sites) and B (odd sites). On each sublattice,
the holon’s annihilation operators are denoted by â and b̂,
respectively. The Hamiltonian equation (12) of free holon can
then be recast in a quadratic form:

Ĥ h
0 ∼
∑

�k
(t�kâ

†
�kb̂�k + H.c.) − μ

∑
�k

(â†
�kâ�k + b̂

†
�kb̂�k), (21)

where the momentum runs within the MBZ and t�k =
2t(cos kxe

iπ/4 + cos kye
−iπ/4). It is straightforward to obtain

the spectrum ε(�k) = ±|t�k|, with a Fermi surface consisting of
four half circles around (±π/2, ± π/2), as shown in Fig. 1(a),
where the blue lines are the boundary of MBZ. The Fermi
energy is approximately tδ. There are two primitive reciprocal
vectors, �π± ≡ (±π,π ) by which we can translate the MBZ
in the third and fourth quadrants to get another equivalent
rectangular MBZ as shown in Fig. 1(b), which consists of
two Dirac cones centered around �QL = (−π/2,π/2) (left) and
�QR = (π/2,π/2) (right), respectively. In this transformation,

we note that â�k+�π± = â�k and b̂�k+�π± = −b̂�k , where a minus sign

appears for the b̂ field defined on odd sublattice, but the form
of Hamiltonian equation (21) is still invariant, because t�k also
changes sign after translation.

Accordingly, all holon operators can be labeled by the
“flavor” index α = L,R distinguishing left and right Dirac
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zones, as in the free holon Hamiltonian Ĥ h
0 =∑α=L,R Ĥ h

0,α

with

Ĥ h
0,α =

∑
�k

(tα,�kâ
†
α,�kb̂α,�k + H.c.)

−μ(â†
α,�kâα,�k + b̂

†
α,�kb̂α,�k), (22)

where tR,�k ≈ 2t(−kx + iky) and tL,�k ≈ 2t(kx + iky). In

Eq. (22), the momentum �k only takes values in the range
[−π/2,π/2] × [−π/2,π/2], which is one-quarter of the orig-
inal BZ.

Now we consider the holon-holon interactions. As shown
in Sec. II B, the last term in Eq. (10) is repulsive for holons
which cannot be the pairing force between holons. Meanwhile,
the third term in Eq. (10) implies an effective long-range
interaction between holons mediated by the spin vortices
bound to holons, which turns out to be attractive between
different Néel sublattices. This leads to an instability of holons
toward pair formation and is our key attractive force. Such an
effect in the simplest form was first realized by Trugman28 in
the early days of high-Tc research, who pointed out that putting
two holes next to each other on two Néel sublattices would save
energy J . We include this effect in MFA by introducing a term
coming from the average of z†z in Eq. (14) obtaining

Jeff

∑
i,j

(−1)|i|+|j |�−1(i − j )ĥ†
i ĥi ĥ

†
j ĥj . (23)

In the static approximation for holons, Eq. (23) describes a
2D lattice Coulomb gas with charges ±1 depending on the
Néel sublattice and coupling constant Jeff = J̃ 〈z†z〉, where the
average 〈z†z〉 can be estimated from the free spinon spectrum
[which will be given in the next section; see Eq. (50) by setting
�s

0 = 0] with the following result:

Jeff = J̃

∫
d2 �q(q2 + m2

s

)−1/2

= J (1 − 2δ)
(√

�2 + m2
s − ms

)
, (24)

where � is the momentum cutoff for spinon excitations. For
2D Coulomb gases with the above parameters, pairing appears
below temperature Tph ≈ Jeff/2π [a more precise estimation is
given later; in fact, Tph is the upper PG crossover temperature
determined by �h

0(kF ) of Eq. (34)], which turns out to be
inside the SM “phase.” Hence the whole PG phase lies below
Tph. However, we will discuss only the SC arising from the
PG phase, anticipating that extrapolation to the SM phase will
introduce only quantitative changes (actually the role of a next-
nearest-neighbor hopping t ′ term appears relevant in SM.29

To deal exactly with the 2D Coulomb interaction of Eq. (23)
would be a formidable task. We instead adopt a continuum
approximation for the effective interaction, valid in the large-
scale limit, taking into account the Coulomb screening effect,
with a screening length �s ∼ 1/

√
δ in the Thomas-Fermi

approximation.30 In the momentum space it reads

Veff( �p) ≈ Jeff

p2 + �−2
s

, (25)

attractive for opposite “Coulomb” charges, i.e., for holons on
opposite Néel sublattices, and repulsive for equal Coulomb
charges, i.e., for holons on the same Néel sublattice. The

large-scale attractive holon interaction then has the following
simplified form:

Hh
I ∼ −

∑
�p1 �q1 �p2 �q2

Veff(�q1 − �q2)

× δ( �p1 − �p2 + �q1 − �q2)â†
�p1
b̂
†
�q1
b̂�q2 â �p2 . (26)

Due to the long-range tail of vortex-vortex interaction,
the pairing strength for large momentum [�q ∼ (π,0)] transfer
between different Dirac cones is much smaller than that for
small momentum (�q ∼ 0) transfer. Hence, in the presence of
interaction, the left and right flavors of holons can still be de-
coupled approximately. Considering the BCS approximation,
where pairing occurs between holons in states with opposite
momentum, one obtains the decoupled Hamiltonians Hh

I,α for
each flavor α,

Ĥ h
I,α = −

∑
�p,�q

Veff( �p − �q)â†
α, �pb̂

†
α,− �pb̂α,−�q âα,�q . (27)

We shall now focus only on the quasiparticles near the
Fermi circles, which allows us to make the following gauge
transformations for the holon operators with different flavors
separately:

âα,�k → âα,�ke
iθα,�k/2, b̂α,�k → b̂α,�ke

−iθα,�k/2, (28)

where the angles θα,�k are chosen to cancel the phase of t�k so
that the kinetic term reads

Ĥ h
0,α ≈ vF k(â†

α,�kb̂α,�k + H.c.) (29)

with vF = 2t . Equations (27) and (29) are our basic equations
to describe the pairing of holons.

B. d-Wave pairing

In this section, we show that the d-wave pairing symmetry
is composed naturally of two p-wave pairings, px + py in
the left and px − py in the right Dirac cone, an idea first
proposed by Sushkov et al.31,32 in a different setting. The
corresponding pairing parameter has a form respecting the
C4v rotation symmetry,

�h

α,�k =
{

�h(k) kx−ky

k
if α = R

�h(k)−kx−ky

k
if α = L,

(30)

where the momentum �k is measured from �QR,L, respectively,
and the magnitude of the order parameter is the same for
both R and L flavors. Note that we are now working with
the rectangular magnetic Brillouin zone [see Fig. 1(b)] and
the p-wave pairing takes place within the two circular Fermi
surfaces. If transformed back to diamond magnetic Brillouin
zone as in Fig. 1(a), the order parameters in regions III and
IV change their signs due to the fact that b̂�k+�π± = −b̂�k , which
leads to a perfect d-wave pairing in the original Brillouin zone.

Applying the standard BCS treatment we get the following
MF Hamiltonian:

Ĥ h
α = Ĥ h

0,α +
∑

�k

(
�h

α,�kâ
†
α,�kb̂

†
α,−�k + H.c.

)
, (31)
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where the order parameter satisfies the gap equations,

�h

α,�k =
∑

�q
Veff(�k − �q)

�h
α,�q

2εα,�q
tanh

(
εα,�q
2T

)
. (32)

It turns out that Eq. (31) has two decoupled branches of
solutions (see Appendix A for details). One of them with higher
energy without Fermi surface (FS) provides a matrix element
suppressing the spectral weight of the original holon field ĥ

outside the MBZ as in PG.24 The other one is responsible for
the low-energy physics of holon pairing which we will focus
on in the following and its spectrum has a simple BCS form

εh
�k =
√

(vF k − μ)2 + |��k|2. (33)

As common for nonweakly coupled attractive Fermi systems,
the MF temperature at which �h becomes nonvanishing should
be identified with the pairing temperature Tph.

For brevity, we consider the p-wave order parameter in the
right cone, which has the form �h

�k = �h
0(k)(cos θ�k − sin θ�k).

The radial part �h
0(k) is decoupled from its angular part

approximately (see Appendix A), which is plotted in Fig. 2
for different values of the screening length �s . We observe
that holons near the Fermi surface take part in pairing which
results in a peak of �h(k) centered around k ∼ kF . Actually,
the number of holons participating in pairing is determined by
the screening length �s . If we increase �s , a higher percentage
of holons can interact with each other at longer distances, and
the peak of �h(k) in Fig. 2 becomes higher and wider, which
implies a bigger fraction of holons is involved in pairing. A
more rigorous treatment would actually involve taking into
account self-consistently the UV cutoff and chemical potential
change, as discussed, e.g., in Refs. 33 and 34, but for simplicity
we refrain to do that, assuming that our system is sufficiently
BCS-like and our treatment already catches the key behavior,
as Fig. 2 suggests.

The maximum value of the order parameter at zero
temperature can be taken as the typical energy scale of pairing
strength, which is the value of �h

0 at the Fermi momentum.
Though it is difficult to get an analytical solution of �h

0(kF )
from the radial gap equation [see Eq. (A9)], one can get an
approximate expression for it as a function of the parameters
Jeff, kF , and �s , which has the following form:

�h
0(kF ) ≈ 0.06Jeff(kF �s) exp

(
− 40μ

Jeff(kF �s)2

)
, (34)

being not sensitive to the energy cutoff as long as the screening
length �s is larger than 1/�.

Now we can write down the d-wave order parameters near
the original four Fermi arcs [(see Fig. 1(a)]: �h

�k ≈ v�(kx −
ky)/

√
2 in quadrant I; �h

�k ≈ v�(−kx − ky)/
√

2 in quadrant II;

�h
�k ≈ v�(−kx + ky)/

√
2 in quadrant III; and �h

�k ≈ v�(kx +
ky)/

√
2 in quadrant IV, where v� ≡ √

2�h
0(kF )/kF .

So far we discussed the d-wave paring symmetry in the
momentum space in the long-wavelength limit, and now we
check that when extrapolating the result to the lattice scale we

s = 60a
s = 50a
s = 40a

Δ
h 0
(k

)

ka

J = 0.15t

s = 60a
s = 50a
s = 40a

Δ
h 0
(k

F
)

T

J = 0.15t

FIG. 2. Plots of pairing gaps of holons as functions of momentum
in the upper panel, and as functions of temperature in the lower panel
for different screening lengths �s . �h

0 is plotted in units of t . It is seen
that the holons near the Fermi surface take part in pairing, leading to
a peak of �(k) centered around k ∼ kF .

recover the desired pairing symmetry in real space. Computing
the nearest-neighbor pairing between site �x and �x + �δ we get

〈b̂�x â�x+�δ〉 ≈ 1

V

∑
�k,α

[〈b̂α,−�q âα,�q〉ei �Qα ·�δ]ei�k·�δ, (35)

where V is the volume of the system and the summation
over �k is in the range [−π/2,π/2] × [−π/2,π/2]. Note that
〈b̂α,−�q âα,�q〉 has the same symmetry as �h

α,�q [see Eq. (A4)], then

by using Eq. (30), one can easily prove 〈b̂�x â�x+�δ〉 = 〈b̂�x â�x−�δ〉
and 〈b̂�x â�x+�e1〉 = −〈b̂�x â�x+�e2〉, which are the typical features of
d-wave order parameters in real space.

C. Nodal approximation and gauge invariance

In the BCS approximation discussed in the previous section
the holon is gapless only at the four nodal points of �h

�k .
However, in a large-scale gauge-invariant treatment where
one can keep the modulus of the order parameter �h as in
BCS, we must include its spatially dependent phase, which we
denote by φh(x). (A precise procedure to go from the lattice
to the continuum phase field is discussed in Ref. 35.) The
effects of φh(x) on holons are nontrivial and will be discussed
in detail in Ref. 29, where it is shown to produce a gradual
decrease of the spectral weight on the FS starting from the
nodal to antinodal region, improving the result of Ref. 36.
However, to derive our basic RVB gap equation, in the next
section we can still assume consistently that φh(x) does not
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kx

ky

k+

k−

Nodal point

FIG. 3. (Color online) The coordinate system (k+,k−) taken in
the nodal approximation. This is for the first quadrant.

break the nodal structure. In fact the nodal structure appears
if we neglect the phase fluctuations, i.e., the holon pairs are
assumed condensed. According to Refs. 37–39 this is the
correct procedure to deal with the gap equation for the modulus
of the order parameter. However, if holon pairs are only formed
but not yet condensed, it is incorrect to identify �h as the gap
for holons (see Ref. 29).

In this section we utilize the Peierls substitution to take
the gauge fields back into account around the nodal points, in
agreement with the above remarks. In the nodal approximation
the momenta are expanded around the nodes in the four
quadrants of the MBZ. In Fig. 3, we plot the nodal coordinate
system in the first quadrant, where

kx = k+ + k−√
2

, ky = k+ − k−√
2

. (36)

In terms of k+ and k−, using the gap dependence on momentum
�k obtained in the last section, the energy spectrum around the

node of the first quadrant is simply ±
√

v2
F k2+ + v2

�k2−, which
arises from the nodal Hamiltonian in the first quadrant,

Hh
first nodal = vF k+σz + v�k−σy, (37)

which reproduces the spectrum of the gapless nodal excitation.
Therefore, adding also the contribution of the phase φh(x)
of the order parameter, a large-scale h/s gauge-invariant
Hamiltonian in real space reads

Hh
first =

(−i∂+ − A+ + A0 −eiφh

∂−
e−iφh

∂− i∂+ − A+ − A0

)
, (38)

where the emergent gauge fields A+ and A0 [see Eq. (18)] is
reinserted, and the parameters vF and v� are omitted for the
sake of simplicity. There is an obvious U(1) redundancy of this
Hamiltonian. Let us denote the nodal Dirac quasiparticle field
by χα(x). The h/s gauge transformation χ → χei�,φh →
φh + 2�,Aμ → Aμ + ∂μ� leaves Eq. (38) invariant provided
that � is time independent. We then make the field redefinition
from χα to χ̃α as χ̃1 = χ1e

iφh/2 and χ̃2 = χ2e
−iφh/2, so that the

nodal field becomes neutral under h/s gauge transformations,
a “nodon.”40

The above redefinition leads to a more convenient form of
the nodal Hamiltonian:

Hfirst =
(−i∂+ − a+ + a0 −∂−

∂− i∂+ − a+ − a0

)
= −a+ + (−i∂+ + a0)σ3 − i∂−σ2, (39)

where the h/s gauge-invariant field aμ = Aμ − 1
2∂μφh is

introduced.
Rotating the coordinate by π/2 successively, one may get

the nodal Hamiltonian in the other three quadrants.

D. Effective action of aμ

In this section, we turn to the path-integral formalism
and derive an effective action (needed to discuss RVB gap
equations) for aμ in the nodal approximation by integrating out
the holon fields. In the first quadrant, the effective Lagrangian
in the Euclidean space for nodal quasiparticles is given by

L first = χ̄(x)
[
γ μ
(
∂μ − ibfirst

μ

)]
χ (x), (40)

where γ μ = {σx, − σy,σz}, ∂μ = {∂0,∂+,∂−}, and bfirst
μ =

{−ia+,ia0,0}. The effective action for bμ (at T = 0) is defined
as

Sfirst
eff [aμ] = − ln det

[
γ μ
(
∂μ − ibfirst

μ

)]
≈ −1

2

∫
d2k

∫
dω
[
bfirst

μ �first
μν bfirst

ν

]
(�k,ω). (41)

By adapting the calculations of Ref. 41, the leading terms of
the bubbles for small ω,|�k|,ω/|�k| behave like

�first
00 ∼ c1|�k|, �first

++ ∼ c2, �1st
0+ ∼ 0. (42)

The effective action in the other three quadrants is similar
to that in Eqs. (41) and (42). For example, the third quadrant
can be obtained by rotating the coordinate by π , therefore
by changing a± → −a± and ∂± → −∂±, we can obtain the
corresponding bubble �μν and gauge field bμ. Note that the
coordinate transformation does not involve the time axis. Then
we have �third

μμ = �first
μμ , if μ = 0,1,2, and bthird

μ = {ia+,ia0,0}.
A similar procedure can be applied to the second and fourth
quadrants.

After summing over all four quadrants, in the quadratic
approximation, we have the effective action

Sh
eff[aμ] =

∫
d2k

∫
dω
∑

i=+,−

×[ai�00ai + a0�iia0 − 2a0�0iai](�k,ω). (43)

Using Eq. (42) and its analogs one sees that Eq. (43) is a variant
of the effective action for QED3.

IV. SPINON RVB PAIRING

A. Mean-field Lagrangian with spinon pairing

In this section we derive the mean-field Lagrangian for
spinon pairing in the presence of holon pairs.

In the PG region, the spinon part in the t-J model can be
described by the massive sigma model in CP 1 form, Eq. (17),
and the four-fermion interaction term ∼J (ĥ†

i ĥ
†
j �̂

s†
ij )(ĥj ĥi�̂

s
ij )

[see the last term in Eq. (10)], is simply neglected for
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small doping δ in considering the normal state, because it
is proportional to δ2. Note this interaction term is positive
(for J > 0), hence repulsive due to the semionic mean-field
approach, contrary to the usual fermionic case. However, once
the holon pairing is stabilized, the gauge interaction between
holon and spinon, overcoming the above repulsion forces the
spinons to form singlet-RVB pairs and the above term becomes
relevant. To investigate the spinon pairing, one can apply
a Hubbard-Stratonovich transformation to the four-fermion
interaction term, obtaining

∑
〈ij〉

−2|�s
ij |2

Jτ 2
+ �s∗

ij εαβziαzjβ + H.c., (44)

where τ ≡ |〈ĥi ĥj 〉| and in MFA

�s
ij = J

2
τ 2〈εαβ ẑiαẑjβ〉 = J

2
τ 2〈�̂s

ij

〉
. (45)

In the continuum limit we get the Lagrangian for spinon with
a singlet spinon pairing

Ls =
∑

μ=0,1,2

z∗
α[(∂μ − iAμ)2 + m2

s ]zα

+
∑
i=1,2

�s∗
i (�x)εαβzα(�x)∂izβ(�x) + H.c., (46)

where the index i in �s∗ labels the spatial directions and we set
g and vs to 1 for convenience. [The spatial derivative term in
the square brackets has an implicit “−” sign; see Eq. (17).]
As for the holon case, one can rewrite approximately the
spinon pairing as �s

i (�x) = �i,0e
iφs (�x), where φs is the phase of

the spinon pairing amplitude. The Lagrangian equation (46)
is invariant under the h/s gauge transformation zα → zαei�,
Aμ → Aμ + ∂μ�, and φs → φs + 2�. It is not convenient to
deal with the off-diagonal terms in the Lagrangian Ls , hence
we transform the spinon field from zα to z̃α as z̃1 = z1e

iφs/2,
z̃2 = z∗

2e
−iφs/2 so that the spinon field becomes neutral under

h/s gauge transformations. In terms of the new fields z̃α ,
the spinon Lagrangian can be written in a diagonal form
Ls(x) = z̃†(x)�s(x)z̃(x), where the 2 × 2 kernel �s reads
(with �s

0,0 = 0)

�s =
∑

μ=0,1,2

− [∂μ − i
(
aμ + 1

2∂μφ
)
σz

− i Im
(
�s

μ,0

)
σx − i Re(�s

μ,0)σy

]2 + m2
s − ∣∣�s

μ,0

∣∣2,
(47)

with φ = φh − φs and aμ = Aμ − 1
2∂μφh, both being h/s

gauge invariant. The gradient of the φ field actually describes
the potential of standard magnetic vortices, since from Eqs.
(20) and (45) φ is the phase of the condensate of hole pairs.

By neglecting the gauge fields, one can work out the
spinon spectrum, which can be obtained from the zeros of
the determinant of the kernel �s in the momentum space:(− ω2 + k2 + m2

s

)2 − 4
∑

i,j=1,2

�s
i,0�

s∗
j,0kikj = 0. (48)

We assume the rotational invariance for the spinon spectrum,
which requires

�s
i,0�

s∗
j,0 + �s∗

i,0�
s
j,0 = 2δij

∣∣�s
i,0

∣∣2. (49)

0

 0.2

 0.4

 0.6

 0.8

0  0.2  0.4  0.6  0.8

k

E+(k)

E-(k)

FIG. 4. The spinon spectrum for δ = 0.1.

We can take �s
1,0 = �s

0 and �s
2,0 = ±i�s

0, where �s
0 can

be a priori any complex number, and both plus and minus
signs are allowed for �s

2,0. Looking at the hole-pair order
parameter Eq. (20), we see, however, that for consistency we
have to choose the constant phases of �s

0 equal to −B̄ij to
ensure the correct symmetry, being the hole-pair d wave. From
Eq. (48) we obtain the spectrum for spinon: it has two (positive)
branches

E±(�k) =
√

�k2 + m2
s ± 2�s

0|�k|, (50)

which are plotted in Fig. 4.
The positive branches of the dispersion are similar to those

found in a plasma of relativistic fermions,42 which suggests
the following interpretation: if |�s | �= 0, the spinon system
contains a gas of RVB spinon pairs, an analog of Coulomb
neutral pairs in the relativistic plasma, either in the plasma
phase if 〈�s〉 = 0, or in a condensate if 〈�s〉 �= 0. For a
finite density of spinon pairs there are two (positive energy)
excitations, with different energies, but the same spin and
momenta. They are given, e.g., by creating a spinon up and
by destructing a spinon down in one of the RVB pairs. Notice
that the minimum at J̃ |�k| = |�s | in the lower branch is similar
to the roton minimum in superfluid helium and has an energy
lower than ms ; it implies a backflow of the gas of spinon pairs
dressing the “bare spinon.” Hence RVB condensation would
lower the spinon kinetic energy. However, to make it occur one
needs the gauge contribution to overcome the spinon repulsion
generated by the Heisenberg term.

B. Effective action of gauge fields

In this section, we derive the low-energy effective action of
aμ and φ by integrating over the spinon fields. For this purpose
we introduce a fictitious SU(2) gauge field Yμ as follows:

Yμ =
∑

a=x,y,z

Y a
μ

σa

2
(51)
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with

Y a
μ = 2

⎛
⎜⎝

0 0 a0 + 1
2∂0φ

Im
(
�s

1,0

)
Re
(
�s

1,0

)
a1 + 1

2∂1φ

Im
(
�s

2,0

)
Re
(
�s

2,0

)
a2 + 1

2∂2φ

⎞
⎟⎠ . (52)

Then the kernel �s [see Eq. (47)] can be written in a compact
form:

�s =
∑

μ

(
∂μ − iY a

μ

σ a

2

)2

+ M2, (53)

where we introduce the notation

M =
√

m2
s − 2

∣∣�s
0

∣∣2 (54)

for convenience. After integrating over the spinon fields zα ,
one obtains the effective action for aμ and ∂μφ,

Ss
eff

[
∂μφ,aμ,�s

0

] = ln det(�s) − 2|�s
0|2

Jτ 2
, (55)

where the constant term comes from the Hubbard-Stratonovich
transformation. Since Eq. (53) is formally describing a rela-
tivistic two-component boson of mass M minimally coupled
to the SU(2) gauge field Y a

μ , the leading gauge-invariant
term is the Yang-Mills Lagrangian, i.e., the traced square
(
∑

μν Y a
μνY

a
μν) of the field strength Yμν ,

Yμν = σ c

2

[
∂μY c

ν − ∂νY
c
μ + εabcY a

μY b
ν

]
, (56)

and one easily computes, with i = 1,2:

Y x
0i = −(a0 + 1

2∂0φ)Re
(
�s

i0

)
,

Y x
12 = Re

(
�s

10

)
(a2 + 1

2∂2φ) − Re
(
�s

20

)
(a1 + 1

2∂1φ),

Y
y

0i = (a0 + 1
2∂0φ)Im

(
�s

i0

)
,

Y
y

12 = Im
(
�s

20

)
(a1 + 1

2∂1φ) − Im
(
�s

10

)
(a2 + 1

2∂2φ),

Y z
0i = ∂0(ai + 1

2∂iφ) − ∂i(a0 + 1
2∂0φ),

Y z
12 = ∂1(a2 + 1

2∂2φ) − ∂2(a1 + 1
2∂1φ)

+ Im
(
�s

10

)
Re
(
�s

20

)− Im
(
�s

20

)
Re
(
�s

10

)
.

Besides the Yang-Mills action there are also gauge nonin-
variant terms which arise from the ultraviolet divergences of
the continuous model and must be included since the x,y

components of Y a
μ are actually constant. For the zeroth- and

second-order terms in aμ and φ we finally get

S
s,0
eff = −2

∣∣�s
0

∣∣2
Jτ 2

+
∑
ω,�k

ln{[(ω2 + E2
−(�k))](ω2 + E2

+(�k))},

S
s,2
eff = 1

6πM
{[∂μaν − ∂νaμ]2

+ |�s
0|2
[

2(a0 + 1

2
∂0φ)2 +

(
�a + 1

2
�∇φ

)2]}
, (57)

where a surface term (∼∂1a2 − ∂2a1) has been discarded. For
|�s

0| �= 0, S
s,2
eff is the action of a gauged XY or Stueckelberg

model and the term within the last square brackets is the
celebrated Anderson-Higgs mass term.

C. Gap equation of spinon pairing

The gap equation is determined by the saddle point
of Ss

eff[a,�s
0] = S

s,0
eff [�s

0] + S
s,2
eff [a,�s

0] + Sh
eff[a] with respect

to �s
0. Note that since the interaction between spinons is

repulsive, it is crucial to take the gauge fluctuation S
s,2
eff

into account, unlike in the traditional BCS theory, where
the electron interaction is attractive. To establish the gap
equation for the modulus of the order parameter, we assume,
as discussed, e.g., in Refs. 37–39 for fermions, that one should
neglect the phase (φ) fluctuations. Let us also neglect, for
simplicity, at first the holon contribution Sh

eff; then the resulting
gauge partition function, denoted by Zg , is given by

Zg =
∫

D[aμ]e− ∫ d3x Lg[aμ],

(58)

Lg = 1

3πM

[
aμ

(− ∂2gμν + ∂μ∂ν + ∣∣�s
0

∣∣2λμν
)
aν

]
,

where gμν = diag(1,1,1) and λμν = diag(1,1/2,1/2) are 3 ×
3 diagonal matrices and a cutoff � in both momenta and energy
is understood. The equation of motion of gauge field aμ reads

−∂2aμ + ∂μ(∂νaν) + λμνaν = 0, (59)

which implies that (without source) aμ satisfies the equation

λμν∂μaν = 0. (60)

Equation (60) is a constraint, meaning that the massive vector
bosons in two dimensions have two (physical) polarization
modes. Therefore, the calculation of the partition function of
the vector boson is not as trivial as integrating over aμ directly,;
in fact, one must take care to count only the physical degrees
of freedom. The details of the evaluation of Zg are given in
Appendix B. Here we only give the final result,

Zg =
∏
ω,�k

[
(3πM)3/2

(
ω2 + |�s

0|2
2

+
�k2

2

)−1/2

×
(

ω2 +
∣∣�s

0

∣∣2
2

+ �k2

)−1/2]
. (61)

The first factor in the right-hand side of Eq. (61) contributes
a constant term to the free energy which is neglected in the
standard cases. However, in the present case it contains the
spinon order parameter �s

0, which can affect the total energy
as �s

0 varies, hence should be kept. Actually, 3πM is the
renormalization factor of the amplitude of the gauge action,
which can be absorbed into aμ by rescaling aμ → √

3πMaμ

with a Jacobian left for the measure D[aμ] in the energy-
momentum space

D[aμ] →
∏
ω,�k

(3πM)3/2D[aμ], (62)

where the power index 3/2 indicates that aμ is a three-
dimensional vector.

In fact in the spinon gap equation the term 3πM already
balances the repulsive interaction. The contributions of the
spectrum of gauge quasiparticles, i.e., the second and third
terms in Eq. (61), do not change the spinon gap equation
qualitatively. Therefore, for simplicity we focus only on the
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M term, and the free energy including the contribution from
the h/s gauge fluctuation reads

1

V
Fg

[
�s

0

] ≈ 1

βV

∑
ω,�k

ln{[ω2 + E2
−(�k)][ω2 + E2

+(�k)]}

− 3�3

4

[
ln m2

s − 2
∣∣�s

0

∣∣2
m2

s

]
− �2

∣∣�s
0

∣∣2
Jτ 2

. (63)

It is straightforward to obtain the gap equation by taking a
derivative of Fg with respect to |�s

0|2:

0 = 3�3

2m2
s

− �2

Jτ 2

− 1

2|�s
0|V
∑

�k

[
k

E− tanh E−
2T

− k

E+ tanh E+
2T

]
. (64)

The first term originates from the gauge action due to the
lowering of the spinon mass [ms → (m2

s − |�s |2)1/2], while
the second term comes from the original repulsive Heisenberg
term and the last two terms are due to the spinon excitations.
The first term in the right-hand side of Eq. (64) is crucial,
without which the gap equation has no solution, since the last
term is negative. In Eq. (64) only the value of τ is unknown,
i.e., the nearest-neighbor holon pairing strength, which is a
very short-range correlation and may not be accurate if being
calculated via the long-wavelength pairing �h

�k in momentum

space. However, we have already seen that extrapolating �h
�k

to lattice scale, one gets the correct symmetry in real space.
Hence we take �h

0(kF ) as the value of τ up to a scale factor.
One can check that the free energy of the gap equation
solution with |�s | �= 0 is lower than that with |�s | = 0 if
|�h| �= 0, i.e., in the presence of a sufficiently high density
of holon pairs it is favorable to also form RVB spinon pairs.
In fact if the spinons are not paired, the presence of holon
pairs produces a modification of the coupling constant of the
spinon nonlinear sigma model leading to an increase of the
free energy proportional to J |�h|2 with respect to the free
energy of spinons in the absence of holon pairing. If spinons
are paired too, by solving the gap equation for spinons (64)
for small |�s |, one instead finds a much smaller increase of
free energy proportional to |�s

0|3. Let us now briefly comment
on the comparison of our RVB gap equation, Eq. (64), with
that of the slave-boson approach. In the slave-boson approach
the RVB pairs are made of fermions and the Heisenberg term
is attractive, so the pair formation is BCS-like, whereas in
our approach the RVB pairs are made of bosons, and the
Heisenberg term is repulsive, so the pair formation arises from
the decrease in the free energy of spinons, via the lowering of
their mass gap, induced by holon pairing through the gauge
field.

So far we have not considered the vector boson quasi-
particles, whose spectrum has two branches as derived from
Eq. (61),

E(1)
g (�k) =

√
k2 +

∣∣�s
0

∣∣2
2

, E(2)
g (�k) =

√
k2

2
+
∣∣�s

0

∣∣2
2

(65)

and contributes to the gap equation with the following term:

∼ 1

2V

∑
�k,n=1,2

1

E
(n)
g tanh E

(n)
g

2T

. (66)

This contribution is positive and in balancing the gap equation
(64) plays a role similar to the M term, which turns out to be
dominant. It is interesting to note that Eq. (66) is well defined
in the gapped region �s

0 �= 0, and if �s
0 = 0, it is proportional

∼ T ln L, which is divergent with the system size L unless
T = 0. Such an infared divergence seems to imply a first-order
phase transition when spinons begin to pair. However, this is
not the case. In fact, when we take into account the contribution
of holons Sh

eff to the action of the gauge field [see Eq. (43)],
the dispersions (64) become (see Appendix B)

E(1)
g (�k) =

√
k2 + f (�k) +

∣∣�s
0

∣∣2
2

,

(67)

E(2)
g (�k) =

√√√√(∣∣�s
0

∣∣2
2

+ f (�k)

)(
1 +

�k2

|�s
0|2 + c̃2

)
,

where c̃2 = 3πMc2 and f (�k) = 3πMc1

√
v2

F k2+ + v2
�k2−, and

the divergence disappears.
In the low doping limit at T = 0, expanding the last terms

in the right-hand side of Eq. (64) we get

|�s
0| ≈ �3/2

m
1/2
s

√
1 − m2

s

J τ 2
. (68)

As the doping δ is decreased, τ goes to zero faster than ms ,
because the spinon mass m2

s ∼ |δ ln δ| and τ 2 ∼ δe−const.[see
Eq. (34)], which implies that |�s

0| does not have a nonzero
solution for sufficiently small doping. In other words, there is
a critical doping δc at zero temperature, below which spinon
pairing �s

0 must vanish. As the nonvanishing of �s
0 is a

precondition for SC, this implies a critical doping for SC at
T = 0 as well. On the other hand, at the qualitative level,
due to the cancellation of δ between m2

s and τ 2, if τ (i.e., the
holon-pairs density) is sufficiently large, Eq. (68) does have a
solution, because the remaining | ln δ| is a decreasing function.
Notice again the crucial role of this logarithm, coming from
the long-range tail of spin vortices.

At finite temperatures, we need to solve Eq. (64) nu-
merically. The crossover temperature at which in mean-field
approximation �s

0 becomes nonvanishing is denoted by Tps

(not yet the SC Tc) and is related to the formation of a finite
density of RVB spinon pairs. From Eq. (34) we see that to have
a solution for the gap equation we need τ = 〈hihj 〉 ∼ �h

0 �= 0,
consistently with the physical mechanism proposed, hence
Tph > Tps , and when the spinon RVB pairs are formed together
with the already formed holon pairs, producing a finite density
of preformed hole pairs. Due to the φ phase fluctuations,
however, although the modulus of the SC order parameter
�c ∼ �s/�h of Eq. (20) is nonvanishing, if the hole pairs
are not condensed one cannot interpret it as the hole gap.
The temperature dependence of �s is presented in Fig. 5(b).
One can see that, although near Tps the behavior is the typical
square root of mean field, at low T it is definitely not BCS-like,
never approaching a constant.
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FIG. 5. (Color online) (a) is the T -δ phase diagram of the mean-
field gap equation of spinon for different values of MF spinon pairing
�s (gray lines) which could be compared with different levels of the
Nernst signal;7,8 �s = 0 is Tps . (The curves at high dopings are not
quantitatively reliable as they do not take into account the crossover to
the “strange metal.”) The dashed line is Tph, the “upper PG crossover
temperature.” The dotted line is the crossover temperature between
the pseudogap and strange metal phases, T ∗. (b) is the �s as a function
of temperature for fixed dopings. The temperature and �s are in units
of J .

V. SUPERCONDUCTIVITY

Now we are ready to finally discuss the true SC transition.

A. Nernst crossover

In this section we first consider the physical effects due to
a finite density of hole pairs before their condensation.

The gauged XY or Stueckelberg model of Eq. (57) is well
known to have in the lattice two phases (see Ref. 43 for a
rigorous discussion, and Ref. 44 for a numerical analysis):
Coulomb and Higgs. If the coefficient of the Anderson-Higgs
mass term for the gauge field aμ (∼ |�s

0|2) is sufficiently small,
the phase field φ fluctuates so strongly that no mass gap for
aμ can be produced, hence 〈eiφ〉 = 0 in the Coulomb gauge (a
gauge fixing is necessary due to the Elitzur theorem45). This
is the Coulomb phase, where a plasma of magnetic vortices-
antivortices appears. In the presence of a temperature gradient
a perpendicular external magnetic field induces an imbalance
between vortices and antivortices, giving rise to a Nernst
signal, even if the hole pairs are not condensed yet. Therefore
we conjecture that this phase of the model corresponds to
the region in the phase diagram of underdoped cuprates
characterized by a non-SC Nernst signal and a comparison

between the experimental phase diagram in Refs. 7 and 8 and
the phase diagram derived in our model, supports this idea. The
result is shown in Fig. 5, where the thick lines are equi-�s

0 lines.
One expects that the amplitude of �s

0 is roughly proportional
to the intensity of the Nernst signal and a comparison of
the figure with the experimental data7,8 shows a qualitative
agreement for the δ-T dependence. Note that the Nernst
data are strongly supported by the measured magnetic-field-
induced diamagnetic signal,46 as well as by STM visualized
pair formation47 and quasiparticle fingerprints.48 The Tph line
in the figure is the upper pseudogap crossover temperature
determined by �h

0(kF ) of Eq. (34), hence it does not take
into account the transition to the SM phase, and therefore can
only be taken as a qualitative trend. At extremely low doping
(δ � 0.03) the lines are not reliable because the quenched
approximation for vortices used in our approach is not valid
for too low vortex density.

B. The superconducting transition

Now we consider the true SC transition. For a sufficiently
large coefficient |�s |2, the gauged XY or Stueckelberg model
of Eq. (57) is in the broken-symmetry phase: the fluctuations
of φ are exponentially suppressed and 〈eiφ〉 �= 0 at T = 0
or there is a quasicondensation (power-law-decaying order
parameter) at T > 0; accordingly magnetic vortex-antivortex
pairs become small and dilute, so the gauge field is gapped.
At the same time the holon, and hence the hole, acquires the
nodal gap, i.e., the gap outside the nodes. In fact, one can prove
that, due to the fluctuations of the field φh, in our approach
a gapless gauge field is inconsistent with the coherence of
holon pairs in PG, i.e., coherent holon pairs cannot coexist
with incoherent spinon pairs, as sketched in Appendix C. On
the other hand, due to the QED-like structure of holons-gauge
action, the gauge field cannot be gapped (in all components)
by condensation of holon pairs alone as shown by Eq. (42).
Only the simultaneous condensation of both RVB spinon pairs
and holon pairs can open a gap for the gauge fluctuations. Thus
as soon as eiφh

(quasi-)condenses, the same occurs to 〈hihj 〉,
then the expectation values of both amplitude and phase of
the SC order parameter �c ∼ �s/〈hihj 〉 ∼ (�s

0/�
h
0)eiφ [see

Eqs. (45) and (57)] are nonvanishing at T = 0 or algebraically
decaying for T > 0, which signals the onset of SC. It follows
that Tc < Tps .

According to the above considerations, if we assume that
the holon contribution to the gauge field is subdominant as
expected, the SC transition from the PG phase should occur
roughly at a value of �s

0 determined by the gauged XY model.
Then one can extract an estimate of the critical value of �s

0
from a formula presented in Ref. 44 for the critical value of
the coefficient of the Anderson-Higgs mass term in Eq. (57). If
one rescales the gauge field aμ to have the standard coefficient
1/2 for the Maxwell term, denotes by q the charge of the
φ field with respect to the rescaled aμ, and denotes by β

the coefficient of the Anderson-Higgs mass term, then such
formula reads

βc ≈
(

3 − q2

4

)−1

, (69)
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where βc is the critical value. The fictitious charge q =
2
√

3πM in our case [see Eq. (57)], and q = 0 corresponds
to a pure XY model. Unfortunately our Anderson-Higgs mass
term is not isotropic in space-time, therefore to apply Eq. (69)
we should symmetrize it. A posteriori the precise choice of the
coefficient turns out to be almost irrelevant, then we can take
β = |�s

0|2/(12πM). With this choice the solution of Eq. (69)
gives

(∣∣�s
0

∣∣2)
c
≈ m2

s

2
− m4

s

128π2
(70)

and the choice of the symmetrized coefficient only changes the
second almost irrelevant term. According to Fig. 5 one obtains
for the SC state at T = 0 a range of dopings from δ ≈ 0.04 to
δ ≈ 0.25. Tentatively extending the formula (70) to finite T ,
one obtains for the critical temperature Tc the red dashed line in
Fig. 5. For the critical value of �s

0 the amplitude of M is quite
small, hence q almost vanishes and within this approximation
the SC transition is essentially of the XY type. This implies
also that the gauge contributions of holons which have been
neglected above would be indeed strongly suppressed in a
self-consistent way. In general one can see from Eq. (57) that
in our approach a reduction of M , and hence of spinon kinetic
energy, implies a reduction of the gauge fluctuations. The scale
of Tc in our approach is reduced with respect to the naive
BCS value ∼�h

0 because a price has to be paid to overcome
the spinon repulsion, and as a result its scale is essentially
set by �s

0.
Let us now recapitulate the free-energy gains leading to

superconductivity. At the mean-field level without phase fluc-
tuations, the formation of a finite density of holon pairs (Tph)
lowers the potential energy as in the conventional BCS theory,
while the formation of a finite density of spinon pairs (Tps)
benefits the spinon kinetic energy, which is unconventional.
When considering the phase fluctuations beyond the mean-
field theory the true superconducting transition is of XY

type and the energy gain comes from the energy-entropy
balance for the defects involved, namely, the magnetic vortices.
This transition is of the same kind, as considered in the
preformed-pairs scenario of Ref. 61. However, due to the
composite structure of the hole, the coefficient of the XY

model triggering the transition is not of the standard form, i.e.,
proportional to the ratio of the superfluid hole density and an
effective mass of the hole, but it is essentially controlled by
the spinons and is proportional to the ratio of |�s

0|2 and M .
We now outline some physical consequences of our

approach to SC that are presently under further investigation:
(1) In the SC state the gauge-field gap destroys the

Reizer singularity [see Eq. (19)] which is responsible for the
anomalous T -dependent lifetime of the magnon and electron
resonances in the PG normal state. Hence these resonances
become sharper at the SC transition. In turn, this improves
the kinetic energy of the hole. Therefore in our approach
the SC transition from PG is “kinetic energy driven,”49 as
opposed to the standard BCS “potential energy driven.” The
above feature is supported by some experiments on optical
conductivity.50,51 In particular, in a recent experiment on
underdoped cuprates52 one finds an increase of the kinetic
energy in PG, being consistent with our approach (due to the
partial gap induced by the π flux), and its sharp decrease in
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FIG. 6. (Color online) The energy of the magnetic resonance Er

estimated by 2msJ for different dopings, compared with the scaled
critical temperature 3.2Tc. To compare with experiments we take
J = 100 meV. The inset is the experimental results taken from Ref. 9,
where the black solid line is a parabolic approximation to Tc rescaled
by 5.8.

the SC phase. This shows that within this gauge approach
the compositeness of the hole, with a gauge gluing force
coming from the no-double-occupancy constraint, is not only
proved to be essential in interpreting the transport3 and
thermodynamical21 properties of cuprate superconductors, but
is also a key feature for the SC transition as shown in previous
sections.

(2) The appearance of two positive branches in the spinon
dispersion relation for a suitable spinon-antispinon attraction
mediated by gauge fluctuations (in particular, those corre-
sponding to the Z2 subgroup left unbroken by the condensation
of the SC pairs) induces a similar structure for the magnon
dispersion around the AF wave vector,29 reminiscent of the
hourglass shape of spectrum found in neutron experiments.53

In particular, as a result of the attraction a peak of the spectral
weight of the magnon appears at the AF wave vector where the
two branches intersect, at an energy approximately twice the
spinon gap Jms ∼ J (1 − 2δ)|δ ln δ|1/2. We identify this peak
with the magnetic resonance found in neutron experiments.
Its energy has a maximum in δ near the maximum of �s

0,
and through Eqs. (69) and (70), it is naturally related to
Tc. This appears as a key feature of our approach: because
of the intimate relation between short-range AFO and the
SC attraction, both coming from the same term in the
representation of the t-J model, Eq. (10) [the third term; see
also Eq. (14)], there is an intrinsic relation between the energy
of the magnon resonance and Tc. This feature qualitatively
agrees with experiments,54 as shown in Fig. 6.

VI. DISCUSSIONS AND CONCLUSIONS

Before concluding, let us briefly comment on the com-
parison of the present proposal with other models on SC
mechanism in cuprates.
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It is clear that our proposal differs in an essential way from
the traditional BCS-Eliashberg approach,55 no matter whether
the electron-phonon interaction or the AF fluctuations serve
as the pairing glue, SC being there “potential energy driven.”
SC arises in our approach from PG exhibiting characteristic
features of a doped Mott insulator, such as small FS, hence
from the physical point of view this approach is an imple-
mentation of the basic ideas advocated by P. W. Anderson,
attributing SC to the strong correlation effects in doped Mott
insulators.4–6 Furthermore, in our approach the leading part of
the original Heisenberg term is used to provide the AF action
for the spinons, by using the identity equation (13) (holding for
the bosonic spinons). Only the subleading term proportional
to the holon-pair density is used to obtain the formation of a
finite density of RVB pairs in Eq. (64), so the derived SC can be
viewed as vaguely reminiscent of Laughlin’s gossamer SC.56

Our formalism shares some similarities with other ap-
proaches, exploring the same underlying physical idea, with,
however, some substantial differences. Clearly all exact treat-
ments of the t-J model should lead to the same results.
However, as soon as a mean-field approximation is chosen,
different physical implications appear specific to the choice
made and in the following we compare some features of our
approach with results of various other mean-field treatments.
Both in the standard slave-boson57 and in the bosonic-RVB
phase-string58,59 approaches the Nernst effect and SC occur
due to Bose-Einstein condensation (BEC) of bosonic holons.
Since BEC persists for arbitrary small density in these
approaches both Nernst effect and SC at T = 0 occur as soon as
the long-range AFO disappears. The same also happens in the
standard “preformed pair” approaches,61 due to the persistence
of condensation of pairs in the extreme BEC limit. Instead,
in our approach the repulsive interaction between spinons
prevents the appearance of the Nernst effect below a critical
doping, and the hole pairing occurs only when the holon pair
density is sufficiently large to “force” the RVB spinon pairing
via gauge coupling, while an even higher doping at T = 0 is
necessary to get SC. Similar “critical” dopings also appear in
the phase-fluctuation approach of Ref. 35, of which the main
physical difference from ours is in that approach nodes appear
in the Nernst phase, whereas in ours a finite FS still persists
and nodes appear only in the SC phase. Also, in the new
version60 of the bosonic RVB phase-string model at T = 0 a
finite interval opens up between the long-range AFO and SC,
due to the compact nature of the gauge fields; in this region,
however, holons and spinons are “condensed” in contrast to
our approach.

Another peculiar feature of the approach presented here,
distinctive from other approaches is the appearance of three
distinct crossovers related to the PG phenomenology: in our
notations Tph, Tps , and T ∗. The highest crossover in T is Tph

(the presence of t ′ is relevant there) where holons start to pair
reducing the spectral weight of the hole29 and producing, e.g., a
deviation from linear in-plane resistivity. The lower crossover
is Tps , where incoherent hole pairs are formed, mainly
affecting the magnetic properties since a finite FS still persists,
e.g., giving rise to a boundary of the diamagnetic/Nernst signal.
Finally we have the crossover line T ∗ crossing Tps in the
phase diagram; it is due to the peculiar phenomenon of the

optimal π flux occurring only in bipartite lattices and it is not
directly related to SC. It corresponds to a change in the holon
dispersion and is characterized by complete suppression of
the spectral weight for holes in the antinodal region. Below
T ∗ the effect of short-range AF fluctuations becomes stronger
and their interplay with thermal diffusion induced by gauge
fluctuations gives rise to the metal-insulator crossover and
the inflection point of in-plane resistivity. Such composite
structure of crossovers seems also to emerge from recent
experiments on optical conductivity.52

The relation found between Tc and the energy of the
magnetic resonance might suggest that perhaps in some form
at least part of the mechanism for SC presented here can
apply also to SC materials different from cuprates, but with
strong interplay between SC and AF. One possible candidate
is the recently discovered iron-arsenic superconductors,62

which show similar phase diagrams as cuprates. However,
the parent compounds in those systems are not insulators, but
rather semimetals. On the other hand, the freshly found new
iron-selenic systems63 do have insulating states as reference,
and we can expect similar behavior to occur there.

To conclude, in this paper the spin-charge gauge approach
is applied to derive superconducting properties from the t-J
model with no double-occupancy constraint describing the
Cu-O plane of underdoped cuprate superconductors with the
following distinct features:

(1) The same model and the same set of approximations
are used to investigate both normal and superconducting
state properties without extra assumptions. The physical
implications of the theory are derived explicitly, and in its
totality are consistent with experimental observations.

(2) The interplay of antiferromagnetism and superconduc-
tivity is taken as the underlying physical foundation and is
implemented systematically for both normal and supercon-
ducting states. The same superexchange term is giving rise to
antiferromagnetism in the leading order, and producing super-
conducting pairing in the subleading order. As a consequence,
a universal relation between the superconducting transition
temperature and the magnetic resonance mode energy is
derived in consistency with experiments.

(3) An unusual three-step scenario is proposed for the
appearance of superconductivity as the temperature is lowered.
At the highest crossover temperature the charge carriers
(holons) start to form pairs and they affect the charge transport
properties (deviation from the linear temperature dependence
of resistivity). At the intermediate crossover temperature
incoherent (local) hole pairs are formed, and the derived
pairing amplitude as a function of temperature/doping is
consistent with the Nernst, diamagnetism, and STM data. At
the final stage, the true superconducting transition is derived
as almost of the classical 3D XY type, with a phase diagram
in agreement with experiments.
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APPENDIX A: DIAGONALIZATION OF MEAN-FIELD
HAMILTONIAN OF HOLON PAIRING

We introduce a four-component spinor field, �̂α,�k =
(âα,�k,b̂α,�k,â

†
α,−�k,b̂

†
α,−�k)t , in terms of which the holon Hamil-

tonian Ĥh,α =∑�k �̂
†
α,�kHα,�k�̂α,�k with the 4 × 4 matrix Hα,�k ,

H�k =

⎛
⎜⎜⎜⎝

−μ vF k 0 �h
�k

vF k −μ −�h

−�k 0
0 −�h∗

−�k μ −vF k

�h∗
�k 0 −vF k μ

⎞
⎟⎟⎟⎠ . (A1)

For the sake of simplicity, we omit temporarily the subscript
α. One can introduce a unitary matrix A,

A = 1√
2

⎛
⎜⎝

1 1 0 0
−1 1 0 0
0 0 1 1
0 0 1 −1

⎞
⎟⎠ ,

which transforms the matrix H�k to

A†H�kA =

⎛
⎜⎜⎜⎝

−μ − vF k 0 0 −�h
�k

0 −μ + vF k �h
�k 0

0 �h∗
�k μ − vF k 0

−�h∗
�k 0 0 μ + vF k

⎞
⎟⎟⎟⎠ ,

provided that the holon pairing parameter �h
�k has odd parity,

i.e., �h

−�k = −�h
�k , as required for BCS spinless fermions. Thus,

the lowest type of symmetry allowed is p and we use it
in the following as the lowest energy state since it has the
fewest nodes for the order parameter. Then the spectrum of
quasiparticles consists of two decoupled branches,

εh

±,�k =
√

(vF k ± μ)2 + |�h
�k |2. (A2)

The free energy at temperature T then reads

F = −T
∑

i=±,�k
[ln(1 + e−εi�k/T ) + ln(1 + eεi�k/T )]. (A3)

According to the Hellman-Feynman theorem, we have the gap
equation for order parameter �h

�q ,

〈b̂−�q â�q〉 = ∂F

∂�h∗
�q

= −
∑
i=±

�h
�q

2εh
i,�q

tanh

(
εi,�q
2T

)
,

(A4)
�h

�k =
∑

�q
Veff(�k − �q)〈b̂−�q â�q〉.

If we assume μ > 0, the branch with energy εh

−,�k [as given in
Eq. (33)] is lower and responsible for the low-energy physics
of p-wave pairing. The corresponding quasiparticle field reads

ψ̂�k = 1√
2

(â�k + b̂�k). (A5)

In terms of ψ̂ fields, the effective pairing Hamiltonian can be
written as

Ĥ h
eff =

∑
�k

(vF k − μ)ψ̂†
�k ψ̂�k − 1

2

(
�h

�k ψ̂
†
�k ψ̂

†
−�k + H.c.

)
, (A6)

and the gap equation at temperature T can be obtained by
neglecting the positive branch with i = + in Eq. (A4) as
already written in Eq. (32).

For the right Dirac cone, the p-wave pairing parameter
takes the following form in the polar coordinate system:

�h
�q = �h

0(q)(cos θ�q − sin θ�q) (A7)

with its angular and radial parts separated consistently with
the gap equation. Substituting Eq. (A7) into Eq. (32), we have
at zero temperature

�h
�k =
∫

d2 �q
8π2

Jeff × 2kq cos(θ�k − θ�q)

(k2 − q2)2 + �−4
s + 2(k2 + q2)�−2

s + 4k2q2 sin2(θ�k − θ�q)

�h
0(q)(cos θ�q − cos θ�q)√

(μ − vF q)2 + [�h
0(q)(cos θ�q − cos θ�q)]2

. (A8)

Note that the most important term comes from momentum
around the Fermi surface, q ∼ k and θ�q ∼ θ�k or θ�q ∼ π + θ�k ,
therefore we can neglect terms proportional to sin2(θ�k − θ�q) in
the denominator of the first fraction of the right-hand side of
Eq. (A8). Then the angular part is just dropped off from the
p-wave gap equation with only the radial part remaining:

�h
0(k)

Jeff
= k

∫ �

0

dq

8π2

q2 × G
[

μ−vF q

�h
0 (q)

]
(k2 − q2)2 + �−4

s + 2�−2
s (k2 + q2)

(A9)

with

G(x) ≡
∫ 2π

0
dθ

1 − sin(2θ )√
x2 + [1 − sin(2θ )]2

= 4x

[
E

(
− 2

x2

)
− K

(
− 2

x2

)]
, (A10)

where � is a momentum cutoff and E(x) and K(x)
are the elliptic integral of the first and second kink,
respectively.

APPENDIX B: EVALUATION OF THE PARTITION
FUNCTION OF VECTOR BOSONS

In this Appendix, we show how to compute the path integral
of Eq. (58) of vector bosons including the contribution from
the holon part [see Eq. (42)]. The relevant Lagrangian can be
decomposed into two parts:

Lg = 1

3πM
[aμ(−∂2gμν + ∂μ∂ν)aν + aμmμνaν], (B1)
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where the holon’s contribution is absorbed into mass term mμν ,
which in momentum space has the form

mμν =

⎛
⎜⎝

|�s
0|2 + c̃2 0 0

0 |�s
0|2
2 + f (�k) 0

0 0 |�s
0|2
2 + f (�k)

⎞
⎟⎠ , (B2)

with c̃2 = 3πMc2 and f (�k) = 3πMc1

√
v2

F k2
+ + v2

�k2
− [see

Eq. (36)].
It is not appropriate to integrate aμ directly, because of the

redundancy of the degree of freedom of vector bosons. To
rule out the redundancy, we adapt a method developed by ’t
Hooft.64 We first rewrite the a field in terms of the h/s gauge
field Aμ and the phase field φh:

aμ = Aμ − 1
2∂μφh. (B3)

Clearly, aμ is gauge invariant under the following h/s gauge
transformation:

Aμ → Aμ + ∂μ�,
(B4)

φh → φh + 2�.

The Lagrangian rewritten in terms of Aμ and φh is given by

3πMLg = Aμ(−∂2gμν + ∂μ∂ν + mμν)Aν

− 1
4φh∂μmμν∂νφ

h + φhmμν∂μAν. (B5)

We choose the fixing gauge function as

F = −mμν∂μAν + 1
2φh (B6)

whose derivative with respect to the infinitesimal gauge
transformation, Eq. (B3), reads

δF

δ�
= −mμν∂μ∂ν + 1 ≡ D. (B7)

Then, following the Fadeev-Popov-Dewitt approach, the path
integral involving only the physical degrees of freedom can be
calculated as

Zg =
∫

D[Aμ,φh]

∣∣∣∣ δFδ�
∣∣∣∣

× exp

[
−
∫

d3x

(
1

3πM
AμKμνAν + 1

4
φhDφh

)]
= det[m00(3πM)3/2D1/2K−1/2] (B8)

with

K = −∂2gμν + ∂μ∂ν + mμν − mμμ′
mνν ′

∂μ′∂ν ′ . (B9)

Note that m00 in the determinant of Eq. (B8) originated
from the complete measure of D[�∗

e ,�e] of the Hubbard-
Stratonovich transformation. Finally, we obtain the following
result:

Zg =
∏
ω,�k

(3πM)3/2

(ω2 + �k2 + m11)1/2
(
ω2 + m11 + m11

m00
�k2
)1/2 ,

(B10)

which is given in Sec. IV C. The poles of Eq. (B10) lead to the
spectra of gauge bosons in Eq. (67).

APPENDIX C: COHERENCE OF HOLON PAIRS AND
GAPLESS GAUGE FIELD

We sketch here the argument proving that the gapless
transverse gauge field arising from Eq. (42) is inconsistent with
the coherence of holon pairs in PG, i.e., with a nonvanishing
expectation value of eiφh

at T = 0 in the Coulomb gauge,
implying that the (global) h/s symmetry is broken. Let us
assume condensation of holon pairs, but not of spinon pairs;
then the Anderson-Higgs “mass” term in Eq. (57) at large
scale simply renormalizes the Maxwell term.43 Then in the
Coulomb gauge the effective Lagrangian for Aμ and φh has
the following form:

L [Aμ,φh](x) = {c0
[
Ai

(
� + ∂2

0

)
Ai + A0�A0

]
+ c1(Ai

√
�Ai + ∂iφ

h
√

�∂iφ
h)

+ c2(A0 + ∂0φ
h)2
}
(x) (C1)

with ci, i = 0,1,2 suitable positive constants. Integrating out
the gauge field in the path-integral formalism we obtain the
effective action for φh in momentum space

L [φh](�k,ω) = φh(�k,ω)[c1|�k|3
+ [c−1

2 + (c0|�k|2)−1
]−1

ω2]φh(−�k, − ω).

(C2)

Neglecting the subleading c2 term one can easily calculate the
equal-time large-distance behavior of the Green function of
φh:

G(�x,x0 = 0) =
∫

d2k dω
ei�k·�x

c1|�k|3 + c0|�k|2ω2
∼ |�x|1/2. (C3)

Therefore we have for large |�x|,
〈eiφh(�x,0)e−iφh(0)〉 ∼ e−c|�x|1/2

, (C4)

vanishing at large distance, so that the condensation cannot
occur.
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