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Phase diagram of iron pnictides if doping acts as a source of disorder
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We obtain and analyze the phase diagram of doped iron pnictides under the assumption that doping adds
nonmagnetic impurities to the system but does not change the densities of carriers. We show that the phase
diagram is quite similar to the one obtained under the opposite rigid band assumption. In both cases, there is a
phase where s± superconductivity and antiferromagnetism coexist. We evaluate the jump of the specific heat, �C,
at the superconducting Tc across the phase diagram and show that �C/Tc is nonmonotonic, with the maximum
at the onset of the coexistence phase. Our results are in quantitative agreement with experiments on some iron
pnictides.
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I. INTRODUCTION

How chemical doping of iron pnictides affects their elec-
tronic structure is not fully understood yet and is subject
of debates. In most studies, it is assumed that doping does
not affect the rigid band picture and only changes the
densities of holes and electrons.1 An alternative scenario2

is that doping does not affect the carrier density but rather
introduces nonmagnetic impurities and hence increases dis-
order. Angle-resolved photoemission (ARPES) experiments
on 122 materials Ba(Fe1−xCox)2As2 and Ba1−xKxFe2As2

are usually interpreted in favor of the rigid band scenario.
Within this scenario, if magnetism prevails at zero doping, the
system moves from a spin-density-wave (SDW) phase to a
superconducting (SC) state, and for some model parameters,
there is a mixed phase where SDW and SC orders coexist.3–5

Recent ARPES experiments on Ru-doped BaFe2As2, however,
found6,7 that substitution of Fe with Ru practically does not
change the Fermi surface (FS), yet the phase diagram is
quite similar to that in other doped 122 materials; as Ru
concentration increases, the system moves from an SDW
phase to an SC phase. In between, there is a region where
where both SDW and SC orders coexist, although microscopic
coexistence (as opposed to phase separation) has not been
experimentally proven yet.8 Because FS geometry does not
change, it seems natural to assume that the changes in the
phase diagram caused by Ru-substitution are predominantly
due to dilution and disorder associated with it. We also note
that disorder may be introduced directly to pnictide materials
by irradiation.9,10

In the present paper, we address the issue of what is
the phase diagram of a doped 122 Fe-pnictide if doping
does not affect the carrier density but rather introduces
nonmagnetic impurities. We show that the phase diagram is
actually the same as in the rigid band scenario. Namely, as
doping increases, first an SDW phase becomes a mixed phase,
then the system becomes a pure s± SC, and at even larger
dopings, s± SC is destroyed by disorder. This result may look
somewhat counterintuitive because nonmagnetic impurities
are pair breaking for an s± SC. It turns out, however, that
impurities damage SDW order stronger than they damage s±

SC because both intra and interband impurity scattering is
destructive for SDW,11 while only interband scattering is pair

breaking for an s± SC.12–14 Because of this disparity, the actual
magnetic Ts becomes smaller than the superconducting Tc

when the density of impurities exceeds a certain threshold,
even for the undoped case Ts > Tc. There is no a priori
guarantee that a mixed state emerges near the point where
Ts = Tc, i.e., a first-order transition from an SDW to a SC is
another option. Our calculation shows that the mixed state does
appear, see Fig. 1(a). For such a phase diagram to emerge, the
magnetic SDW Ts,0 for an undoped material should not be too
strong compared to Tc,0, see below. If Ts,0/Tc,0 is too large,
Ts remains higher than Tc down to Tc → 0, even though Ts

decreases faster.
There is another reason to analyze the phase diagram

assuming that doping introduces disorder. The measurements
of the specific heat jump �C at Tc across the phase diagram
have demonstrated15–18 that �C/Tc is nonmonotonic and has
a maximum at optimal doping that almost coincides with
the onset of the coexistence phase. The slopes of �C/Tc

are similar, although not exactly identical, upon deviations
from optimal doping into both directions. This similarity raised
speculations that the behavior of �C/Tc in underdoped and
overdoped regimes may be related. Within the rigid-band
model, �C/Tc has a peak at the onset of a mixed phase and
rapidly decreases at lower doping.19 However, the reduction of
�C/Tc at higher doping cannot be straightforwardly explained
within the rigid-band model.

In the disorder model, the behavior of �C/Tc across the
whole phase diagram is determined by a single parameter,
the density of impurities nimp, and the forms of �C/Tc in the
underdoped and overdoped regimes are related. We find that in
the disordered model, �C/Tc indeed decreases on both sides
of optimal doping, as shown in Figs. 1(b) and 2. The specific
heat is discontinuous at the onset of the mixed phase within
the mean-field approximation, but becomes rounded once
fluctuations are taken into account. The decrease of �C/Tc

away from the maximum shows rather similar, although not
identical, behavior in under and overdoped regimes, with
roughly quadratic dependence on the transition temperature
Tc, see Fig. 2(b). This behavior is in quantitative agreement
with experiments.15–17

The fact that the phase diagram and the behavior of �C/Tc

are similar in the rigid-band and the disorder models is
encouraging, since the two models are complementary to
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FIG. 1. (Color online) (Upper panel) The phase diagram as a
function of disorder, measured in units �0/2πTc,0 ∝ nimp, for on-
site disorder (�π = �0) and Ts,0/Tc,0 = 1.7. The four transition lines
terminate at a tetracritical point P , where normal, pure SDW, pure
SC, and mixed phases meet. The shaded region represents the mixed
phase. (Lower panel) Specific heat jump �C/Tc as a function of
doping. Solid curves represent the mean-field result and the dashed
curve illustrates the effect of thermodynamic fluctuations beyond the
mean-field theory.

each other. In general, a chemical doping acts in both ways:
(1) doping introduces some extra carriers and (2) increases
impurity density. The relative magnitude of the two effects
depends on materials. We argue in this regard that quite similar
behavior observed in Ru-, Co-, and K-doped BaFe2As2

15–18 is
not a coincidence but rather a quite generic feature of iron
pnictides.

The paper is organized as follows. In the next section, we
discuss the model and introduce SDW and SC order parameters
and describe the formalism used for calculations. In Sec. III,
we analyze the phase diagram as a function of impurity
concentration, by solving a linearized gap equation for one
order parameter, SDW or SC, when the second parameter
is either absent or present. Section IV presents calculations
of the superconducting order parameter near the transition
to a superconducting state. In Sec. V, we consider specific
heat jump at the onset of superconductivity. We provide our
conclusions in Sec. VI.

II. THE MODEL

A. General formulation

Our goal is to demonstrate that the phase diagram remains
the same if we associate doping with disorder rather than with
the changes to the FS in the rigid-band picture. We adopt the
same minimal model that was used in earlier works within the
rigid-band approach.19 Namely, we consider a two-band metal
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FIG. 2. (Color online) The specific heat jump �C/Tc for �π =
�0 and Ts,0 = 1.7Tc,0, as a function of Tc/TP , where TP is the
temperature of the tetracritical point. Left panel: linear scale, right
panel: log-log scale. The solid line represents the specific heat jump
�C/Tc at Tc(M) in the mixed phase in the underdoped regime, and the
dashed line represents �C/Tc in the overdoped regime, where SDW
order is absent. A thin dash line represents a quadratic dependence
�C/Tc ∝ T 2

c .

with cylindrical FSs for electron and hole-type excitations.
The cylindrical FSs have circular cross sections of equal radii
centered at (0,0) with a holelike dispersion and Q = (0,π )
with an electron-like dispersion. The free fermion part of the
Hamiltonian in this case of perfect nesting is represented by

H0 = −
∑
p,α

ξ ( p)ĉ†pαĉ pα +
∑
p,α

ξ ( p̃)f̂ †
p̃αf̂ p̃α,

where operators ĉ annihilate holelike fermions near (0,0) and
operators f̂ annihilate electron-like fermions near Q. The
fermionic dispersion is given by ξ ( p) = p2/2m − μ, and the
momentum p̃ of electron excitations is measured as a deviation
from Q, p̃ = p − Q.

We consider an effective low-energy theory with the high-
energy cutoff � and angle-independent interactions in the
SDW channel and in the s± SC channel with the couplings λsdw

and λsc.4,20–24 We treat these interactions within a mean-field
approximation, by introducing SC and SDW order parameters,
� and M, respectively, and decomposing the four-fermion
interactions into effective quadratic terms with � and M in
the prefactors. The full mean-field Hamiltonian is quadratic in
fermionic operators and can be written as

H = 1

2

∑
p,α,β


 p,αĤ p,α,β
 p,β , (1)

where 
 p,α = (ĉ†p,α, ĉ− p,α, f̂
†
p,α, f̂− p,α) and 
 p,α is a

conjugated column. The Hamiltonian matrix Ĥ p,α,β can be
written in the form4

Ĥ = Ĥ0 + Ĥmf, Ĥ0 = −ξ τ̂3ρ̂3σ̂0,
(2)

Ĥmf = −�τ̂2ρ̂3σ̂2 + τ̂3ρ̂1(Mσ̂ ).

Here, the Pauli matrices τ̂i , ρ̂i and σ̂i are defined in the Gorkov-
Nambu, band, and spin spaces, respectively, with i = 0,1,2,3
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and matrices, where i = 0 are unit matrices. A fermion Green’s
function Ĝ(ωn, p) is defined as a solution to

(iωn − Ĥ p − �̂)Ĝ(ωn, p) = 1̂, (3a)
and the conjugated equation is

Ĝ(ωn, p)(iωn − Ĥ p − �̂) = 1̂. (3b)

Here, �̂ is the self-energy for scattering off disorder and
ωn = 2πTm(n + 1/2) with integer n are Matsubara frequen-
cies.

We describe disorder scattering within the Born approxi-
mation and assume that the Born scattering amplitude U (q) is
characterized by a constant U0 for scattering within the same
band and Uπ for scattering between the two bands.12–14 In this
approximation, the self-energy is

�̂(ωn) = 4�0

πNF

∫
d p

(2πh̄)2
τ̂3ρ̂0σ̂0Ĝ(ωn,ξ )τ̂3ρ̂0σ̂0

+ 4�π

πNF

∫
d p

(2πh̄)2
τ̂3ρ̂1σ̂0Ĝ(ωn,ξ )τ̂3ρ̂1σ̂0, (4)

where we introduced disorder scattering rates:

�0 = πNF nimp

4
|U0|2, �π = πNF nimp

4
|Uπ |2. (5)

�0 characterizes the rate of electron collisions with impurities
in which the electron remains in its original band, while �π is
the rate of collisions resulting in electron transfer between the
two bands. NF in Eq. (5) is the total quasiparticle density of
states (DoS) at the Fermi energy (the DoS per spin per band is
NF /4). We assume that only the impurity density nimp changes
with doping, i.e., the ratio �π/�0 is doping independent.

The two mean-field parameters � and M are obtained self-
consistently via the matrix Green’s function as

�

λsc
= T

2

∑
ωn

∫
d p

(2πh̄)2
Tr[Ĝ(ωn, p)τ̂+(ρ̂0 + ρ̂3)σ̂+], (6)

and
M

λsdw
= T

4

∑
ωn

∫ ∫
d p

(2πh̄)2
Tr[Ĝ(ωn, p)(τ̂0 + τ̂3)ρ̂+σ̂ ], (7)

where Â+ = (Â1 + iÂ2)/2 for Â → ρ̂,τ̂ ,σ̂ .
For the pure SDW and the pure s+− SC state in the absence

of disorder, the solution of the linearized gap equations yields
transition temperatures Ts,0 = 1.13� exp[−2/(NF λsdw)] and
Tc,0 = 1.13� exp[−2/(NF λsc)]. We consider Ts,0 > Tc,0, so
that without disorder, the SDW phase develops at a higher
temperature.

B. Eilenberger equation

To treat superconductivity and magnetism in the presence of
disorder, it is convenient to introduce the Eilenberger’s Green
function

Ĝ(ωn) = 4i

πNF

∫
d p

(2πh̄)2
τ̂3ρ̂3σ̂0Ĝ(ωn, p), (8)

which appears both in the self-consistency equations, Eqs. (6)
and (7), and in the expression for the impurity self-energy,
Eq. (4). In particular, the impurity self-energy is

�̂ = −i�0τ̂0ρ̂3σ̂0Ĝτ̂3ρ̂0σ̂0 − i�π τ̂0(−iρ̂2)σ̂0Ĝτ̂3ρ̂1σ̂0. (9)

To derive the equation for Ĝ, we multiply Eq. (3a) by τ̂3ρ̂3

from left and subtract Eq. (3b), multiplied by τ̂3ρ̂3 from right.
We then multiply the resulting equation by τ̂3ρ̂3 from left
again. As a result, the Ĥ0( p) term falls out. We integrate the
resulting equation over p and obtain the equation for Ĝ(ωn) in
the form of a commutator:

[iωnτ̂3ρ̂3σ̂0 − (Ĥmf + �̂)τ̂3ρ̂3σ̂0; Ĝ(ωn)] = 0. (10)

This equation is the Eilenberger equation,25,26 obtained for
a two-band metal with homogeneous in space SDW and
SC order parameters. The Eilenberger equation is consistent
with the normalization relations for Ĝ: TrĜ(ωn) = 0 and
Ĝ(ωn)Ĝ(ωn) = 1̂.

Without loss of generality, we direct M along z axis and
parametrize the matrix Ĝ(ωn) by the three functions gωn

, fωn
,

and Sωn
as

Ĝ(ωn)=gωn
τ̂3ρ̂3σ̂0 + fωn

τ̂1ρ̂0(−iσ̂2) + Sωn
τ̂0(−iρ̂2)σ̂3. (11)

The function gωn
is the normal component of the Eilenberger

Green’s function, while the functions Sωn
and fωn

are the
two anomalous components, associated with the SDW and
SC orders, respectively.

For the above parametrization of Ĝ(ωn), Eq. (11), the
normalization condition ĜĜ = 1 reduces to

g2
ωn

− S2
ωn

− f 2
ωn

= 1, (12)

and the commutation relation, Eq. (10), gives

i�gωn
= fωn

(
ωn + 2�πgωn

)
, (13a)

iMgωn
= Sωn

(ωn + 2�tgωn

)
, (13b)

where �t = �0 + �π .
The self-consistency equations for SDW and SC order

parameters, Eqs. (6) and (7), can be rewritten in terms of
anomalous SDW and SC components of the Eilenberger’s
Green function as

2M

NF λsdw
= −i2πT

�∑
ωn>0

Sωn
, (14a)

2�

NF λsc
= −i2πT

�∑
ωn>0

fωn
. (14b)

III. PHASE DIAGRAM

We first consider pure SDW and SC states. For a pure
SDW state, we set � = 0 and fωn

= 0 in Eqs. (12) and (13a),
linearize Eq. (13b) in M and find from Eq. (14a) that the SDW
transition temperature Ts evolves with doping as

2

NF λsdw
= 2πTs

�/2πTs∑
n�0

1

πTs(2n + 1) + 2�t

. (15)

This equation can be rewritten in terms of the transition
temperature Ts,0 to SDW phase at �t = 0 as

ln
Ts,0

Ts

= ψ

(
1

2
+ �t

πTs

)
− ψ

(
1

2

)
, (16)

where ψ(x) is the digamma function.11
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For a pure SC state, we set M = 0 and Sωn
= 0 in Eqs. (12)

and (13b) and linearize Eq. (13a) in �. We obtain from
Eq. (14b),

2

NF λsc
= 2πTc

�/2πTc∑
n�0

1

πTc(2n + 1) + 2�π

. (17)

Reexpressing the result in terms of the superconducting
transition temperature Tc,0 in a clean system and without SDW,
we rewrite Eq. (17) as

ln
Tc,0

Tc

= ψ

(
1

2
+ �π

πTc

)
− ψ

(
1

2

)
, (18)

which is similar to the equation for Tc in conventional s-wave
superconductors with magnetic impurities27 and in unconven-
tional d-wave superconductors with potential impurities.28–30

Note that only interband scattering �π , is pair breaking for
s± SC.

Even if Ts,0 > Tc,0, Ts decreases faster than Tc with
increasing nimp, and at certain doping, the two transition
temperatures may cross. We denote this temperature as TP .
The condition that TP exists, i.e., that Tc and Ts cross before
Tc → 0, sets the limits on the ratios Ts,0/Tc,0 and �π/�0.
We find that Ts and Tc cross if Tc,0/Ts,0 > 1/(1 + �0/�π ).
For an on-site disorder potential �π = �0, TP > 0 exists, i.e.,
SC phase exists, if Tc,0/Ts,0 > 1/2. For longer-range impurity
potentials, �0 > �π , the SC phase develops even for smaller
Tc,0/Ts,0, see Figs. 1(a) and 3(a).

To obtain the superconducting transition temperature Tc(M)
in the presence of pre-existing magnetism, one has to solve the
linearized equation for � at a finite M . Now gωn

depends on
M [i.e., gωn

= gωn
(M)], and we have from Eq. (14b),

α(Tc(M)) = 2

NF λsc
, (19)
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FIG. 3. (Color online) (a) The phase diagram as a function of
disorder, �0/2πTc,0 for �π = 0.2�0 and Ts,0/Tc,0 = 3. Note that the
region of the mixed phases gets narrower than the region for on-
site impurities, c.f. 1. (b) The specific heat jump as a function of
Tc/TP . The solid line represents the specific heat jump �C/Tc for
normal-to-SC transition, and the dashed line shows �C/Tc in the
overdoped region for transition between SDW and SC coexistence
phases.

where

α(T ) = 2πT

�∑
ωn>0

gωn
(M)

ωn + 2�πgωn
(M)

. (20)

The temperature dependence in the right-hand side of Eq. (20)
is via ωn = πT (2n + 1) and also via gωn

(M) because M

depends on temperature. The summation in α(T ) has a
logarithmic dependence on the high-energy cutoff �. This
dependence can be eliminated in favor of the transition
temperature Tc at M = 0. Subtracting Eq. (17) from Eq. (19),
we obtain after a simple algebra an equation on Tc(M) in the
form

L[Tc(M),Tc,�π ] =
�∑

ωn>0

2πTc(M)ωn

[
gωn

(M) − 1
]

(ωn + 2�π )
[
ωn + 2�πgωn

(M)
] ,

(21)

where

L(T1,T2,�) = ln
T1

T2
+ ψ

(
1

2
+ �

πT1

)
− ψ

(
1

2
+ �

πT2

)
.

(22)

We calculate gωn
(M) as a function of temperature at a given

impurity concentration. For this purpose, we express Sωn
(M)

in terms of gωn
(M) using Eq. (13b),

Sωn
(M) = iMgωn

(M)

ωn + 2�tgωn
(M)

, (23)

substitute the result into Eq. (12) with fωn
= 0, and obtain the

fourth-order algebraic equation for gωn
(M) as a function of M:

g2
ωn

(M) + M2g2
ωn

(M)[
ωn + 2�tgωn

(M)
]2 = 1. (24)

We solve this equation, obtain gωn
(M), substitute the result

back into Eqs. (23) and (14a), utilize the definition of Ts , and
obtain the nonlinear equation for M = M(T ) in the form

L(T ,Ts,�t )=2πT
∑
ωn>0

ωn

[
gωn

(M) − 1
]

(ωn + 2�t )
[
ωn + 2�tgωn

(M)
] , (25)

where gωn
(M) is a solution of Eq. (24), one has to choose

the branch with gωn
(M = 0) = 1. Solving Eq. (25) we ob-

tain M(T ), and hence gωn
(T ). Substituting the result into

Eqs. (19) and (20) we obtain the superconducting transition
temperature Tc(M) in the mixed phase as a function of
doping.

We numerically evaluate Tc(M) at different dopings in the
mixed phase and plot the result in Figs. 1(a) and 3(a). As the
doping decreases from its optimal value, M increases at a given
temperature T , and Tc(M) rapidly drops. This is expected since
SDW and SC order parameters compete with each other. At
M → 0, gωn

(M) → 1, and Eq. (21) yields Tc(M) → Tc, as
expected.

A similar calculation of the SDW transition temperature
from the preexisting SC phase, Ts(�), shows that Ts(�)
decreases as � increases due to the same kind of competition.
Furthermore, the Ts(�) curve actually bends toward smaller
dopings, see Figs. 1(a) and 3(a), so that with decreasing
temperature the system moves from a pure SDW magnet to
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a pure superconductor through a mixed phase. The bending
of the Ts(�) curve is in agreement with the general analysis
in Ref. 31. The four curves Tc, Tc(M), Ts , and Ts(�) meet at
the tetracritical point P , as shown in Figs. 1(a) and 3(a). The
corresponding temperature TP is the highest superconducting
transition temperature. We also see from numerics that, despite
bending, the curve Ts(�) is always located to the right of the
curve Tc(M), i.e., if one increases disorder at a given T or
decreases T at a given disorder, the system with the SDW
order first becomes unstable toward an intermediate mixed
phase where SDW and SC orders coexist, and only then SDW
order disappears.

The intermediate mixed phase was earlier found in the rigid-
band model.3,4 However, in that model, it only appears at a
finite ellipticity of electron pockets, while for circular hole
and electron FSs, doping gives rise to a first-order transition
between pure SDW and pure SC phases. In the disorder model,
the mixed phase appears already for circular hole and electron
pockets and by continuity should also exists when electron
pockets have weak ellipticity. We, however, did not analyze
the whole range of ellipticities and therefore cannot exclude
a possibility of a first-order transition for strongly elliptical
electron FSs.

IV. SUPERCONDUCTING ORDER PARAMETER NEAR Tc

We verified that the mixed phase does indeed exist in the
disorder model with circular FSs by expanding in Eq. (13a) to
order �3 and solving the equation for � in the presence of M
at a temperature slightly below Tc(M). The expansion yields,
quite generally,

α(T ) − β�2 = 2

λscNF

, (26)

where α(T ) is introduced in Eq. (20) and β = β(Tc(M))
is given by Eq. (37) below. Near Tc(M), we have
α(T ) = α[Tc(M)] + α′[Tc(M)][T − Tc(M)] and α[Tc(M)],
see Eq. (19). On general grounds, α′[Tc(M)] must be negative
for a SC phase to develop as T decreases, and we indeed
show below that α′[Tc(M)] < 0. The type of the transition is,
however, determined by the sign of β. The mixed phase exists
if β > 0 because then � gradually grows as T decreases. If
β < 0, � changes discontinuously around Tc(M) and the SDW
and SC phases are separated by the first-order transition.3,4

The coefficient α(T ) can be rewritten in the form of
Eqs. (21) and (22):

α(T ) = 2

λscNF

− Y (T ), α
′
(T ) = −∂Y (T )

∂T
, (27)

where

Y (T ) = L(T ,Tc,�π )

+
∑
ωn>0

2πT ωn

[
1 − gωn

(M)
]

[ωn + 2�π ]
[
ωn + 2�πgωn

(M)
] . (28)

For M = 0 and in the clean limit, α′(Tc) = −1/Tc. We verified
numerically that α′[Tc(M)] remains negative at M �= 0 and in
the presence of disorder, as expected.

Calculations of β require more care as one has to combine
terms coming from the appearance of nonzero fωn

in Eq. (12)

and from the expansion of the SDW order parameter M(�)
to order �2 as M(�) = M + δM (2), where δM (2) ∝ �2.
Similarly, we introduce gωn

= gωn
(M) + δg(2)

ωn
and Sωn

=
Sωn

(M) + δS(2)
ωn

. Substituting gωn
and Sωn

into Eqs. (12) and
(13b), we obtain equations for δg(2)

ωn
and δS(2)

ωn
,

gωn
(M)δg(2)

ωn
− Sωn

(M)δS(2)
ωn

= 1
2

[
f (1)

ωn

]2
,

(29)−iMωnδg
(2)
ωn[

ωn + 2�tgωn
(M)

]2 + δS(2)
ωn

= iδM (2)gωn
(M)

ωn + 2�tgωn
(M)

,

where

f (1)
ωn

= i�gωn
(M)

ωn + 2�πgωn
(M)

, (30)

and gωn
(M) is defined by Eq. (23). Solving Eq. (29), we obtain

δg(2)
ωn

= −1

2

gωn
(M)

[
ωn + 2�tgωn

(M)
]2[

ωn + 2�tgωn
(M)

]3 + M2ωn

×
{

�2 ωn + 2�tgωn
(M)[

ωn + 2�πgωn
(M)

]2 + 2MδM (2)

ωn + 2�tgωn
(M)

}

(31)

and

δS(2)
ωn

= − i

2

gωn
(M)

(
ωn + 2�tgωn

(M)
)2[

ωn + 2�tgωn
(M)

]3 + M2ωn

×
{

�2Mωn[
ωn + 2�πgωn

(M)
]2[

ωn + 2�tgωn
(M)

]
− 2δM (2)

}
. (32)

We first evaluate δM (2) by substituting Sωn
= S(0)

ωn
+ S(2)

ωn
into

Eq. (14a) and eliminating the SDW coupling constant in favor
of the SDW transition temperature Ts , see Eq. (15). We obtain

δM (2)L(T ,Ts,�t ) = −2πT
∑
ωn>0

(
iδS(2)

ωn
+ δM (2)

ωn + 2�t

)
. (33)

Substituting L(T ,Ts,�t ) ≈ L[Tc(M),Ts,�t ] from Eq. (25) and
δS(2)

ωn
from Eq. (32), we obtain

δM (2) = − �2

2M

C

B
, (34)

where the coefficients B and C, together with the term A,

which we utilize below, are given by

A = πT
∑
ωn>0

gωn
(M)ωn

[
ωn + 2�tgωn

(M)
]3[

ωn + 2�πgωn
(M)

]4
D

, (35a)

B = πT
∑
ωn>0

gωn
(M)ωn[

ωn + 2�tgωn
(M)

]
D

, (35b)

C = πT
∑
ωn>0

gωn
(M)ωn

[
ωn + 2�tgωn

(M)
]

[
ωn + 2�πgωn

(M)
]2

D
, (35c)

D = [
ωn + 2�tgωn

(M)
]3 + ωnM

2. (35d)
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Substituting δM (2) into Eq. (31), we obtain δg(2) ∝ �2.
We next write fωn

, defined by Eq. (13a) to the third order
in �:

fωm
= i�gωn

(M)

ωn + 2�πgωn
(M)

+ i�ωng
(2)
ωn[

ωn + 2�πgωn
(M)

]2 , (36)

substitute this expression into Eq. (14b), and obtain Eq. (26)
with

β =
(

A − C2

B

)
, (37)

where A,B, and C are given by Eq. (35).
Evaluating these coefficients, we find AB > C2, i.e., β is

positive. This confirms our numerical result that the phase
diagram of the disorder model contains the mixed phase where
SDW and SC orders coexist.

Equation (26) can also be applied to the transition from a
paramagnetic metal into a pure SC state. In this case, M = 0,
and hence gωn

= gωn
(M) = 1 and C2/B term in Eq. (37) is

absent, i.e., β = A. Substituting gωn
(M) = 1 into Eqs. (35a)

and (35d), we obtain

α′(Tc) = − 1

Tc

[
1 −

∞∑
m=0

�π/πTc

(m + 1/2 + �π/πTc)2

]
, (38a)

β = 1

8π2T 2
c

∞∑
m=0

m + 1/2

(m + 1/2 + �π/πTc)4
, (38b)

where Tc is given by Eq. (18). Note that, again, α′(Tc) < 0 and
β > 0.

V. SPECIFIC HEAT JUMP AT THE ONSET
OF SUPERCONDUCTIVITY

The specific heat jump at Tc and Tc(M) can be obtained
by evaluating the change in the thermodynamic potential δ�

imposed by superconductivity:32

�� =
∫ �

0

dλ−1
sc

d�1
�2

1d�1 = −NF β�4

4
, (39)

where dλ−1
sc /d� and �2 are defined by Eq. (26). For �2, we

have

�2 = 1

β

[
α(T ) − 2

λscNF

]
= |α′|

β
[Tc(M) − T ]. (40)

The change of the specific heat due to the superconducting
ordering is �C = −T ∂2δ�/∂T 2. At T = Tc(M), the specific
heat exhibits the jump given by

�C

Tc

= 3γ

2π2

{α′[Tc(M)]}2

β
, (41)

where γ = π2NF /3 is the Sommerfeld coefficient in the
metallic phase.

The behavior of �C/Tc as a function of doping-induced
disorder is shown in Figs. 1(b), 2, and 3(b). To evaluate �C/Tc

at the transition from a normal metal to a superconductor
above optimal doping, we use Eq. (38) for α′ and β in
Eq. (41). At large doping, when Tc is significantly suppressed
and the system enters the regime of impurity-induced gapless
superconductivity, specific heat jump �C/Tc decreases with

0 0.2 0.4 0.6 0.8 1
 T

c
/ T

c,0

0

0.5

1

1.5

ΔC
/γ

 T
c

FIG. 4. (Color online) The jump �C/Tc of the specific heat at a
superconducting Tc without a competing SDW instability (λsdw =
0). �C/Tc is plotted as a function of Tc/Tc,0, where Tc,0 is the
superconducting transition temperature in the clean limit.

Tc as �C/Tc ∝ T 2
c , see Ref. 33. Away from the gapless regime,

the dependence of �C/Tc on Tc is more complex and differs
from T 2

c , as the dashed lines in Figs. 1(b), 2, and 3(b). For
completeness, we present in Fig. 4, �C/Tc as a function of
Tc/Tc,0 for an s± superconductor, when there is no competing
SDW instability (i.e., when λsdw = 0) and the Tc line extends
to Tc,0 in the clean limit.

For the transition from the preexisting SDW state into
the mixed state below optimal doping, we compute �C/Tc,
see Eq. (41), using α′ and β from Eqs. (27) and (37). In
this regime, SDW order strengthens as doping decreases,
and SDW correlations suppress both superconducting Tc(M)
and �C/Tc. In particular, the rapid decrease of �C/Tc at
smaller dopings is an indicator that fewer quasiparticle states
participate in superconducting pairing, as the low-energy states
are pushed away from the FS by SDW order. We see therefore
that �C/Tc drops at deviations from optimal doping in both
overdopped and underdopped regimes.

It is essential that in the disorder model, the behavior of
�C/Tc in the underdoped and overdoped regimes is governed
by the single parameter �0 ∝ nimp, assuming that the ratio
�π/�0 is kept constant.

The same parameter �0 also defines Tc/TP , where TP =
Tc(M → 0) is the transition temperature at the tetracritical
point. One can therefore make a direct comparison with
experiments by plotting �C/Tc above and below optimal
doping as the function of the same Tc/TP using �C defined by
Eq. (41) with α′ and β given by Eq. (38) above optimal doping,
and by Eqs. (27) and (37) for a finite M below optimal doping.
Experiments show15–17 that �C/Tc drops faster in underdoped
regime, but in log-log plot the data from underdoped and
overdoped regimes can be reasonably well fitted by a quadratic
law �C/Tc ∝ T 2

c .
We plot our �C/Tc in Fig. 2 as functions of Tc/TP in both

linear and log-log plots. We see that �C/Tc drops faster with
decreasing Tc in the underdoped regime, i.e., in the mixed
phase. This behavior is consistent with experimental data.
The T dependence of �C/Tc is not exactly T 2, but looks
reasonably close to T 2 in log-log plot (right panel in Fig. 2),
although such a plot puts more weight on the data at low Tc

where the T dependence of �C/Tc is the strongest.
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Finally, we note that �C/Tc is discontinuous at the
tetra-critical point Tc = Ts = TP . The discontinuity is the
manifestation of the discontinuous change in both α′ and
β across TP . The discontinuity in α′ is due to the fact
that the second term in Eq. (27) is zero for M = 0, but is
finite when M �= 0 and contains temperature derivative of
(g(0)

ωn
− 1) ∝ M2 ∝ (T − TP ). The discontinuity in β is due

to the feedback term C2/B in β, which remains finite upon
approaching TP from smaller dopings, but is absent in the
overdoped regime, where Ts < Tc. The interplay between
discontinuities in α′ and β in the disorder model is such that
�C/Tc jumps up at nimp once the system enters the mixed
phase.

The discontinuity in �C/Tc at TP has also been found in the
rigid-band model.19 In that model, however, the magnitude and
the sign of the jump in �C/Tc depend on the FS geometry
and �C/Tc may actually drop down upon entering into the
mixed phase. We also emphasize that discontinuity in �C/Tc

only holds within the mean-field theory and gets rounded up
and transforms into a maximum once we include fluctuations
because then the thermodynamic average 〈M2〉 is nonzero on
both sides of the tetra-critical point. This behavior of �C/Tc

in the presence of fluctuations is schematically illustrated in
Fig. 1(b) by the dashed line.

VI. CONCLUSIONS

In this paper, we obtained the phase diagram of doped
Fe-pnictides and the specific heat jump �C at the onset
of superconductivity across the phase diagram under the
assumption that doping introduces disorder but does not affect
the band structure. The phase diagram is quite similar to the one
obtained in the rigid band scenario and contains SDW and SC
phases and the region where SDW and SC orders coexist. The
ratio �C/Tc, which is a constant in a BCS superconductor, is
nonmonotonic across the phase diagram—it has a maximum at
the tetra-critical point at the onset of the mixed phase and drops
at both larger and smaller dopings. The behavior at large and
small dopings is described in terms of the single parameter: the
impurity density nimp. The nonmonotonic behavior of �C/Tc

in the underdoped regime also holds in the rigid band model,19

but there the behavior of �C/Tc at small and large dopings is
generally uncorrelated.

We found reasonably good agreement between our theory
and the experimental phase diagram of Ba(Fe1−xRux)2As2 in
which Fe is subsituted by isovalent Ru (see Refs. 6 and 7) and
on the data for the doping dependence of the specific heat jump
at Tc (see Refs. 15–17). This agreement is a good indicator that
our theory captures the key physics of nonmonotonic behavior
of �C/Tc, particularly the reduction of �C/Tc in the mixed
state. Whether the data can distinguish between rigid-band
and disorder scenarios is a more subtle issue as the interplay
between doping-induced disorder and doping-induced change
in the band structure is likely to be material dependent. Another
subtle issue is the apparent T 2 dependence of the measured
�C/Tc on both sides of optimal doping. Our log-log plots
reproduce this dependence reasonably well, but our actual
�C/Tc are more mild than T 2. One possible reason is our
neglect of the doping dependence of γ in the normal-state
specific heat C = γ T . In reality, γ also decreases on both
sides of optimal doping,16 and this should sharpen up the T

dependence of �C/Tc.
Finally, there are certainly other elements of the physics

of Ba(Fe1−xRux)2As2, which we neglected in our model. In
particular, Brouetet al. demonstrated6 that Fermi velocities
in Ba(Fe1−xRux)2As2 are larger than in undoped BaFe2As2,
this observation likely implies that electronic correlations
are weaker in Ba(Fe1−xRux)2As2. Dhaka et al. argued7 that
magnetic dilution due to Ru substitution contributes to the
destruction of SDW order. These effects add on top of
Ru-induced impurity scattering, which we studied here, and
call for more comprehensive analysis of isolvalent doping of
Fe in 122 materials.
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