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Temperature dependences of geometrical and velocity-matching resonances in Bi2Sr2CaCu2O8+x

intrinsic Josephson junctions
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We study temperature dependence of geometrical (Fiske) and velocity-matching (Eck) resonances in the
flux-flow state of small Bi2Sr2CaCu2O8+x mesa structures. It is shown that the quality factor of resonances is
high at low T , but rapidly decreases with increasing temperature. We also study T dependencies of resonant
voltages and the speed of electromagnetic waves (the Swihart velocity). Surprisingly it is observed that the
Swihart velocity exhibits a flat T dependence at low T , following T dependence of the c-axis critical current,
rather than the expected linear T dependence of the London penetration depth. Our data indicate that self-heating
is detrimental for operation of mesas as coherent THz oscillators because it limits the emission power via
suppression of the quality factor. On the other hand, significant temperature dependence of the Swihart velocity
allows broad-range tunability of the output frequency.
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I. INTRODUCTION

Single crystals of a cuprate superconductor
Bi2Sr2CaCu2O8+x (Bi-2212) represent natural stacks of
atomic scale intrinsic Josephson junctions (IJJs).1 Josephson
junctions form transmission lines for electromagnetic
(EM) waves.2 The propagation (Swihart) velocity is
c0 � c/[L�C�]1/2, where c is the speed of light in vacuum
and L� and C� are the inductance and the capacitance per
square of the transmission line,

L� = 4π�, (1)

� = t + 2λS coth(d/λS). (2)

Here t and d are thicknesses of the dielectric and
superconducting layers, respectively, and λS is the London
penetration depth of the superconductor. In thin-layer junctions
t,d � λS , L� � 8πλ2

S/d is dominated by a large kinetic
inductance of superconducting layers. As a consequence,
c0 can be much slower than c—the phenomenon that finds
applications in compact superconducting delay lines.3

The Swihart velocity carries a direct information about the
London penetration depth. It can be obtained by measuring the
propagation (delay) time in a transmission line.4,5 However,
Josephson junctions provide a much easier way of measuring
c0. In Josephson junctions EM waves can be generated in situ
by means of the ac-Josephson effect. At geometrical resonance
conditions they form standing waves, leading to the appearance
of Fiske steps in current-voltage (I -V ) characteristics.6–10

Fiske step voltages allow simple and direct evaluation of the
absolute values of temperature-dependent London penetration
depth2,6,11 (unlike surface impedance measurements, which
usually provide only relative values12–15). Such measurements
do not require long transmission lines, but can be performed
on small ∼μm-scale junctions. IJJs of μm sizes, made on high
quality Bi-2212 single crystals, are free from crystallographic
defects that can affect λ in cuprates.16,17 Therefore Fiske
resonances in small IJJs should provide information about
genuine (defect-free) behavior of the penetration depth in
cuprates.

Geometrical resonances play also an important role in
achieving high power THz EM wave emission from Bi-2212
mesa structures.18–23 The maximum radiation power from a
stack with N junctions is Prad ∝ N2Q2,24 where

Q = ωRC (3)

is the quality factor of the resonance, ω is the resonant
frequency, R is the effective damping resistance, and C is
the capacitance of the junctions. The factor N2 is due to con-
structive interference of N in-phase synchronized junctions25

and the factor Q2 represents the resonant amplification in each
junction by the geometrical resonance. Thus both in-phase
coherence and high quality Q � 1 geometrical resonances
are needed for achieving a high emission power.24 The
increment of the emission power is inevitably accompanied
by self-heating of the stack. In superconductors this leads to
a rapid increase of the quasiparticle (QP) damping, which
suppresses Q. Self-heating ultimately limits the performance
of an oscillator.23 Clearly, investigation of the quality factor
of geometrical resonances and their T dependence has a
primary significance for the development of a high power THz
oscillator, based on IJJs.

In this work, we study experimentally T dependencies of
geometrical (Fiske) and velocity-matching (Eck) resonances9

in the flux-flow state of small Bi-2212 mesa structures. It
is observed that Q of resonances is large at low T , but
rapidly decreases with increasing temperature primarily due
to enhancement of the quasiparticle damping. Surprisingly, it
is observed that resonant voltages, proportional to the Swihart
velocity, exhibit a very weak T dependence at low T and do
not follow the expected linear T dependence of the effective
London penetration depth λab(T ) in Bi-2212.12–15 We discuss
possible origins of such a distinct discrepancy, which to our
opinion deserves further experimental and theoretical analysis.

II. GEOMETRICAL RESONANCES IN STACKED
JOSEPHSON JUNCTIONS

Stacked Josephson junctions form multilayer transmission
lines for electromagnetic waves. The general problem of linear
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wave propagation in multilayer transmission lines was first
considered by Economou26 and more recently within the
inductively coupled junction (ICJ) formalism by Kleiner27

and Sakai et al.28 In this section we will briefly recollect
peculiarities of wave propagation and geometrical resonances
in stacked Josephson junctions.

In the ICJ model of Sakai, Bodin, and Pedersen,29 a
layered superconductor is represented by a stack of isotropic
superconducting layers with the thickness d and the “intrinsic”
penetration depth λS , separated by tunnel barriers with the
thickness t , the dielectric constant εr , and the fluctuation-free
Josephson critical current density at zero magnetic field Jc0.
The stacking periodicity s = t + d is � 1.5 nm for Bi-2212.
Properties of inductively coupled stacked Josephson junctions
are described by the coupled sine-Gordon equation.29 The
coupling is represented by a tridiagonal coupling matrix A with
the off-diagonal terms equal to minus the effective inductive
coupling constant between neighbor junctions,28

S = λS

[
t sinh

(
d

λS

)
+ 2λS cosh

(
d

λS

)]−1

. (4)

For IJJs S � 0.5 − ds/4λ2
S is close to the maximum value 0.5.

A. Eigenmodes in stacked junctions

The main difference between single and stacked junctions
is the presence of multiple electromagnetic wave modes in
the stack. Geometrical resonances in a stack correspond to
formation of two-dimensional standing waves.27,28 The wave
number along the ab planes (x axis) is km = πm/L, where L

is the length of the junctions and m is the number of nodes in
the standing wave. In the c-axis direction it is given by one of
the eigenmodes, kn = πn/(N + 1)s, n = 1,2, . . . N , where N

is the number of junctions in the stack. The oscillatory part of
the phase difference is

δϕi(m,n) = a cos

(
πmx

L

)
sin

(
πni

N + 1

)
ejωt . (5)

Here i = 1,2, . . . N is the junction index, a = const is an
amplitude, and ω is the angular frequency.

Each eigenmode has a distinct propagation velocity, given
by Eq. (3.52) of Ref. 26. Within the ICJ model they can be
written as28

cn = c0

[
1 − 2S cos

(
πn

N + 1

)]−1/2

, n = 1,2, . . . N, (6)

where c0 = λJ ωp0 = c[ts/2εrλ
2
ab]1/2 is the Swihart velocity,

ωp0 =
[

8π2tcJc0

	0εr

]1/2

(7)

is the Josephson plasma frequency (at zero magnetic field),

λJ =
[

	0c

8π2Jc0�

]1/2

�
[

	0cs

16π2Jc0λ
2
ab

]1/2

(8)

is the Josephson penetration depth of a single junction, and

λab � λS

√
s/d (9)

is the effective London penetration depth for field perpendic-
ular to layers.

Similarly, eigenmodes are characterized by different char-
acteristic lengths,30

λn = λJ

[
1 − 2S cos

(
πm

N + 1

)]−1/2

, n = 1,2, . . . N. (10)

(λJ /λn)2 are eigenvalues of the coupling matrix A.30 The
shortest, λN � λJ /

√
2 � 0.5 μm for Bi-2212. The longest λ1

approaches the effective penetration depth for field parallel to
layers (for N � πλab/s � 400)

λc =
[

	0c

8π2Jc0s

]1/2

. (11)

In Bi-2212, λc(T = 0) ∼ 100 μm � λab(T = 0) �
0.2 μm.30

Due to inductive coupling between junctions, the in-plane
(y-axis) magnetic field is nonlocal and depends on phase
distributions in all junctions: By(i) = (H0/2)A−1λJ ∂ϕj/∂x.
Here H0 = 	0/πλJ �.30 Using Eq. (5) we obtain for the
oscillatory part of magnetic field in the stack

By(x,z)(m,n) = −H0aπmλ2
n

2LλJ

sin(kmx) sin(knz). (12)

Here we used the property that A and A−1 have the same
eigenvectors, and eigenvalues of A−1 are λ2

n/λ
2
J , Eq. (10).

The in-plane current density in superconducting layers is
obtained from the Maxwell equation Jx = −(c/4π )∂By/∂z:

Jx(x,z)(m,n) = Jac(m,n) sin(kmx) cos(knz), (13)

Jac(m,n) = a	0cλ
2
nmn

16λ2
abλJ L(N + 1)

. (14)

Figure 1 shows calculated distributions of the amplitudes of
By (a) and Jx (b) for modes n = N (open circles) and n = 1
(squares) for the stack with N = 10 junctions. Horizontal
stripes represent superconducting layers. It is seen that
eigenmodes are characterized by different symmetries along
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FIG. 1. (Color online) Spatial distribution of oscillation am-
plitudes of (a) magnetic field and (b) in-plane currents for the
in-phase (squares) and the out-of-phase (circles) modes for a stack
with N = 10 IJJs. Horizontal stripes represent superconducting
layers.
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FIG. 2. (Color online) (a) Calculated slowest and fastest veloci-
ties cN and c1 as a function of the number of junctions in the stack.
Calculations are made within the ICJ model for typical Bi-2212
parameters at T = 0. (b) Calculated temperature dependencies of
squares of cN and c1 for several N along with λ−2

ab (T ), normalized by
the corresponding values at T = 0.

the stacking direction. The slowest n = N mode corresponds
to the (almost) out-of-phase state in neighbor junctions δϕi �
−δϕi+1. The fastest n = 1 mode corresponds to the (almost)
in-phase state δϕi � δϕi+1.

Figure 2(a) shows calculated dependence of c1 and cN on
the number of junctions N . It is seen that the slowest velocity
is almost independent of N ,10

cN � c0√
2

� c

[
ts

4εrλ
2
ab

]1/2

. (15)

To the contrary, the fastest velocity

c1 � c

√
t

εrs

[
1 +

(
πλab

s(N + 1)

)2]−1/2

(16)

is growing linearly with N for N < πλab/s � 400.10 For N �
πλab(T )/s, it asymptotically approaches the T -independent
value c1(N → ∞) = c[t/εrs]1/2, close to the speed of light in
the dielectric, as shown in Fig. 2(a).

Figure 2(b) shows calculated T dependencies of c2
1 and c2

N ,
Eq. (6), normalized on the corresponding values at T = 0,
for different N . Calculations are made for typical param-
eters of Bi-2212, using the [λab(T )/λab(0)]−2 dependence
shown by the lowest line obtained from surface impedance
measurements.12–15,17 As follows from Eq. (15), T dependence

of the out-of-phase velocity cN follows 1/λab(T ), irrespective
of N . For IJJs the same is true for all slow modes n � 2.

The speed of the fastest mode, c1(T ), does depends on N .
For N < πλab/s � 400, it maintains the same T dependence
∝ 1/λab. The corresponding three curves [cN (T )/cN (0)]2,
[λab(T )/λab(0)]−2, and [c1(T )/c1(0)]2 for N = 100 collapse
in one in Fig. 2(b). For much larger N , when c1 approaches the
T -independent speed of light in the dielectrics, see Fig. 2(a),
c1(T ) becomes flatter at low T , as shown in Fig. 2(b). However,
since λab diverges at T → Tc, c1 always vanishes at Tc, as seen
from the curve with N = 104 in Fig. 2(a).

In magnetic field H , parallel to the junction plane, Joseph-
son vortices (fluxons)30 enter into the junctions. In strong
enough magnetic field fluxons form a regular fluxon lattice in
a stack. Usually a triangular lattice is most stable due to fluxon
repulsion. However, a rectangular lattice can be stabilized via
geometrical confinement in small Bi-2212 mesas.31 Motion of
fluxons leads to appearance of the flux-flow (FF) branch in the
I -V . Emission of EM waves in the FF state leads to excitation
of geometrical resonances.7,9,10 The corresponding Fiske step
voltage for the resonant mode (m,n) is

Vm,n(T ) = 	0mcn(T )/2L. (17)

The strongest resonance occurs at the velocity matching
(VM) condition, when the velocity of fluxons is equal to
the velocity of electromagnetic waves.10 This leads to the
appearance of the VM (Eck) step at the end of the FF branch.9

The VM voltage is

VV M � NHscn. (18)

The T dependencies of both Fiske and VM steps are deter-
mined solely by cn(T ), Eq. (6). Therefore they can be used for
accurate detection of the absolute value of λab(T ) [except for
the fastest mode at very large N , as shown in Fig. 2(b)].

B. Connection between the inductively coupled and the
Lawrence-Doniach models

A similar system of coupled sine-Gordon equations was
also obtained from the Lawrence-Doniach (LD) model.32 The
two main parameters of the LD model are the anisotropy factor
γ � 1 and the effective London penetration depths λab. The
rest of parameters are derived as32 λc = γ λab, λJ = γ s, ωp0 =
c/ε

1/2
r γ λab, and c0 = cs/ε

1/2
r λab.

From comparison with ICJ expressions Eqs. (7)–(9), (11),
and (15) it is seen that while the ICJ model contains two
T -dependent variables λab(T ) and Jc0(T ), the LD model has
only one, λab(T ), which imposes its T dependence on all
other variables. Within the range of validity of the LD model,
Tc − T � Tc, the two models are identical because λ−2

ab (T ) ∝
Jc0(T ) ∝ 1 − T/Tc. However, as will be discussed below,
λ−2

ab (T ) and Jc0(T ) have distinctly different T dependencies
at low T , which would cause a discrepancy between the two
models, unless the anisotropy is allowed to be T dependent,
γ (T ) = λc(T )/λab(T ).33–35 Additional discussion about the
connection between ICJ and LD models can be found in Ref. 30
(see Table I therein).
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III. EXPERIMENT

Small mesa structures were fabricated on top of Bi-2212
single crystals with Tc = 82 K. Twelve mesas with different
sizes were fabricated simultaneously on every crystal. All
of the studied mesas showed similar behavior. Here we
present data for two mesas on the same slightly underdoped
Bi-2212 crystal with areas of 2.7 × 1.4 μm2 (mesa 1) and
2.0 × 1.7 μm2 (mesa 2). Both mesas contain N = 12 IJJs.
The results are representative for a large number of mesas
made on crystals with different doping and composition (see
Table I in Ref. 10). Details of sample fabrication and of the
experimental setup can be found in Ref. 10.

The magnetic field was applied strictly parallel to the
superconducting CuO bilayers, to avoid the intrusion of
Abrikosov vortices. Eventual entrance of Abrikosov vortices
is immediately obvious in experiment: it causes very strong
and irreversible damping of Fiske resonances and of the
Fraunhofer modulation of the critical current.31 Essentially,
results reported here are observable only in the absence of
Abrikosov vortices. Using the rigorous alignment procedure,
described in Ref. 31, we were able to prevent Abrikosov
vortex entrance in fields up to 17 T.36,37 This is seen from the
field independence of the c axis QP resistance36 and perfect
reversibility of all measured characteristics.10,31

Measurements are made in the three-probe configuration.
To simplify data analysis, a contact or a quasiparticle resistance
was subtracted from I -V characteristics, as described in
Ref. 31. The subtraction is facilitated by the negligible
dependence of the QP resistance on in-plane magnetic field
due to the extremely large anisotropy of Bi-2212 [see, e.g.,
Fig. 3(d) in Ref. 36]. To do the subtraction, we first carefully
measured the corresponding branch of the I -V at H = 0. After
that we made a high-order polynomial fit of ln(I ) vs V , which
is almost linear38 and can be fitted with a very high (∼μV)
accuracy. This fit is then subtracted from the measured I -V .
When studying T dependence, this procedure was repeated at
each T . Such subtraction simplifies the analysis of Fiske steps,
but is not necessary: Fiske steps can be also measured relative
to the bias-dependent contact or QP voltages.

IV. RESULTS

Figure 3 shows I -V curves (digital oscillograms) for mesa
1 at H = 1.4 T and at different T from 2.0 to 15.1 K.
As the current is increased, the I -V s switch from the zero
voltage branch to the flux-flow branch, containing sequences
of individual and collective Fiske steps, seen as small sub-
branches in Fig. 3(a), and ending at the velocity-matching
step. Detailed discussion of the magnetic-field dependence of
Fiske and VM steps at low T can be found in Ref. 10. Strong
hysteresis of Fiske steps indicates high Q � 1 of the geometric
resonances. This is facilitated by careful alignment of magnetic
field, which prevents penetration of Abrikosov vortices.36 With
further increase of current some junctions switch into the QP
state, while the rest are remaining in the flux-flow state. This
leads to the appearance of combined QP-FF families of Fiske
steps, four of which are indicated in Fig. 3(a), (QP1–4) with
the number corresponding to the number of IJJs in the QP
state.

FIG. 3. (Color online) I -V curves of mesa 1 at H = 1.4 T and at
different T = 2.0–15.1 K. At low T , in panels (a) and (b), sequences
of hysteretic (high-Q) individual Fiske steps are seen at low bias. At
higher bias some junctions switch into the QP state, but Fiske steps are
still present in the rest of the junctions. The corresponding first four
mixed flux-flow-QP branches are marked (QP1–4). At T = 10.1 K
(c) these steps smear out and at T = 15.1 K (d) individual Fiske steps
have vanished; instead a collective, nonhysteretic step is observed.

The EM wave speed can be obtained directly from resonant
voltages using Eqs. (17) and (18). The corresponding low-T
values for several mesas at different Bi-2212 crystals can be
found in Ref. 10. Fiske steps in Fig. 3 correspond to slow
speed resonances V2,N = 0.27 mV. At the QP1, QP2 branches
another sequence V4,N = 0.54 mV of individual Fiske steps
is seen. As shown in Refs. 10,37, the VV M is proportional to
the field for 2 T < H < 10 T, consistent with Eq. (18), before
it gets interrupted by phonon-polariton resonances at higher
fields.37 In this intermediate-field range the limiting fluxon
velocity is close to the out-of-phase velocity cN .

A. Temperature dependence of the quality factor

As seen from Fig. 3, with increasing temperature, the
amplitude of the individual Fiske steps rapidly decreases. At
T = 10.1 K steps are smeared out almost completely and at
T = 15.1 K they vanish. At this temperature only a collective,
nonhysteretic Fiske step is visible at N × V2,N � 3.2 mV; see
Fig. 3(d).

Figures 4(a) and 4(b) show I -V s in a wider T range,
Fig. 4(a) for mesa 2 at H = 2.75 T, and Fig. 4(b) for mesa
1 at H = 3.85 T. Collective Fiske steps at ≈N × V1,N can be
seen at low T (indicated by the downward arrows). At higher
bias VM steps are observed (indicated by the upward arrows).
Both mesas show similar behavior: Sharpness of the collective
Fiske and the VM steps rapidly decreases with increasing
temperature. This indicates enhancement of damping, also
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FIG. 4. (Color online) (a) Flux-flow parts of I -V curves of mesa 2 at H = 2.75 T and at different T . A collective Fiske step (downward
arrow) and a velocity matching step (upward arrow) are seen, followed by QP branches at higher bias V > 20 mV. (b) The same for the mesa 1
at H = 3.85 T. It is seen that both Fiske and velocity matching steps are rapidly smeared out with increasing T . (c) dI/dV curves, numerically
calculated from curves in (b). Distinct peaks correspond to the collective Fiske and the velocity-matching resonances. (d) T dependence of the
nearly ohmic flux-flow resistance at V = 12 mV for mesa 1 at H = 3.85 T. (e) and (f) show amplitudes of the dI/dV peaks, corresponding to
the collective Fiske step (e) and the velocity-matching peak (f).

seen from reduction of slopes of I -V curves with increasing
T .

Figure 4(c) shows dI/dV curves, numerically calculated
from the I -V curves from (b). Peaks in conductance corre-
spond to Fiske and VM steps. The decrease of amplitudes of
the steps with increasing T is clearly seen, indicating reduction
of Q at higher temperatures.

According to the sine-Gordon equation, the initial viscous
part of the flux-flow I -V should be ohmic with the flux-flow
resistance RFF representing the effective damping.39 Indeed,
from Figs. 4(a) and 4(b) it is seen that the flux-flow I -V
is nearly ohmic at 10 < V < 20 mV. This allows accurate
evaluation of the bare (nonresonant) RFF (T ). It is shown
in panel (d) for V = 12 mV (∼1 mV per junction). The
T dependence of RFF is almost identical to the low-bias
c-axis QP resistance RQP (T ,H = 0),38 indicating that the
RFF (T ) dependence is predominantly determined by “freezing
out” of quasiparticles. At low T and moderately low H

the value of RFF is slightly lower than RQP , which may
indicate the presence of additional damping mechanisms,
such as the in-plane QP damping,40 or generation of phonons
via electrostriction.37 At higher H , RFF = RQP [see, e.g.,
Fig. 3(d) from Ref. 36].

Figures 4(e) and 4(f) represent T dependencies of bare
amplitudes of conductance peaks at the collective Fiske step
and the VM step, respectively. The peak amplitudes were
obtained by subtracting the background flux-flow conductance
R−1

FF . It is seen that resonances in both mesas exhibit similar T

dependencies: At low T , peaks are high, i.e., quality factors of

resonances are large Q � 1, but they start to rapidly decrease
with increasing T . Comparison with the effective flux-flow
resistance RFF , shown in panel (d), indicates that the scale for
variation of peak amplitudes is similar to RFF (T ). Therefore
both resonances roughly follow Eq. (3) with R � RFF (T ).

B. Temperature dependence of the Swihart velocity

Both Fiske and VM steps in the considered case correspond
to propagation of waves, respectively fluxons, with the velocity
�3.2 × 105 m/s10 close to the expected value of the slowest
out-of-phase velocity cN , Eq. (15). It is almost 1000 times
slower than c, not because of extraordinary large dielectric
constant, but because of extraordinary large kinetic inductance
of atomically thin superconducting layers in Bi-2212; see
Eq. (2). According to Eq. (15), the shape of cN (T ) should
depend solely on 1/λab(T ). Thus voltages of Fiske and VM
steps should provide a direct information on absolute values
of 1/λab(T ).

Squares and triangles in Fig. 5 represent measured T

dependencies of V 2
V M for both studied mesas. Crosses in

Fig. 5 represent fast geometrical resonance voltages, reported
recently by Benseman and co-workers on large Bi-2212 mesas
at zero field.41 Apparently, our data for the slowest resonances
coincide with their data for the fast resonance within the
measured T range, consistent with Fig. 2(b) for not very large
N .

Lines in Fig. 5 represent typical temperature dependencies
of λ−2

ab for cuprates12,13 and the fluctuation-free c-axis critical
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FIG. 5. (Color online) Normalized temperature dependence of
the square of the velocity-matching voltage VV M ∝ cN . Solid line
represents typical T dependence of λ−2

ab from Refs. 12 and 13. Dashed
line represents the T dependence of the fluctuation free Josephson
critical current density Jc0 from Ref. 42.

current density Jc0 for Bi-2212 IJJs.1,42 The latter is similar to
ω2

p0(T ), measured by the Josephson plasma resonance43 and
to λ−2

c (T ) obtained from surface impedance measurements,34

consistent with Eqs. (7) and (11). It is seen that λ−2
ab and Jc0

exhibit distinctly different behavior at low T : Jc0(T ) is flat,
while λ−2

ab (T ) has a linear T dependence due to the d-wave
symmetry of the order parameter.12,13 Clearly, experimental
V 2

V M (T ) follow Jc0(T ) rather than the expected λab(T )−2

dependence.

V. DISCUSSION

At low T , the obtained speed of EM waves �3.2 ×
105 m/s agrees with the expected out-of-phase mode velocity
cN , Eq. (15) for reasonable parameters t/εr = 0.1 nm and
λab(T = 0) � 200 nm,12,13,15,33 which may correspond, e.g.,
to εr � 10, t � 1 nm, d = s − t � 0.5 nm, and λS � 140
nm. Thus the ICJ model does provide a correct value of
the Swihart velocity at low T . It also provides correct
T dependencies of the Josephson plasma frequency43 and
λc,34 ωp0(T ) ∝ λ−1

c (T ) ∝ √
Jc0(T ); see Eqs. (7) and (11).

Therefore it is surprising that the T dependence of the
effective penetration depth deduced from resonant voltages
is different from λab(T ), obtained from surface impedance
measurements.12,13,15,33 Below we mention several possible
reasons for such a discrepancy.

A. Possible origin of discrepancy with surface impedance
measurements

It is known that low-T behavior of λab in cuprates can
be affected by defects and impurities.17 Especially thin films
are prone to such a distortion.16 However, as we mentioned
in the Introduction, here we perform measurements on μm-
size mesas made of high quality single crystals. Since such
small mesas are free from crystallographic defects, we expect
that the corresponding distortion of λab(T ) by defects in

our measurements is smaller than in surface impedance
measurements performed on much larger crystals. Therefore
we discard defects as a possible origin of the discrepancy.

Derivation of the ICJ model is based on the assumption that
field and current distributions within each superconducting
layer can be described by the local second London equation.29

However, this assumption most likely breaks down in atomic
scale IJJs [see condition (4.3) in Ref. 26].

To understand the reported discrepancy it is, first of all,
necessary to understand the difference in local current and field
distributions. In surface impedance measurements, the external
electromagnetic field is screened at the depth λab ∼ 200 nm
from the surface of the superconductor. This induces similar
(in-phase) screening currents in a fairly large number N ∼
130 of IJJs. To the contrary, at the out-of-phase geometrical
resonances the current varies at the atomic scale, as shown in
Fig. 1(b).

(i) Nonlocality of supercurrent. The most obvious question
is to what extent Cooper pairs are localized in every CuO bi-
layer. The very existence of the c-axis critical current indicates
that the localization is incomplete. This can be particularly
significant for the out-of-phase mode, when Cooper pairs are
forced to move in opposite directions in neighbor layers; see
Fig. 1(b). Qualitatively such delocalization will lead to larger
effective penetration depth.

(ii) Nonlocal Josephson electrodynamics. Another type of
nonlocality in thin layer junctions was considered by Mints.44

With decreasing d, the effective screening length �/2, Eq. (3),
increases and approaches the Pearl length λP = λ2

S/d. To
the contrary, the Josephson penetration depth λJ decreases
∝�−1/2; see Eq. (8). For IJJs λJ < 1 μm Ref. 31 is much
smaller than λP ∼ 10 μm even at T = 0. Such a mismatch
changes the dispersion relation of electromagnetic waves.44

(iii) Retardation effects. Retardation effects appear in
transmission lines when the time (phase velocity) required to
transfer charge within a layer is comparable or faster than that
for electromagnetic waves outside the layer.26 Specific for IJJs
is that the out-of-phase electromagnetic wave velocity is so
slow, ∼105 m/s, that it becomes comparable to the electronic
Fermi velocity. This may affect the dispersion relation.

(iv) Frequency dependence. The effective penetration depth
in superconductors depends not only on T but also on
frequency λ(T ,ω). It originates from a significant (T ,ω) de-
pendence of complex conductivity in a superconductor.11 The
most obvious difference between static and high-frequency
λ(T ) is that the latter does not diverge at T → Tc, but
approaches the finite normal skin depth. This may flatten out T
dependence of high-frequency Fiske steps, compared to static
1/λ(T ).11

Surface impedance measurements are typically performed
at ∼10 GHz frequency. In comparison, the studied Fiske
and VM step voltages are ∼1 mV per junction; see Fig. 4.
According to the ac-Josephson relation this corresponds to
∼500 GHz. The significant difference in frequencies may lead
to a significant difference in the effective λ.

At even higher THz frequencies, the frequency dependence
of the dielectric function εr (ω) in isolating BiO layers becomes
significant. As shown in Ref. 37, the speed of electromag-
netic waves slows down dramatically when the frequency
approaches the transverse optical phonon frequencies.
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(v) Nonlinear effects. Equation (6) was derived by lin-
earization of the coupled sine-Gordon equation and is valid for
small amplitude EM waves a � 1. However, at high quality
geometrical resonances the amplitude may be large, a ∼ 2π ,
and nonlinearity of the sine-Gordon equation may affect the
dispersion relation.

The penetration depth depends on the absolute value of
the current density. Close to the depairing current density, λ

rapidly increases. At geometrical resonances the amplitude of
the in-plane current density is given by Eq. (14). It depends on
the amplitude a, which can be ∼1 for Q � 1. An estimation for
a = 1 and L/m = 1 μm yields Jac ∼ 106 A/cm2, comparable
to the maximum in-plane current density.45

Both types of nonlinear effects increase with increasing
the quality factor of resonances. Since Q � 1 only at low T ,
nonlinear corrections can be significant at low T , but less so
at elevated temperatures.

B. Implications for coherent Josephson oscillators

As mentioned in the Introduction, stacked IJJs are
considered as possible candidates for high power THz
oscillators.18–23,41 A large energy gap in Bi-2212 (Refs.
36,38) allows generation of electromagnetic radiation with
frequencies in excess of 10 THz. For example, recently
polariton generation with frequencies up to ∼13 THz was
reported.37 Moreover, strong electromagnetic coupling of IJJs
facilitates phase locking of many junctions, which may lead to
coherent amplification of the emission power.25

Realization of a flux-flow oscillator,7 based on fluxon
motion in the in-plane magnetic field,8,46–48 encounters a
difficulty, associated with instability of the rectangular fluxon
lattice. It can be stabilized by geometrical confinement in small
mesas31 or by interaction with infrared optical phonons.37 But
usually fluxon-fluxon repulsion promotes the triangular fluxon
lattice, corresponding to the out-of-phase state, which leads to
destructive interference and negligible emission.24

High quality geometrical resonances improve the operation
of a stacked oscillator in several ways: (i) they amplify the
emission power ∝ Q2,24 (ii) they narrow down the radiation
linewidth ∝ 1/Q,24 and (iii) they can force phase locking
of junctions. Numerical simulations have demonstrated that
large amplitude standing waves, a ∼ 1, can superimpose
their symmetry on the fluxon lattice.10 Such a nonlinear
synchronization requires high Q because a ∝ Q.

The reported rapid decrease of the quality factor with in-
creasing temperature indicates that self-heating is detrimental
for the coherent Josephson oscillator and ultimately limits the
emission power from large Bi-2212 mesas.23 On the other
hand, T dependence of the Swihart velocity facilitates fairly
broad-range tuning of the resonance frequency, as seen from
Fig. 5. This may be beneficial for the oscillator.41

VI. CONCLUSIONS

To conclude, we have studied the T dependence of geo-
metrical and velocity matching resonances in small Bi-2212
mesa structures. We reported a strong T dependence of the
quality factors, which is large at low T , but rapidly decreases
with increasing T . Above T ∼ 60 K ∼ 0.8Tc resonances
are almost fully damped. This observation is consistent
with previous observations of strongly underdamped phase
dynamics at low T ,42 leading to relatively high macroscopic
quantum tunneling temperature in IJJs,49–51 and with the
reported collapse into overdamped dynamics at T/Tc ∼ 0.8.42

The rapid decrease of Q(T ) indicates that self-heating is
detrimental for operation of the coherent THz oscillator and
ultimately limits its performance.23 On the other hand, T

dependence of the Swihart velocity facilitates a broad-range
tuning of the resonance frequency, which may be beneficial
for the oscillator.

Our analysis of T dependence of resonant voltages re-
vealed that the effective penetration depth that determines the
kinetic inductance and the speed of electromagnetic waves
in intrinsic Josephson junctions, see Eq. (1), is exhibiting
a flat T dependence at low T , resembling T dependence
of the c-axis critical current. It is distinctly different from
the linear T dependence of λab(T ), obtained from surface
impedance measurements.12,13 We have argued that nontrivial
physical phenomena, such as breakdown of the local Lon-
don approximation at the atomic scale, are responsible for
this distinct discrepancy, which deserves further theoretical
consideration.
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