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Resonant generation of coherent phonons in a superconductor by ultrafast optical pump pulses
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We study the generation of coherent phonons in a superconductor by ultrafast optical pump pulses. The
nonequilibrium dynamics of the coupled Bogoliubov quasiparticle-phonon system after excitation with the
pump pulse is analyzed by means of the density-matrix formalism with the phonons treated at a full quantum
kinetic level. For ultrashort excitation pulses, the superconductor exhibits a nonadiabatic behavior in which the
superconducting order parameter oscillates. We find that in this nonadiabatic regime the generation of coherent
phonons is resonantly enhanced when the frequency of the order-parameter oscillation is tuned to the phonon
energy, a condition that can be achieved in experiments by varying the integrated pump pulse intensity.
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I. INTRODUCTION

The generation of coherent phonons by ultrashort optical
pulses with duration much shorter than the phonon vibrational
period has been extensively studied in various materials,
such as bulk semiconductors,'™ semiconductor quantum
wells,”'* and superlattices,'>'¢ as well as high-temperature
superconductors.'”! For semiconducting systems, several
distinct coherent phonon generation mechanisms have been
discussed.>* For example, in the displacive mechanism, the
optical pulse creates a finite photocarrier distribution almost
instantaneously on the time scale of the phonon subsystem.>*
This results in an abrupt change of the equilibrium positions of
the lattice ions, and hence gives rise to coherent oscillations of
the atoms around the new potential minima. In the impulsive
mechanism, an effective direct coupling of the laser field to the
lattice ions is assumed,”-?? leading to a brief and intense force
acting on the atoms. The detailed dynamics of the electronic
subsystem on time scales longer than the optical pulse is,
in general, irrelevant for the description of coherent phonon
creation in semiconductors. An exception to this rule occurs
when the electronic subsystem oscillates with a period on
the time scale of the phonon vibrations, in which case the
coherent phonon generation is resonantly enhanced. This has
been observed both in semiconductor quantum wells''~'# and
in superlattices.'>'6

In this paper, we investigate the generation of coherent
phonons in a nonequilibrium superconductor. Specifically, we
study the optical excitation of Bogoliubov quasiparticle states
above the superconducting ground state on time scales shorter
than the phonon vibrational period 7,,. We find that, akin
to the displacive mechanism in semiconductors, a sudden
change in the Bogoliubov quasiparticle distribution functions
generates coherent phonon oscillations. This mechanism of
phonon creation is relevant to pump-probe experiments on
superconductors with a pump photon energy of the same
order but slightly larger than twice the superconducting gap
amplitude |A| and a laser pulse duration 7, shorter than
both the phonon period 7, and the dynamical time scale
of the superconducting order parameter ta ~ h/(2|A|). It
has recently been shown that, whenever the pump pulse
duration T, is much shorter than 74, oscillations are created
in the quasiparticle occupations with frequency of the order
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of ~2m/ta ~ 2|A|/h.23! For o < Tpn, these oscillations
average out on the time scale of the phonons and are therefore
unimportant for the creation of coherent phonons. When tp
is close to Tpy, on the other hand, the generation of coherent
phonons is resonantly enhanced. Remarkably, provided that
wph S 2|Al/h, the Bogoliubov quasiparticle oscillations can
be brought into exact resonance with the phonon frequency wpp,
by adjusting the integrated pump pulse intensity (see Figs. 1
and 2).

In the following, we theoretically investigate this resonant
coherent phonon generation mechanism by employing a
microscopic model of an s-wave superconductor coupled to an
optical-phonon mode with frequency w,,. We study the pulse-
induced dynamics of this model system at times shorter than
the quasiparticle energy relaxation time 7., a regime which
can be fully described within mean-field BCS theory.?%3?
Different orderings of the involved time scales are studied
with a particular emphasis on the case where both the phonon
and the quasiparticle subsystems evolve in a nonadiabatic
fashion, i.e., where 1, < Tp,Ta < 7. In this nonadiabatic
regime, traditional approaches for computing nonequilibrium
dynamics, such as the time-dependent Ginzburg-Landau the-
ory or the Boltzmann kinetic equation, are not applicable,
since the full dynamics of both the normal and the anomalous
quasiparticle densities, as well as that of the coherent-phonon
amplitudes needs to be accounted for. Therefore we resort
to the density-matrix formalism**** to numerically compute
the coherent response of the model system after excitation by
a short pump pulse. Based on this approach, we analyze in
detail the generation of coherent phonons and calculate lattice
displacements both for resonant and off-resonant conditions.
The analysis presented in this paper is complementary to
the one of Ref. 35, which employs Boltzmann-type kinetic
equations to study the adiabatic dynamics of Bogoliubov
quasiparticles coupled to incoherent phonons.

II. MICROSCOPIC MODEL

The microscopic model we consider is a single-band
BCS s-wave superconductor coupled to an external electro-
magnetic field and to a single branch of optical phonons
H = Hy. + Hem + Hpn + He_pn. Within mean-field theory,
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FIG. 1. (Color online) (a) Numerical simulation of the lattice
displacement U (0,z) versus time ¢ for three different pulse widths
7, = 15 ps (solid black), 5 ps (dashed blue), and 0.05 ps (dotted red).
The integrated pump pulse intensity for each trace is chosen such that
2A4 = 1.7 meV. Here we take wy, = 2.0 meV/h. Panels (b) and
(c) show the spectral distribution of U(0,#) and the temporal
evolution of |A(t)|, respectively, for the same parameter values
as in (a). In (c), the curves are vertically shifted by multiples of
0.1 meV.

the BCS superconductor is
Hamiltonian:

given by the following

T Toor
Hy, = ngck,ack,a + Z[ACMC—M + Afc_y el
k,o keWw

(1a)

where ck , represents the electron annihilation operator with
spin ¢ and momentum Kk, &k = hzkz/(Zm) — Eg, m is the
effective electron mass, and Er denotes the Fermi energy.
The second sum in Eq. (1a) is over the set V of momentum
vectors with k| < hw., o being the cut-off frequency. The
superconducting order parameter A is assumed to have s-wave
symmetry with A = W, Zkew<c—kic+kT)~ Here, Wj is an
attractive momentum-independent interaction constant.

The superconducting system (1a) is perturbed by a Gaussian
pump pulse, which creates finite nonequilibrium quasiparticle
distributions. In the Coulomb gauge, the optical pump pulse is
described by a transverse vector potential

(22

Ag(t) =Age™ @ 7 (8q.q,e " + Sg—qeT ), (1b)

with full width at half maximum (FWHM) 1,,, amplitude Ao,
photon frequency wy,, and photon wave vector qp. The coupling
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FIG. 2. (Color online) (a) Lattice displacement U(0,) as a
function of time ¢ for resonant (dotted red: Ajr, = 415, 2A =
2.0 meV) and off-resonant conditions (solid black: A%rp = 254,
2A~ = 2.3 meV, dashed blue: A%rp = 561,2A, = 1.7 meV). Here
we take 7, = 0.5 ps and w,, = 2.0 meV /h. The gray curve shows the
/t dependence predicted by Eq. (9). (b) Spectral distribution of the
coherent phonon oscillations for the same parameters as in (a). (c)
Asymptotic value of the order parameter A, versus integrated pump
pulse intensity for seven different pulse widths ,.

of the vector potential A4 to the superconductor (1a) is given
by Hem = H) + H®), where

eh t
He(r]n) = ﬂ k;y(Zk + q) ' Aq(t) Ck+q,ack,a’

(1o
H,. = E E a—q () - Agq(®) | ¢ 0.0%k.0"

kgqo | ¢

We add to this Hamiltonian a noninteracting phonon system
and a coupling between the phononic and electronic degrees
of freedom. The free-phonon Hamiltonian Hy, is described
by Hp, = Zp ha)ph(b:,bp + %), where by, is the annihilation
operator of a phonon with wave vector p and constant
frequency wyyp. For the sake of simplicity, we restrict ourselves
to a single branch of phonons. A generalization to several
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phonon modes is straightforward. The superconductor is
coupled to the phononic system via the interaction

He gy = gon »_ (b1 +D5,)ch 11 o Cor (1d)
p.k.o

where g, denotes the electron-phonon coupling constant. In
the following we assume that the electron-phonon coupling
strength is much smaller than the superconducting energy
scales,*® such that the influence of the phonon subsystem on
the superconductor becomes negligibly small.

III. DENSITY-MATRIX FORMALISM

Physical observables, such as the order-parameter ampli-
tude |A(¢)| and the lattice displacement U(r,t), can all be
expressed in terms of the Bogoliubov quasiparticle densities
and the mean phonon amplitudes. Hence we derive equations
of motion for these quantities using the framework of the
density-matrix formalism. To this end, it is advantageous
to perform a canonical Bogoliubov transformation of the
fermionic operators, with oy = UkCyy + vch_k ' and ,3,1 =

uch_k L~ UkCiqo where the coefficients ux and vy are time
independent and chosen such that the BCS part of the

d
zhd—t(akak/)

- % D7k +q) - AglLy o @) — L _gloione_g) —

q==%q,

o2
_E ZAqq

q q'==*q,

—gon Y Dol My _plonBi ) + My (eBp) + Licplnpone) —

P

where Ri = sk(l — 2vk) + 2ugvkReA, Cx = —2eguygvk +
Auk A*vk, Lk K — UkUktK + Uk Uk+K' » and Mkik, =
UkUk+k £ UkVk+k . Comparing the first and the last line of
Eq. (3), one sees that the quasiparticle-phonon interaction
at first order in the hierarchy simply leads to a nondiagonal
energy renormalization. The equations of motion for the
remaining three quasiparticle densities, (ﬂiﬂk,), (aiﬁl/),
and (o By,), which have a similar structure, are given in the
Appendix.

The time dependence of the coherent-phonon amplitude
Dp(t) can be expressed in terms of a harmonic oscillator-
type second-order differential equation (for details, see the
Appendix),

d2
[ s a)ph] Dy(t) = Fp(t), (4a)

= (Rw — R){efay) + CulefBl) + Ciilen By)

[Licq (ohqo) —
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Hamiltonian, H,., in the initial state, i.e., at t =¢;, takes
diagonal form (see the Appendix). Due to the interaction term
He_pn, Eq. (1d), the equations of motion for the single-particle
density matrices are not closed, but give rise to an infinite
hierarchy of equations of higher-order density matrices. For
the purpose of studying the generation of coherent phonons, it
suffices to break this hierarchy at first order, which amounts to
neglecting all correlations among quasiparticles and phonons.
Thus phonon-assisted quantltles such as (akozk, by), are factor-

ized according to (ockozk,bp) (akak/)(bp) A nonvanishing
(bp) corresponds to a finite displacement of the lattice
ions. That is, the lattice displacement U(r,?) is connected
tq the coherent-phonon amplitude Dp(t) = (bp) + (bi,p>
via

nh .
ur,)= | —— D, (t)etPT 2
(r,) ZwahVXPj p(1)e )

where M is the reduced mass of the lattice ions and V the
system’s volume.

Atfirst order in the correlation expansion in gy, the equation
of motion for the normal quasiparticle density (alak,), as

obtained from the Heisenberg equation of motion, is given
by

Mo (@ Brg) — Mig _g (et Bl_ )]

Lig _g(ohane_o) + Myl (@ Brrg) + My _ ol Bl_ )]

L _plotione )1, 3)

with forcing term

Fplt) = — (o Blip)

gph Z[

+ Ll:,p(<akak+p>

( Ok1p ,Bk>

+ (BB, (4b)

which is purely real. Within the framework of model (1),
the equation of motion for the coherent-phonon amplitude
Dp(t) is exact up to higher-order corrections in the correlation
expansion. It is worth noting that at the next order in the
hierarchy (i.e., at second order in g,,) incoherent phonons
and quasiparticle-phonon scattering processes are generated,
which give rise to a finite lifetime of the coherent phonons
and which thereby lead to an exponential damping of the
coherent-phonon oscillations. Focusing on time scales much
shorter than the coherent phonon lifetime, we neglect in
the following any finite lifetime effects due to quasiparticle-
phonon or phonon-phonon scattering processes.
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Equation (3) and the corresponding equations for the other
three quasiparticle densities (see the Appendix) together with
Eq. (4) form a closed set of coupled differential equations. In
Sec. V we solve numerically this set of equations to determine
the temporal evolution of the order parameter amplitude |A(?)|
and the lattice displacement U(r,t). Before doing so, we
present in Sec. IV a qualitative analysis of the differential
Eq. (4) and derive approximate solutions for different time
scale regimes.

IV. COHERENT PHONON GENERATION MECHANISM

The equation of motion (4) for the coherent-phonon
amplitude Dy(#) resembles the equation of a forced harmonic
oscillator with driving force F,(¢). The forcing term F,(2) is a
function of the quasiparticle densities and implicitly depends
on the optical excitation conditions, since both the normal
and the anomalous quasiparticle densities are driven by the
optical pump pulse. Hence a rapid increase in the Bogoliubov
quasiparticle distribution function due to optical excitation acts
as a driving force for coherent-phonon oscillations. To make
this more precise, let us express the general solution of the
second-order differential equation (4) as

Dy = [ ar F@ DL )

a)ph

i

where we assumed the following initial conditions: Dy(#;) = 0
and j—t Dp(t;) = 0, for all p. Depending on the considered
ordering of time scales, the time dependence of the driving
force F, can be approximated by different functions.

First, we focus on the regime 7, < Tao ~ Tpn, Where
both the quasiparticle and phononic subsystems evolve in
a nonadiabatic manner and the phonon period T, is of the
same order of magnitude as the dynamical time scale of the
order parameter To. A number of recent publications have
investigated this regime, albeit in the absence of phonon
interactions.2>3! Indeed, an exact solution has been derived
for the dynamics of a BCS superconductor after an abrupt
perturbation by, e.g., an interaction quench.?*?’ In particular,
it has been shown that as + — oo, the absolute value of the
order parameter | A(¢)| approaches, in an oscillatory fashion, a
constant value Ao, < |A(%)], i.e.,

b
IA(®)| = Ax + E cos QAxt/h + @), 6)

where b and ¢ are constants that depend on the initial state.”’
The evolution of the normal and anomalous quasiparticle
densities shows a similar oscillatory behavior with a 1/4/t
decay. As it turns out, the coupling to phonons does not
qualitatively alter this time dependence, as long as the
electron-phonon interaction strength is small compared to the
superconducting gap amplitude. Hence we approximate the
forcing term in Eq. (4) as

Fp(t) = O()[Ap + By cos (2Axt /h) /V/1], 7

with ®(t) the Heaviside step function. Inserting Eq. (7) into
Eq. (5), and assuming that the phonon frequency wpy is
close to resonance with the order parameter oscillations, i.e.,
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wg = |2A5/h — wpn| K wpn, we find that, to leading order in
wq/wph, the coherent-phonon amplitude Dy(¢) is given by

Dp(t) >~ i) N z [cos(twpn)S2(twq) + sin(twpn)Ca(twa)],
wph \ 2wq
®)

for + > 0, and where S, and C, denote the two Fresnel
integrals.” In other words, the time evolution of Dy (t) exhibits
abeatinglike phenomenon, i.e., Dy(?) oscillates with frequency
wph and an amplitude that is modulated by the Fresnel integrals
(cf. Figs. 1 and 2). Exactly at resonance, fiwpn = 2A, the
coherent-phonon amplitude takes the form

A B
Dp(t) ~ —-[1 — cos(wpnt)] + —= /1 sin(wpnt)
Wph @ph
B, /’ dr’ . ,
+— sinfwpn(t — 2111, )
a)ph 0 2\/7 ph

for t > 0. As t increases, the second term quickly dominates
in the above expression and hence the amplitude of the
oscillations in Dy(t) grows like J/t. This is in excellent
agreement with the numerical simulations presented in Sec. V
(cf. Fig. 2).

Second, we consider the regime 7,,74 < Tpn, Where the
Bogoliubov quasiparticle oscillations average out on the time
scale of the phonons. In this case, provided that A is not too
small compared to By in Eq. (7), the forcing term F,(¢) can be
approximated by Fp(t) > Ap®(¢). Inserting this into Eq. (5)
yields for the coherent-phonon amplitude Dy(#)

Ap
Dy(1) ~ —2[1 — cos(wpnt)], fort > 0. (10)
g
Thus the phonon oscillations are cosinelike, with the extrema
lying at integer and half integer multiples of the phonon period
Tpn. The amplitude of the oscillations increases with decreasing
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FIG. 3. (Color online) Lattice displacement U (0,7) as a function
of time ¢ for three different pump pulse lengths 7, = 0.05, 2, and 10
ps and two different phonon frequencies wp, = 0.1 and 0.05 meV /A,
corresponding to 7,, =41 and 83 ps, respectively. The integrated
pump pulse intensity for each curve is adjusted such that 2A =
1.7 meV. The curves with 7, = 2 and 10 ps have been multiplied by
the constant factor 50 and 400, respectively.
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phonon frequency wp,. Again, we find good agreement with the
numerical results of Sec. V (cf. Fig. 3). Note that when A,/ B,
becomes sufficiently small in Eq. (7), then there appear fast
oscillations with frequency 2A /i superimposed on the slow
oscillations of Eq. (10) (cf. solid black and dotted red curves
in Fig. 3).

V. NUMERICAL SIMULATIONS

In this section, we numerically solve the closed set of
equations of motion, Egs. (3), (4), (Al), and (A2), both for
the quasiparticle densities and the mean phonon amplitudes.
From these quantities, the temporal evolution of the lattice
displacement U(r,t) and of the order parameter amplitude
|A(2)] is readily computed. Inspection of Eq. (3) shows that
the largest entries in the quasiparticle density matrices are
those confined to a band centered around the diagonal. That is,
off-diagonal entries, such as, e.g., (alak +nqp)’ are of order
|[Ag|". Hence, for sufficiently small |Ag|, the off-diagonal
elements decrease rapidly as n increases. To reduce the
computational effort we therefore set all off-diagonal entries
with n > 4 to zero and, furthermore, restrict ourselves to
a one-dimensional wire geometry. It is important to note,
however, that the phenomena discussed in this paper are
qualitatively independent on the dimensionality of the system,
as can be seen from the analytical analysis given in Sec. IV.
In fact, for a related model it has been shown that (quasi-)
one-dimensional simulations provide a good approximation
for two- and three-dimensional superconductors.®

For the numerical computations we use the following
material parameters:*® superconducting gap in the initial
state A(#;) = 1.35 meV, cutoff energy fiw. = 8.3 meV, Fermi
energy Er = 9479 meV, effective electron mass m = 1.9m,
with mg the free electron mass. The optical pump pulse is
centered at t = 0 and has a central energy of fiw, = 3 meV,
which is of the same order, but slightly larger than 2A(%;). As
the initial state for the simulations we choose the equilibrium
BCS ground state at zero temperature. We find that the lattice
displacement U (r,t) has a quite weak dependence on position,
exhibiting oscillations in time at all values of r. The frequency
of these oscillations does not depend on position, but their
amplitude varies weakly with r. Therefore we choose to
present in all the figures only the displacement for r = 0. A
detailed study of the r dependence of U (r,t) will be presented
elsewhere.

In the following, we adjust the pump pulse length 7, the
phonon frequency wpp, as well as the integrated pump pulse
intensity A%rp, to explore different time scale regimes.

(a) ta ~ Tph. We start with the most interesting case,
namely the situation where the Bogoliubov quasiparticle
oscillations are close to resonance with the phonon frequencys;
see Figs. 1 and 2. In Figs. 1(a) and 1(c), we plot U(0,¢) and
|A(2)|, respectively, for three different pump pulse lengths
7, = 0.05, 5, and 15 ps. The integrated pump pulse intensity
for each curve in Fig. 1 is adjusted such that 2A. =
1.7 meV. This ensures that the order-parameter oscillations are
always close to resonance with the phonon frequency. When
the quasiparticle subsystem is perturbed nonadiabatically
(tp < Ta,le., 7, =0.05psinFig. 1 and 7, = 0.5 psin Fig. 2),
the quasiparticle densities build up in a coherent manner
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while the system is out of equilibrium. This leads to rapid
oscillations in the quasiparticle densities, and hence also in
the order parameter, with an amplitude decaying as 1/+/f and
afrequency that is determined by the asymptotic gap value A,
[see Fig. 1(c) and Eq. (6)]. Consequently, the coherent phonons
are driven by a sinusoidal forcing term. Thus whenever the
order parameter oscillations are close to resonance with the
phonon mode (i.e., [2Ax/h — wpn| K wpn), We observe a
pronounced beating phenomenon [cf. Eq. (8)].

Most importantly, we find that the frequency of the order-
parameter oscillations can be tuned exactly to resonance by
adjusting the integrated pump pulse intensity [cf. Fig. 2(c)].
This is demonstrated in Fig. 2(a), which is the main result
of our paper. In this figure we plot the lattice displacement
for hiwpn =2 meV and a fixed pulse duration 1, = 0.5
ps, but different integrated pulse intensities. At resonance,
Alt, = 415 (2Ao =2 meV), the amplitude of the phonon
oscillations shows a square-root increase with ¢, which is in
agreement with Eq. (9). In Figs. 1(b) and 2(b) we present the
spectral distributions of the coherent phonon oscillations as
obtained from the Fourier transforms of U (0,¢). The discussed
behavior of U(0,¢) reflects itself in the Fourier transforms:
for the resonant condition we observe a strong single peak
at 2 meV, while for the off-resonant condition there are two
peaks, one at the phonon energy iwp, = 2 meV and the other
at the frequency of the order parameter oscillations, i.e., at
2A s = 1.7 and 2.3 meV, respectively.

In the regime, where the quasiparticles evolve adiabatically
(tp > Ta, 1€, Tp =5 and 15 ps in Fig. 1), the pump pulse
drives only the normal quasiparticle densities, (alak,) and

(ﬂltﬂk,), but leaves the anomalous ones, <°‘|T(:311/> and (o, By),
mostly unaffected.* Thus the instantaneous value of the gap
is almost fully determined at all times by the quasiparticle
occupations, (alak/) and (ﬂiﬂk,), and the gap amplitude
decreases monotonically from its initial equilibrium value
A(t;) to its final value A, [black solid curve in Fig. 1(c)].
As it turns out, in this situation the coherent phonons are still
driven by a sinusoidal forcing term of the form (7), albeit
with a much smaller amplitude. As a consequence, U (r,t) still
exhibits a beating phenomenon, but has a considerably smaller
magnitude than in the nonadiabatic case. Deep inside the
adiabatic regime (1, >> 75) the coherent phonon oscillations
eventually vanish completely.

In passing, let us also comment on the dependence of A,
on the integrated pump pulse intensity A(z)rp, which is shown
in Fig. 2(c) for seven different pulse widths 7,. The asymptotic
gap value A is linear at small A3z, for all 7,, but deviates
from this linear behavior at higher integrated intensities. While
the curves corresponding to short pump pulses (7, = 0.05 and
0.5 ps) exhibit a downward bend, those with longer pulse
widths (tp = 2.0, 5.0 and 20.0 ps) flatten with increasing
Alt,. (The curves with 7, = 1.0 and 1.38 ps lie in between
these two regimes, showing first a downward and then an
upward bend.) The downward bend is due to a quadratic term
in the A%rp dependence resulting from two-photon processes.
The flattening, on the other hand, occurs because long pump
pulses, with 7, > 27 /w, > 1.38 ps, create sharp and narrow
peaks in the quasiparticle distributions, which, for sufficiently
high intensities, leads to saturation due to Pauli blocking.?®!
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We observe that the integrated intensity above which Pauli
blocking sets in decreases with increasing tp.

(b) Ta, Ty K Tpn. In Fig. 3 we show the lattice displace-
ments U(0,7) induced by optical pump pulses with pulse
lengths 7, = 0.05, 2, and 10 ps for two different phonon
energies fiwpn = 0.1 and 0.05 meV. This parameter choice
corresponds to the case where the rapid oscillations in the
quasiparticle subsystem average out on the time scale of
the phonons. Since 7, < 7, the phonons are perturbed by
an almost instantaneous change in quasiparticle occupations,
which leads to cosinelike coherent phonon oscillations with
frequency wpn and an amplitude that increases with decreasing
phonon frequency wpn [cf. Eq. (10)]. As we go from the
regime where the Bogoliubov quasiparticles are perturbed
nonadiabaticallly (7, < T4, i.€., T, = 0.05 ps in Fig. 3) to the
regime where the quasiparticles are perturbed adiabatically
(tp > ta, 1€, T, = 10 ps in Fig. 3) the amplitude of the
oscillations decreases quickly. For sufficiently long pump
pulses, eventually there appear fast oscillations with frequency
2A/h on top of the slow oscillations with frequency wpp
(tp = 10 ps in Fig. 3).

(c) Toh < Ta K Tp. Last, we consider the case where both
the quasiparticles and the phonons are perturbed in an (almost)
adiabatic fashion and the coherent phonon oscillations are off
resonance. In Fig. 4, the time dependence of U(0,¢) is shown
for a pump pulse with length 7, = 15 ps and three different
integrated pump pulse intensities. The phonon energy is chosen
tobehiwp, = 4meV, whichis larger than 2 | A(t;)| and hence far
away from resonance. In spite of the almost adiabatic evolution
of the system on the phonon time scale, coherent phonons are
still being generated, albeit with a much smaller amplitude
than in Figs. 1-3. Remarkably, the Fourier spectrum of the
coherent phonon oscillations (inset in Fig. 4) does not only
show contributions at 2A ., and liwy, = 4 meV, but also a third
peak at 3 meV, which is identical to the pump photon energy.
The latter contribution is caused by large transient oscillations
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FIG. 4. (Color online) Lattice displacement U(0,7) versus time
t for three different integrated pump pulse intensities Aj7, = 129,
343, and 969. These integrated intensities correspond to 2A,, = 1.7,
2.0, and 2.3, respectively. Here we choose 7, = 15 ps and wy, =
4 meV /h. The gray trace depicts the Gaussian time dependence of the
pulse envelope. The inset shows the spectral distribution of the coher-
ent phonon oscillations for the same parameters as in the main panel.
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occurring in the time interval ~ [—1,, + 7,] during which the
pump pulse acts on the system. If the pump pulse frequency
wp is chosen close to wpy, the coherent phonon oscillations
show some enhancement, i.e., the coherent-phonon amplitude
increases (almost) monotonically until £ >~ 0 ps, and then
remains constant at its peak value even after the pump pulse
has passed (not shown).

VI. CONCLUSIONS

In this paper we have presented a theoretical investigation
of the generation of coherent phonons in a superconductor by
ultrafast laser pulses. Using the density-matrix formalism, we
have performed numerical simulations of the nonequilibrium
dynamics of a BCS s-wave superconductor coupled to a single
branch of optical phonons. Based on both numerical and
analytical arguments, we have shown that sudden changes in
the Bogoliubov quasiparticle densities created by the optical
pump pulse act as a driving force for coherent phonon
oscillations. For ultrafast laser excitations, the superconductor
exhibits a nonadiabatic coherent dynamics that is characterized
by rapid order-parameter oscillations. We have found that the
creation of coherent phonons is resonantly enhanced when
the period of these gap oscillations coincides with the phonon
period. In a pump probe experiment this resonance condition
can be achieved by tuning the frequency of the gap oscillations
via a change in the integrated pump pulse intensity (see Fig. 2).

The resonant coherent phonon generation mechanism
discussed in this paper applies in principle to any BCS-type
superconductor that has an optical phonon with phonon
energy of the same order as the superconducting gap. One
interesting class of examples are superconductors that are
close to a structural transition that is driven by a soft optical
phonon, ie., e.g., CaCe,***" or CaAlSi.**** The coherent
phonon oscillations are experimentally observable, for ex-
ample, as periodic modulations in time-resolved reflectivity
measurements. Driving a superconductor into the regime
of nonadiabatic coherent dynamics requires ultrashort laser
pulses with frequencies of the order of the superconducting
gap, i.e., in the terahertz regime. With the recent advent
of ultrafast terahertz sources,** we hope that it will be
soon possible to perform time-resolved measurements on
superconductors in the nonadiabatic regime and to test our
theoretical predictions. The experimental observation of the
discussed resonant coherent phonon oscillations would not
only be interesting in itself, it could potentially also give
useful information about the gap symmetry and the pairing
mechanism of the superconductor.
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APPENDIX: EQUATIONS OF MOTION

In this Appendix, we give the equations of motion for the
quasiparticle density (o, 8.} and { /Sl By )» and the mean phonon

214513-6



RESONANT GENERATION OF COHERENT PHONONS IN A ... PHYSICAL REVIEW B 84, 214513 (2011)

amplitude (by). In deriving these differential equations, we use the fact that both uy and vy are real and time-independent, with

ux =+/1/2(1 + ex/Ex) and vk =+/1/2(1 — ex/Ex), and where E) =,/8§ + |A(;)]?. As explained in the main text, we neglect

terms of second or higher order in the correlation expansions in gp, and decouple phonon-assisted quantities according to, e.g.,

(aiﬁi,bp) >~ (alﬁi,)(bp). By use of Heisenberg’s equation of motion, we find that the time dependence of (alﬁi,) is described
by the following differential equation:

d " .
i @ BL) = —(Ri+ Ro)auhi) + Cilenene) + Ci((BLA) = diea)

eh _ _
— o D CR @) AL (o oB) = L gl g) + Mig_glenon o) + Micg{Brsafiy)]

q=%qp
e — T T — Tt + T + T
Cm Z Ag-q - Aq | [l glogggBi) + Lo _glewBi_g) + My _glonone—q) — My (BiioBro)]
q q'=%q,
_ D M+ T -5 Lo T of L i T M+ T Al
8ph Z p[ k_p((ﬁk/,gk+p) k+p,k’) + K,—p (O‘kﬁk/_p> + Kk.p (ak+p,3k'> + K,—p (akak’—p)]a (Al)
P

where Ry, Ck, Lf, and Mki are defined in Sec. III. Note that the equation of motion for (o f,) can be obtained straightforwardly
from Eq. (A1) by complex conjugation. The equation of motion for ( ,BIT(ﬂk,) reads

d . .
i (Fuie) = (R — R)(BLB) + Cila BlY + Cf {enBie)

h .
+ ze—m Yk — @) AglLy (Bl gBie) — L o BiBiera) — Mi_glotk-aPic) — Mg el ()]
q==q,

2
e _ _
— D Agg Ag | (Lo (Bl_Bi) — Lig o BlBira) + M gl (AL + Myt (enqBic)]
q q'==%q,
— D, [M; ME (ol By — Lo (B LT (B A2
gphz p[ k,_p(‘xk_pﬁk/)‘i‘ k/,p<akf+pﬂk) k/,p(ﬁkﬁk%p)‘i‘ kq_p<ﬁk—pﬂk’)]' (A2)
P

We also present here the equation of motion for the mean phonon amplitude (bp), which is derived in a similar fashion as Eq. (A1),

d h
(by) = heognby) —

ih—
dt 2wph

Fp(0), (A3)

where Fp(t) is defined in Eq. (4b). Again, we note that the equation of motion for (bT_p> is related to the one for (bp) by complex

conjugation. Adding the equations for (bp) and (bT_p) and taking a time derivative, one derives the equation of motion for the
coherent-phonon amplitude Dp(?), Eq. (4).

As can be seen from Egs. (3), (A1), and (A2), any element in the quasiparticle density matrices, such as, e.g., (aiak +nqp), is
strongly coupled only to those elements with indices in the subspace (k + [qp, kK + Iqp + mqp), where [, m, and n are integers.
Elements with indices in different subspaces are only weakly coupled through the superconducting order parameter. For the
one-dimensional simulations we therefore discretized the momentum space by a one-dimensional grid with mesh size |qp].
Furthermore, we approximate (2k 4+ q) - A4 in the second line of Eqs. (3), (A1), and (A2) by 2kg - A4, which is justified since
the photon wave vector is much smaller than the Fermi momentum |kg|. We use a standard fourth-order Runge-Kutta technique
to integrate the equations of motions given by Egs. (3), (4), (A1), and (A2).
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